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Abstract: Total Potential Optimization using Metaheuristic Algorithms (TPO/MA) is an alternative
tool for the analysis of structures. It is shown that this emerging method is advantageous in solving
nonlinear problems like trusses, tensegrity structures, cable networks, and plane stress systems. In
the present study, TPO/MA, which does not need any specific implementation for nonlinearity,
is demonstrated to be successfully applied to the analysis of plane strain structures. A numerical
investigation is performed using nine different metaheuristic algorithms and an adaptive harmony
search in linear analysis of a structural mechanics problem having 8 free nodes defined as design
variables in the minimization problem of total potential energy. For nonlinear stress-strain relation
cases, two structural mechanics problems, one being a thick-walled pipe and the other being a
cantilever retaining wall, are analyzed by employing adaptive harmony search, which was found to
be the best one in linear analyses. The nonlinear stress-strain relations considered in these analyses
are hypothetical ones due to the lack of any such relationship in the literature. The results have shown
that TPO/MA can solve nonlinear plane strain problems that can be encountered as engineering
problems in structural mechanics.

Keywords: Total Potential Optimization using metaheuristic algorithm; adaptive harmony search;
plane strain analysis; nonlinear stress-strain relation; plates

1. Introduction

Finite Element Method (FEM) is a well-known mechanical and structural analysis
tool that is used commonly by structural engineers. In FEM applications, firstly matrix
equations are prepared for each element, and then these equations are combined to yield a
general matrix equation of the form Kx = p where K is the square matrix called stiffness
matrix, x is the vector of displacements and p is the vector of loads. This operation can be
performed easily for linear and well-constrained systems. For nonlinear systems, either
geometrically or materially, K is a function of displacements and loads. It cannot be written
as independent of the values in x and p. FEM applications can be used for nonlinear
systems, but an iterative procedure is needed. As a negative point to FEM, one can cite
the problems that are under-constrained. For these problems K becomes ill-conditioned
making the solution impossible. There are several other problems where FEM becomes
very difficult to apply, like the cases where the solution is not unique or where there are
unilateral or nonlinear constraints [1–5].

An alternative way for the structural analyses is based on calculating the total potential
energy of the elements instead of solving their equilibrium equations. Then by combining
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all these energies by only summing all of them, it is possible to obtain a function of the
whole system as a function of x and p. By following the minimization of that function
concerning x, the well-known minimum potential energy theorem in mechanics is pro-
vided. This approach, called Total Potential Optimization using Metaheuristic Algorithms
(TPO/MA) is first applied successfully to analyses of trusses where the optimization part
is conducted using different kinds of metaheuristic algorithms. This approach is followed
by further applications, with metaheuristic algorithms and hybrid ones, on planar or space
trusses [6–8], tensegrity structures [9], and cable systems [10,11]. Latest applications con-
cern plane stress problems, with well-known linear constitutive equations [12], or with
hypothetical linear constitutive equations [13]. TPO/MA has advantages on special and
nonlinear systems. TPO/MA uses iterative search like an optimization problem for both
linear and nonlinear systems, while FEM is a direct solution method for linear systems,
and also an iterative system for nonlinear ones.

In this study, the main purpose is to add a new type of structure to the existing
application area of TPO/MA, namely, plane strain type plates. It is also aimed to show
that systems with nonlinear stress-strain relations can be analyzed with this method with
the same ease as with systems with linear stress-strain relations. For this purpose, besides
linear systems, nonlinear systems are analyzed too. In these applications nonlinear stress-
strain relations are hypothetical ones created by the authors, being not aware of any such
real relations in the literature. The literature survey conducted has shown that no such
nonlinear relations exist in two-dimensional structures, while they are numerous in the
one-dimensional case. The nonlinear two-dimensional relations used in this study are
of three different types. To find the best suitable metaheuristic method, 10 metaheuristic
methods, one of them being the adaptive harmony search (AHS), are applied on a linear
case of the first example. The results on these applications have shown that AHS is the
one giving the best solution, in the shortest time. Then, the nonlinear cases of the first
example and the other problems that have a higher number of design variables than the
first example are solved via employing AHS.

