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Abstract: Total Potential Optimization using Metaheuristic Algorithms (TPO/MA) is an alternative 

tool for the analysis of structures. It is shown that this emerging method is advantageous in solving 

nonlinear problems like trusses, tensegrity structures, cable networks, and plane stress systems. In 

the present study, TPO/MA, which does not need any specific implementation for nonlinearity, is 

demonstrated to be successfully applied to the analysis of plane strain structures. A numerical in-

vestigation is performed using nine different metaheuristic algorithms and an adaptive harmony 

search in linear analysis of a structural mechanics problem having 8 free nodes defined as design 

variables in the minimization problem of total potential energy. For nonlinear stress-strain relation 

cases, two structural mechanics problems, one being a thick-walled pipe and the other being a can-

tilever retaining wall, are analyzed by employing adaptive harmony search, which was found to be 

the best one in linear analyses. The nonlinear stress-strain relations considered in these analyses are 

hypothetical ones due to the lack of any such relationship in the literature. The results have shown 

that TPO/MA can solve nonlinear plane strain problems that can be encountered as engineering 

problems in structural mechanics. 

Keywords: Total Potential Optimization using metaheuristic algorithm; adaptive harmony search; 

plane strain analysis; nonlinear stress-strain relation; plates 

 

1. Introduction 

Finite Element Method (FEM) is a well-known mechanical and structural analysis 

tool that is used commonly by structural engineers. In FEM applications, firstly matrix 

equations are prepared for each element, and then these equations are combined to yield 

a general matrix equation of the form Kx = p where K is the square matrix called stiffness 

matrix, x is the vector of displacements and p is the vector of loads. This operation can be 

performed easily for linear and well-constrained systems. For nonlinear systems, either 

geometrically or materially, K is a function of displacements and loads. It cannot be writ-

ten as independent of the values in x and p. FEM applications can be used for nonlinear 

systems, but an iterative procedure is needed. As a negative point to FEM, one can cite 

the problems that are under-constrained. For these problems K becomes ill-conditioned 

making the solution impossible. There are several other problems where FEM becomes 

very difficult to apply, like the cases where the solution is not unique or where there are 

unilateral or nonlinear constraints [1–5].  
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An alternative way for the structural analyses is based on calculating the total poten-

tial energy of the elements instead of solving their equilibrium equations. Then by com-

bining all these energies by only summing all of them, it is possible to obtain a function of 
the whole system as a function of x and p. By following the minimization of that function 

concerning x, the well-known minimum potential energy theorem in mechanics is pro-

vided. This approach, called Total Potential Optimization using Metaheuristic Algorithms 

(TPO/MA) is first applied successfully to analyses of trusses where the optimization part 

is conducted using different kinds of metaheuristic algorithms. This approach is followed 

by further applications, with metaheuristic algorithms and hybrid ones, on planar or 

space trusses [6–8], tensegrity structures [9], and cable systems [10,11]. Latest applications 

concern plane stress problems, with well-known linear constitutive equations [12], or with 

hypothetical linear constitutive equations [13]. TPO/MA has advantages on special and 

nonlinear systems. TPO/MA uses iterative search like an optimization problem for both 

linear and nonlinear systems, while FEM is a direct solution method for linear systems, 

and also an iterative system for nonlinear ones.  

In this study, the main purpose is to add a new type of structure to the existing ap-

plication area of TPO/MA, namely, plane strain type plates. It is also aimed to show that 

systems with nonlinear stress-strain relations can be analyzed with this method with the 

same ease as with systems with linear stress-strain relations. For this purpose, besides 

linear systems, nonlinear systems are analyzed too. In these applications nonlinear stress-

strain relations are hypothetical ones created by the authors, being not aware of any such 

real relations in the literature. The literature survey conducted has shown that no such 

nonlinear relations exist in two-dimensional structures, while they are numerous in the 

one-dimensional case. The nonlinear two-dimensional relations used in this study are of 

three different types. To find the best suitable metaheuristic method, 10 metaheuristic 

methods, one of them being the adaptive harmony search (AHS), are applied on a linear 

case of the first example. The results on these applications have shown that AHS is the 

one giving the best solution, in the shortest time. Then, the nonlinear cases of the first 

example and the other problems that have a higher number of design variables than the 

first example are solved via employing AHS.  

2. Methods 

2.1. The Total Potential Energy of Plane Stress Members 

It is possible to generate a structural system as a plate problem by considering trian-

gular elements having three nodes i, j, and k, as shown in Figure 1. For the member that 

has a homogeneous and continuous material, linear displacement fields defined as u(x,y) 

and v(x,y) are, respectively, given in x and y directions in Equations (1) and (2) for a tri-

angular element in the x-y plane. Translational displacements of a node symbolized as i 

are shown as ui and vi. 
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Figure 1. Triangular elements used in the generation of plate systems. 
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yCxCu)y,x(u 21i   (1) 

yCxCv)y,x(v 43i   (2) 

Knowing the displacement fields including constants named “C1, C2, C3, and C4,” the 

strains can be calculated as shown in Equations (3)–(5). 
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The three different strains that are symbolized as εx, εy, and γxy, are the normal strain 

in the x-direction, normal strain in the y-direction, and shear strain, respectively. The 

nodal displacements are written as in Equations (6)–(8). 

ii v)0,0(v,u)0,0(u   (6) 

jjjjjj v)b,a(v,u)b,a(u   (7) 
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After the displacements of each node are obtained, the displacement matrix form can 

be written as follows using Equations (1) and (2). 
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In Equations (10)–(13), the constants C1, C2, C3, and C4 are formulated according to 

matrix calculations of Equation (9). 
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For a body with two dimensions, the strain energy (e) is formulated in Equation (14). 
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For linear plane strain problems, the stresses are defined as Equations (15)–(17) that 

include two material constants, namely, elasticity modulus (E) and Poisson’s ratio (ν). σx, 

σy, and τxy are the normal stress in the x-direction, normal stress in the y-direction, and 

shear stress, respectively. 
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The strains given as Equations (3)–(5) can be calculated via the constant values for-

mulated as Equations (10)–(13), and then, both strains and stresses are shown in Equations 

(15)–(17) that used to obtain strain energies using Equation (14) for the linear case. As the 

main investigation of TPO/MA, three nonlinear stress-strain relationships are formulated 

as Equations (18)–(20) for Case 1, Equation (21) for Case 2, and Equations (22)–(24) for 

Case 3. It must be noted that these equations do not necessarily correspond to specific 

material, and the intention of using these formulations is to demonstrate and test the 

method that can handle easily. 

Case 1. Nonlinear stress-strain relation 1 
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Case 2. Nonlinear stress-strain relation 2 
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where ε0 represents a value to control the linearity limit. In numerical examples, it was 

taken as 0.0001.  

Case 3. Nonlinear stress-strain relation 3 
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In the formulation of the strain energy of the mth triangular element (Um) given as 

Equation (25), strain energy density and volume of the mth triangular element are shown 

as em and Vm, respectively. 

𝑈𝑚 = 𝑒𝑚𝑉𝑚. (25) 

Equation (26) defines the volume of mth triangular element including the constant 

thickness (t) of the plate under consideration. 

             
2

t)baba(
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  (26) 

Then, the total strain energy of a system is calculated by summing the strain energies 

of all elements generating the system. By calculating the energy for all members defined 

with the three nodes, as done in examples given in this study, compatibility is automati-

cally provided since the neighbor members are assigned with the corresponding node 

numbers of the main system, as in FEM applications. As a formulation, the strain energy 

can be written as in Equation (27) for a system consisting of n elements. 






n

1m

mUU  (27) 

Finally, the total potential energy (Πp) that is the difference between work realized 

with external forces and the total strain energy is calculated via Equation (28) if Pxi and Pyi 

are the positioned point loads in x and y directions, respectively. 

1
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     (28) 

As an iterative process using an appropriate optimization algorithm, the analysis is 

handled as a minimization problem of Πp concerning ui’s and vi’s defined as design vari-

ables. After finding the nodal displacements, all stresses and strains in the plate are easily 

determined. 

2.2. Optimization Process Via TPO/MA 

In the section, the optimization process performed for the minimization of the total 

potential energy is explained. In the optimization, the objective function is the total po-

tential energy of the system given in Equation (28). It is calculated by summing the energy 

values of members and subtracting the work done by all external forces.  

The flowchart of handling of metaheuristics to provide optimum energy as TPO/MA 

can be shown in Figure 2. 

As with all metaheuristic-based optimization algorithms, the method starts with the 

definition of nodal coordinates, material constants, nodal loads, and algorithm parame-

ters. The nodes of the system are numbered and the nodal numbers of the members are 

defined. In that case, it is not needed to define an extra relation for the compatibility of 

displacements at the nodes. The design variables of the problem are the nodal displace-

ments. For boundary conditions of fixed freedoms, these conditions are taken as design 

constants and defined as zero. All the other nodal displacements are randomly defined by 

considering the algorithm rules, and since the displacements are known, it is very practi-

cal to calculate directly the energy of all members and then, the whole system. Since the 

aim of the process is the analysis instead of design, design constraints are not used.  

Then, an initial solution vector that includes the candidate values of design variables 

is generated. These variables are randomly selected in a predefined solution range. In 
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TPO/MA, the design variables are the possible displacements at the nodes of the system 

that are not correct at the beginning, and then, the exact solution is obtained for the set 

that has the minimum potential energy value of the system at the end of the iteration 

process. Once these displacements are set, the distribution of strains in the structure can 

be defined, followed by the determination of stresses in concordance with the stress-strain 

relations, whether they are linear or not. Knowing the distribution of stresses and strains, 

the strain energy at each element can be determined. The summation of all strain energies 

in the elements gives the total strain energy in the system. Algebraically adding to this 

value, the work done by external forces due to nodal displacements, the total potential 

energy of the system becomes calculated. Comparison of these energies calculated for all 

candidate vectors enables the determination of the best and worst vectors. According to 

this evaluation, the employed algorithm determines how new candidates will be deter-

mined. With this process, one approaches a better set of candidates, and repeatedly fol-

lowing this approach, after several iterations, the final results are obtained.  

Nine different metaheuristic algorithms including the genetic-based ones (GA [14], 

DE [15]), population or nature-based ones (PSO [16], ABC [17,18], FPA [19], TLBO [20], JA 

[21], GWO [22]), and memory-based HS [23] are evaluated for the linear analysis of the 

first structural model. 

In this study, HS was applied using the modified equations. Here, two different 

stages exist to find the best harmonies by a musician as given in Equation (29). 

{
𝑖𝑓  HMCR > rand( )

𝑒𝑙𝑠𝑒

𝑋𝑖,𝑚𝑖𝑛 + rand ( )(𝑋𝑖,𝑚𝑎𝑥 − 𝑋𝑖,𝑚𝑖𝑛)

𝑋𝑖,𝑛 + rand (
−1

2
,
1

2
) FW (𝑋𝑖,𝑚𝑎𝑥 − 𝑋𝑖,𝑚𝑖𝑛)

. (29) 

There are two different HS parameters: HMCR is harmony consideration rate, and 

FW is the fret width. 𝑋𝑖,𝑚𝑖𝑛 and 𝑋𝑖,𝑚𝑎𝑥 are also upper and lower bounds of ith design 

variable, respectively. On the other hand, 𝑋𝑖,𝑛 is nth candidate solution and is found as 

randomly, besides 𝑋𝑖,𝑛𝑒𝑤  expresses the new value for this variable. 

Also, an adaptive version of HS is employed in the study. To improve the perfor-

mance of HS, the initial parameters of FW and HMCR are automatically modified during 

iterations in adaptive HS (AHS) according to Equations (30) and (31). IN and MI represent 

the current iteration number and maximum iteration number used in optimization, re-

spectively. In addition, a consideration rate was used to allow the best current solution to 

be more chosen as 𝑋𝑖,𝑛. 

FW = FWin(1 −
IN

MI
)  (30) 

HMCR = HMCRin(1 −
IN

MI
). (31) 
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Figure 2. The flowchart of the Total Potential Optimization using Metaheuristic Algorithms 

(TPO/MA) including three stages used in the process. 

2.3. Structural Models 

In the present study, various numerical examples were handled for the optimization 

of three different structural models. In the analysis process, both linear and three different 

nonlinear formulations were applied to all structural models. First, a linear analysis was 

performed on Structure 1 (Section 3.1.1) by employing all of the algorithms, and then, their 

performance and success were evaluated in terms of approach to the minimum energy 

value. Then, all structure models were analyzed via the selected algorithm, which has the 

best performance. Besides, in this process, all optimization analyses are implemented us-

ing 100,000 iterations with 30 populations, and 30 cycles for each analysis phase. 

2.3.1. Structure 1: A Pipe with a Thick-Wall Subjected to Internal Pressure 

The first model is a pipe structure solved via FEM by Topçu [24]. It has walls with 

100 mm thickness under the effect of internal pressure. The internal pressure is 100 N/mm2 

as seen in Figure 3. Elasticity modulus and Poisson’s ratio of pipe used are 100 kN/mm2 

and 0.25, respectively, as reported in Topçu [24]. It can be shown that the model can be 
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handled using a quarter of it with 4 members and 6 nodes due to the symmetry of the pipe 

as shown in Figure 4. 

 

Figure 3. Structure 1: Thick-walled pipe under internal pressure. 

 

Figure 4. Model of the structural system as a thick-wall pipe with 4 members-6 nodes. 

The same problem was analyzed for a finer meshing option. Similarly, it is analyzed 

as a quarter system using a different meshing model. This mesh difference is related to 

the use of members and node numbers as 12 and 14, respectively, in Figure 5. 
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Figure 5. Model of the system with 12 members-14 nodes. 

2.3.2. Structure 2: A Cantilever Retaining Wall (with 14 Members-16 Nodes) 

Finally, the third structural model is a reinforced concrete (RC) cantilever retaining 

wall (Structure 2). The model is shown in Figure 6 with the loading conditions. Addition-

ally, the model is generated with a meshing of the system by considering 14 members-16 

nodes in Figure 7. Properties of an RC cantilever retaining wall material are selected as 32 

× 106 kN/m2 and 0.2 for the elasticity modulus (E) and Poisson’s ratio, respectively. 

 

Figure 6. Cantilever retaining wall as Structure 2. 
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Figure 7. Model for the system with 14 members-16 nodes. 

3. Results 

3.1. Structure 1 

3.1.1. Linear Analysis to Evaluate Nine Employed Metaheuristics 

This case aims to find the best suitable algorithm for the problem to apply this algo-

rithm to advance and nonlinear cases. The optimization results provided by nine algo-

rithms for the present structure are represented in Table 1. From the table, the most effec-

tive and successful algorithms are AHS, DE, TLBO, FPA, and JA in terms of approaching 

minimum energy. FEM can be easily and directly applied to linear systems to find the 

exact solutions, and the solution of nodal displacements is the same for FEM results re-

ported in Topçu [24] and the mentioned successful algorithms. The essential advantage of 

TPOMA is the solving ability of nonlinear systems without implementations of an addi-

tional method, while FEM needs to be combined with other iterative methods to solve a 

specific nonlinear case. 

Besides, the best iteration steps from all iterations in each cycle were evaluated with 

the direction of providing the best objective function in Table 2. The total potential ener-

gies, i.e., the best and average values, and the standard deviations are the same for the 

best 5 methods. The following analyses are conducted via AHS since this method was 

arriving at the best total potential energy with the least number of iterations, as compared 

to the other algorithms, as can be seen in Table 2. 
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Table 1. Optimization results for the structural system with 4 members-6 nodes (linear). 

TPOMA 

Method 

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 
Пp 

(Nmm) 
Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

FEM 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581 

GA 2.208 0.000 2.239 0.000 1.521 0.054 1.168 0.131 0.000 −0.698 0.000 −0.980 34413.583 

DE 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581 

PSO 0.393 0.000 0.335 0.000 0.329 0.430 0.272 0.336 0.000 0.577 0.000 0.529 −7511.990 

HS 0.471 0.000 0.424 0.000 0.369 0.362 0.294 0.290 0.000 0.474 0.000 0.424 −7607.300 

AHS 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581 

ABC −0.389 0.000 −0.486 0.000 −0.185 0.325 −0.039 0.320 0.000 0.492 0.000 0.461 470.741 

TLBO 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581 

FPA 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581 

GWO −0.656 0.000 0.037 0.000 −0.400 −2.337 0.816 −2.336 0.000 0.048 0.000 −0.553 359953.164 

JA 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581 

Table 2. Evaluation of best iteration steps among maximum iteration numbers to reach the mini-

mum total energy. 

Best 

Methods 

Пp 

(Nmm) 
Mean of Пp (Nmm) 

Standard Deviation of 

Пp (Nmm) 
Best Iteration 

DE −7611.581 −7611.581 0.000000000002 93515 

TLBO −7611.581 −7611.581 0.000000000002 4882 

FPA −7611.581 −7611.581 0.000000000002 2824 

JA −7611.581 −7611.581 0.000000000002 10698 

AHS −7611.581 −7611.581 0.000000000002 2023 

3.1.2. Nonlinear Analysis by Employing AHS 

For nonlinear cases, the nodal displacement and minimum total potential energy are 

presented in Table 3. The example has only 8 non-zero displacements. That is why the 

method is presented for a higher number of freedoms than structure 1 in other numerical 

examples. The nonlinear constitutive equations used in the paper show that the nonlinear 

stress-strain relationship in case 2 is very close to one in the linear case, while the other 2 

relationships corresponding to case 1 and case 3 are very different from the one in the 

linear case. Cases 1 and 3 involve cubic powers of the strain on the right-hand side of the 

equations, while the only difference between nonlinear case 2 and linear relationships is 

the shifting of the value of the elasticity modulus according to the values of strains. In 

numerical examples, the value of elasticity modulus for the nonlinear part of case 2 is half 

of the linear case. It seems that the strains generally tend to the nonlinear part with the 

half elasticity modulus value that is resulted in the doubling of displacements compared 

to the linear case. Similarly, the total potential energy value in case 2 is double than in the 

linear case, while the other nonlinear cases have very small total potential energy values. 

All total potential energies are negative, and the absolute values of the total potential en-

ergy show an increase with the direct increase in the nodal displacements. 

To verify the nonlinear cases, Poisson’s ratio values are checked between 0.27 and 0.3 

for all cases and the results are presented in Table 4. For the linear case and nonlinear case 

2, the effect of the Poisson’s ratio is limited. In the linear case, the percentage of change of 

energies is 0.47% by considering minimum and maximum energies. The same value for 

nonlinear case 2 is 0.47%. For the other cases, the increases of Poisson’s ratio significantly 

affect both displacement and total potential energy values. It is observed that the absolutes 

of the total potential energy values show an increase with the increase in Poisson’s ratio. 

The increase in absolute displacement values in nonlinear case 1 is directly proportional 

to that of the Poisson’s ratio and the difference ratio between maximum and minimum 

energies is 36.74%. In nonlinear case 3 where the cubic powers are also included for the 
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Poisson’s ratio values, specific displacements increase, while other ones show a decreas-

ing manner by the increase in the Poisson’s ratio values. The maximum percentage differ-

ence of total potential energy values is 4.47% for this case. 

Table 3. Optimum solutions for the system with 4 members-6 nodes (adaptive harmony search 

(AHS)). 

 
TPOMA 

(linear) 

TPOMA 

(Nonlinear 1) 

TPOMA 

(Nonlinear 2) 

TPOMA  

(Nonlinear 3) 

Node 
Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 
Δx (mm) Δy (mm) 

Δx 

(mm) 

Δy 

(mm) 

1 0.475 0 24.576 0 0.9436 0.0000 24.2151 0.0000 

2 0.424 0 −13.677 0 0.8473 0.0000 15.3721 0.0000 

3 0.370 0.370 79.170 79.170 0.7392 0.7392 24.4123 24.4124 

4 0.297 0.297 74.359 74.359 0.5936 0.5936 24.1185 24.1185 

5 0 0.472 0 24.576 0.0000 0.9436 0.0000 24.2157 

6 0 0.424 0 −13.677 0.0000 0.8473 0.0000 15.3726 

Пp (Nmm) −7611.581 −7.3478558728 × 107 −15223.1614 −674376.1117 

Table 4. Optimum solutions for the system with 4 members-6 nodes for different Poisson’s ratio 

values (nonlinear via AHS). 

ν 

 
TPOMA 

(Linear) 

TPOMA 

(Nonlinear 1) 

TPOMA  

(Nonlinear 2) 

TPOMA  

(Nonlinear 3) 

Node 
Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

Δx  

(mm) 

Δy  

(mm) 

Δx 

(mm) 

Δy 

(mm) 

0.
27

 

1 0.4694 0.0000 25.6721 0.0000 0.9389 0.0000 20.1678 0.0000 

2 0.4171 0.0000 −14.9597 0.0000 0.8341 0.0000 10.1456 0.0000 

3 0.3696 0.3696 85.3729 85.3729 0.7392 0.7392 28.1996 28.1996 

4 0.2920 0.2920 79.8247 79.8247 0.5841 0.5841 26.3712 26.3712 

5 0.0000 0.4694 0.0000 25.6721 0.0000 0.9389 0.0000 20.1678 

6 0.0000 0.4171 0.0000 −14.9597 0.0000 0.8341 0.0000 10.1456 

Пp (Nmm) −7593.8609 −101203819.3376 −15187.7219 −689396.1522 

0.
28

 

1 0.4681 0.0000 26.2344 0.0000 0.9362 0.0000 19.5071 0.0000 

2 0.4136 0.0000 −15.5831 0.0000 0.8273 0.0000 9.0151 0.0000 

3 0.3696 0.3696 88.4359 88.4359 0.7391 0.7391 29.2697 29.2697 

4 0.2895 0.2895 82.5355 82.5355 0.5791 0.5791 27.1497 27.1497 

5 0.0000 0.4681 0.0000 26.2344 0.0000 0.9362 0.0000 19.5071 

6 0.0000 0.4136 0.0000 −15.5831 0.0000 0.8273 0.0000 9.0151 

Пp (Nmm) −7583.2397 −118167986.0712 −15166.4795 −699183.7821 

0.
29

 

1 0.4667 0.0000 26.8047 0.0000 0.9334 0.0000 19.0866 0.0000 

2 0.4101 0.0000 −16.1982 0.0000 0.8202 0.0000 8.1306 0.0000 

3 0.3695 0.3695 91.4805 91.4805 0.7390 0.7390 30.2294 30.2294 

4 0.2869 0.2869 85.2366 85.2366 0.5739 0.5739 27.9006 27.9006 

5 0.0000 0.4667 0.0000 26.8047 0.0000 0.9334 0.0000 19.0866 

6 0.0000 0.4101 0.0000 −16.1982 0.0000 0.8202 0.0000 8.1306 

Пp (Nmm) −7571.4371 −137625581.0665 −15142.8743 −709938.7099 

0.
30

 

1 0.4652 0.0000 27.3819 0.0000 0.9304 0.0000 18.7847 0.0000 

2 0.4064 0.0000 −16.8072 0.0000 0.8128 0.0000 7.3561 0.0000 

3 0.3694 0.3694 94.5115 94.5115 0.7387 0.7387 31.1627 31.1627 

4 0.2843 0.2843 87.9316 87.9316 0.5686 0.5686 28.6625 28.6625 

5 0.0000 0.4652 0.0000 27.3819 0.0000 0.9304 0.0000 18.7847 



Appl. Sci. 2021, 11, 3220 13 of 17 
 

6 0.0000 0.4064 0.0000 −16.8072 0.0000 0.8128 0.0000 7.3561 

Пp (Nmm) −7558.4473 −159977948.1027 −15116.8946 −721624.5843 

3.1.3. Advanced Case of Structure 1 with 12 Members-14 Nodes 

The applied loads on nodes for this meshing option can be seen in Table 5. 

Table 5. Applied concentrated loads for Structure 2. 

 Concentrated Loads (N) 

Node x Direction  y Direction 

1 P11 = 2610.5 P12 = 171.1 

3 P31 = 5043.1 P32 = 1351.3 

5 P51 = 4521.6 P52 = 2610.5 

7 P71 = 3691.8 P72 = 3691.8 

9 P91 = 2610.5 P92 = 4521.6 

11 P111 = 1351.3 P112 = 5043.1 

13 P113 = 171.1 P113 = 2610.5 

The results of the analyses are shown in Table 6. From the table, optimization results 

of the linear analysis are closely compared with the first meshing option in Figure 4. The 

displacement results show a great match with the FEM results for the linear case. How-

ever, nonlinear analysis results are very different from this structure, especially for non-

linear cases as 1 and 3. Besides that, in this model, energies can be provided less than the 

first model. Similar behavior with the other meshing option is observed as expected for 

the comparison of linear and nonlinear cases. 

Table 6. Optimum results for the system with 12 members-14 nodes (AHS). 

 
FEM 

(Linear) 

TPOMA 

(Linear) 

TPOMA  

(Nonlinear 1) 

TPOMA 

(Nonlinear 2) 

TPOMA  

(Nonlinear 3) 

Node 
Δx  

(mm) 

Δx  

(mm) 

Δx  

(mm) 

Δy  

(mm) 
Δx (mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

Δx 

(mm) 

Δy 

(mm) 

1 0.479 0.000 0.479 0.000 29.882 0.000 0.959 0.000 27.652 0.000 

2 0.422 0.000 0.422 0.000 −0.219 0.000 0.845 0.000 20.305 0.000 

3 0.480 0.131 0.480 0.131 40.580 25.3407 0.961 0.261 28.044 9.018 

4 0.404 0.104 0.404 0.104 8.190 18.872 0.807 0.208 18.110 6.868 

5 0.442 0.254 0.442 0.254 59.811 53.252 0.883 0.508 28.741 18.130 

6 0.368 0.210 0.368 0.210 40.500 48.925 0.736 0.420 21.545 16.379 

7 0.373 0.373 0.373 0.373 86.303 86.303 0.746 0.746 24.585 24.585 

8 0.294 0.294 0.294 0.294 84.501 84.501 0.588 0.588 25.376 25.376 

9 0.254 0.442 0.254 0.442 53.252 59.811 0.508 0.883 18.130 28.741 

10 0.210 0.368 0.210 0.368 48.925 40.500 0.420 0.736 16.379 21.545 

11 0.131 0.480 0.131 0.480 25.341 40.580 0.261 0.961 9.018 28.044 

12 0.104 0.404 0.104 0.404 18.872 8.190 0.208 0.807 6.868 18.110 

13 0.000 0.479 0.000 0.479 0 29.882 0.000 0.959 0.000 27.652 

14 0.000 0.422 0.000 0.422 0 −0.219 0.000 0.845 0.000 20.305 

Пp (Nmm)   −7887.851 −1.09356257515 × 108 −15775.702 −740764.295 

3.2. Structure 2 

The ensured optimum analysis results are shown in Table 7. As expected, linear and 

nonlinear results are different from each other. The linear results of FEM show a good 

match with those of TPO/MA. Both displacement and total potential energy of the second 

nonlinear case are the same as those of the linear case since all deformations are within 
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the limitation of the linearity. Different from the other example, the strain values of non-

linear case 2 are the same as those of the linear case because the linearity limit used in 

nonlinear case 2 was not exceeded. The same structure was analyzed for different Pois-

son’s ratio values, and the minimum total potential energy values are shown in Table 8. 

From the results, the changes of Poisson’s ratio have a small effect on the values for the 

cases with a small absolute value of the total potential energy. Although the results of 

nonlinear case 1 show a linear and expected reduction by the increase in the Poisson’s 

ratio, the effects are significant due to big energy values in absolute value. The different 

percentages of maximum and minimum energy values are 0.52%, 63.90%, 0.52%, and 

3.86% for the linear case, nonlinear case1, nonlinear case2, and nonlinear case3, respec-

tively. 

Table 7. Solutions for the system with 14 members (AHS). 

 
FEM 

(Linear) 

TPOMA 

(Linear) 

TPOMA 

(Nonlinear 1) 

TPOMA 

(Nonlinear 2) 

TPOMA 

(Nonlinear 3) 

Node 
Δx 

(m) 

Δy 

(m) 

Δx 

(m) 

Δy 

(m) 

Δx 

(m) 

Δy 

(m) 

Δx 

(m) 

Δy 

(m) 

Δx 

(m) 

Δy 

(m) 

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

2 0.000000 −0.000002 0.000000 −0.000002 0.000000 −0.176510 0.000000 −0.000002 0.000000 −0.002403 

3 −0.000002 0.000000 −0.000002 0.000000 0.176644 0.000000 −0.000002 0.000000 −0.002019 0.000000 

4 −0.000010 −0.000014 −0.000010 −0.000014 −0.177006 −0.177006 −0.000010 −0.000014 −0.013126 −0.012299 

5 −0.000013 0.000000 −0.000013 0.000000 0.353080 0.000000 −0.000013 0.000000 −0.017347 0.000000 

6 −0.000014 0.000011 −0.000014 0.000011 0.353137 −0.176261 −0.000014 0.000011 −0.022839 0.014085 

7 −0.000018 0.000000 −0.000018 0.000000 0.706119 0.000000 −0.000018 0.000000 −0.035964 0.000000 

8 −0.000020 0.000000 −0.000020 0.000000 0.706354 −0.177103 −0.000020 0.000000 −0.042223 0.005558 

9 −0.000140 −0.000032 −0.000141 −0.000032 0.193755 −0.531293 −0.000140 −0.000032 −0.118902 −0.024612 

10 −0.000139 0.000036 −0.000140 0.000036 0.349492 −0.528870 −0.000138 0.000036 −0.112289 0.035232 

11 −0.000340 −0.000031 −0.000342 −0.000032 0.211354 −0.884866 −0.000339 −0.000031 −0.283322 −0.027028 

12 −0.000339 0.000047 −0.000341 0.000047 0.342311 −0.881895 −0.000338 0.000047 −0.278773 0.042540 

13 −0.000573 −0.000022 −0.000576 −0.000023 0.224691 −1.237878 −0.000571 −0.000022 −0.492982 −0.024042 

14 −0.000573 0.000050 −0.000576 0.000050 0.334289 −1.235242 −0.000571 0.000050 −0.490333 0.045575 

15 −0.000814 −0.000009 −0.000818 −0.000009 0.237355 −1.590342 −0.000811 −0.000009 −0.730701 −0.015649 

16 −0.000814 0.000051 −0.000818 0.000051 0.325597 −1.588350 −0.000811 0.000051 −0.729844 0.042830 

Пp (kNm)  −0.031567 −1385982.025122 −0.031567 −40.719902 

Table 8. The total energy values for the system with 14 members by changing Poisson’s ratio (AHS). 

ν TPOMA (Linear) TPOMA (Nonlinear 1) TPOMA (Nonlinear 2) TPOMA (Nonlinear 3) 

0.15 −0.031403525 −654458.4484 −0.031403525 −39.59712014 

0.16 −0.031457332 −771097.8575 −0.031457332 −39.81729795 

0.17 −0.031501216 −900090.841 −0.031501216 −40.03945641 

0.18 −0.031534625 −1044225.23 −0.031534625 −40.26378793 

0.19 −0.031556952 −1205801.743 −0.031556952 −40.49051621 

0.2 −0.031567536 −1385982.025 −0.031567536 −40.71990187 

0.21 −0.031565648 −1586562.796 −0.031565648 −40.95224928 

0.22 −0.031550489 −1812681.81 −0.031550489 −41.18791476 

4. Discussions 

In the present study, the best method in finding the minimum potential energy level 

is found to be AHS. Methods taken into account are compared with each other according 

to their performance in solving the verification case, which is the 4 member model of pipe 

example. Five of 10 algorithms are found to be effective in finding the optimum value. 

Their robustness is checked by solving the same problem 30 times and evaluating the re-

sults obtained in all these runs. It has been seen in this evaluation that all these algorithms 
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were robust giving nearly zero standard deviation values. The essential advantage of AHS 

was the computing time. Indeed, AHS could reach the optimum results with 2023 itera-

tions, while for DE, TLBO, FPA, and JA, the number of iterations was 93513, 4882, 2824, 

and 10698, respectively. 

After finding the best method, the nonlinear cases were handled by only changing 

the employed equations for the stress-strain relationship. It is seen that, as expected, there 

were no difficulties in solving these nonlinear problems once relevant stress-strain equa-

tions are used. 

5. Conclusions 

In the present study, it is shown that TPO/MA is an efficient method in solving plane 

strain problems too whether the constitutive equation is linear or not. 

Until now, TPO/MA was applied to truss systems [5–8], tensegrity structures [9], ca-

ble structures [10,11], and plane stress problems [12,13] for a wide range of examples. By 

including plane-strain problems in the application record, it is shown in this paper that 

the application area of this technique is not limited to previous ones. It is hoped that in 

the future, the method TPO/MA will be shown to apply to many other types of structural 

analysis problems. 

Currently, there are quite a big number of metaheuristic algorithms. Although all of 

them can be implemented in TPO/MA, it is seen that there may be differences in inaccu-

racies and time consumed, probably depending on problems. In this paper, 10 metaheu-

ristic algorithms were compared with each other on an exemplary problem that was a 4 

member pipe with a linear stress-strain relationship. It is seen that among the algorithms 

tried, five were more efficient than the others, and AHS among them was the most suc-

cessful if the CPU time is taken into account. 

Three different nonlinear behaviors are reflected with stress-strain relationships that 

are different from the linear material. The nonlinear stress-strain relations in case 2 are 

very close to those of the linear case since it differs from the linear problem by only with 

the shifting of the value of the elasticity modulus according to the values of strains. For 

example, displacements of nonlinear case 2 in structure 1 were double those in the linear 

case due to the tendency of the nonlinear part with the half value of the elasticity modulus 

of the linear situation. Differently, displacements in nonlinear case 2 of structure 2 tend to 

have the same value of the elasticity modulus of the linear case. Both displacements and 

total potential energy of nonlinear case 1 and case 3 are very different from those of linear 

case since these cases involve cubic powers. 

The method TPO/MA can automatically deal with nonlinear stress-strain relation-

ship formulations by only changing the coded equation without the need for additional 

user interventions like in FEM. In addition, TPO/MA can handle the total potential energy 

process quickly. For example, the process for the linear case of structure 1 via AHS can 

reach the optimum solution after 0.4 s of computing time. 

As indicated above, the nonlinear analyses were done by employing AHS after see-

ing its success in applications on the linear case. Indeed, it was among the five algorithms 

that reached the minimum energy level in all cycles, and the one necessitating minimum 

CPU time. For nonlinear cases, the processing time is between 1 and 2 s according to the 

number of design variables. 

This study has shown that TPO/MA is a real and powerful alternative to other meth-

ods in solving statical analysis problems especially when there are nonlinearities in the 

problem. In future researches, complex systems; especially space structures can be con-

structed as plane stress or plane strain members can be solved via the proposed method 

to increase the generality of TPOMA. As more complexity than the existing ones, the plate 

member that include rotational freedoms and those which are under-constrained can be 

considered. Via this capacity, it will be possible to make the full detailed analysis of a 

structure using a single method. 
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