2. Methods
2.1. The Total Potential Energy of Plane Stress Members

It is possible to generate a structural system as a plate problem by considering triangu-
lar elements having three nodes i, j, and k, as shown in Figure 1. For the member that has a
homogeneous and continuous material, linear displacement fields defined as u(x,y) and
v(x,y) are, respectively, given in x and y directions in Equations (1) and (2) for a triangular
element in the x-y plane. Translational displacements of a node symbolized as i are shown
as ui and vi.
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u(x, y) = ui + C1x + C2y (1)

v(x, y) = vi + C3x + C4y (2)

Knowing the displacement fields including constants named “C1, C2, C3, and C4,” the
strains can be calculated as shown in Equations (3)–(5).

εx =
∂u
∂x

= C1 (3)

εy =
∂v
∂y

= C4 (4)

γxy =
∂u
∂y

+
∂v
∂x

= C2 + C3 (5)

The three different strains that are symbolized as εx, εy, and γxy, are the normal strain
in the x-direction, normal strain in the y-direction, and shear strain, respectively. The nodal
displacements are written as in Equations (6)–(8).

u(0, 0) = ui, v(0, 0) = vi (6)

u(aj, bj) = uj, v(aj, bj) = vj (7)

u(ak, bk) = uk, v(ak, bk) = vk (8)

After the displacements of each node are obtained, the displacement matrix form can
be written as follows using Equations (1) and (2).

uj
vj
uk
vk

 =


aj bj 0 0
0 0 aj bj
ak bk 0 0
0 0 ak bk




C1
C2
C3
C4

+


ui
vi
ui
vi

 (9)

In Equations (10)–(13), the constants C1, C2, C3, and C4 are formulated according to
matrix calculations of Equation (9).

C1 =
bk(uj − ui)

ajbk − akbj
+

bj(uk − ui)

akbj − ajbk
(10)

C2 =
ak(uj − ui)

akbj − ajbk
+

aj(uk − ui)

ajbk − akbj
(11)

C3 =
bk(vj − vi)

ajbk − akbj
+

bj(vk − vi)

akbj − ajbk
(12)

C4 =
ak(vj − vi)

akbj − ajbk
+

aj(vk − vi)

ajbk − akbj
(13)

For a body with two dimensions, the strain energy (e) is formulated in Equation (14).

e =
ε∫

ε=0

σdε =
1
2
(σxεx + σyεy + τxyγxy) (14)

For linear plane strain problems, the stresses are defined as Equations (15)–(17) that
include two material constants, namely, elasticity modulus (E) and Poisson’s ratio (ν). σx,
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σy, and τxy are the normal stress in the x-direction, normal stress in the y-direction, and
shear stress, respectively.

σx =
E

(1 + ν)(1 − 2ν)
((1 − ν)εx + νεy) (15)

σy =
E

(1 + ν)(1 − 2ν)
(νεx + (1 − ν)εy) (16)

τxy =
E

(1 + ν)(1 − 2ν)
(

1 − 2ν

2
γxy) (17)

The strains given as Equations (3)–(5) can be calculated via the constant values
formulated as Equations (10)–(13), and then, both strains and stresses are shown in
Equations (15)–(17) that used to obtain strain energies using Equation (14) for the lin-
ear case. As the main investigation of TPO/MA, three nonlinear stress-strain relationships
are formulated as Equations (18)–(20) for Case 1, Equation (21) for Case 2, and Equations
(22)–(24) for Case 3. It must be noted that these equations do not necessarily correspond to
specific material, and the intention of using these formulations is to demonstrate and test
the method that can handle easily.

Case 1. Nonlinear stress-strain relation 1

σx =
E

(1 + ν)(1 − 2ν)
((1 − ν)ε3

x + νεy) (18)

σy =
E

(1 + ν)(1 − 2ν)
(νεx + (1 − ν)ε3

y) (19)

τxy =
E

(1 + ν)(1 − 2ν)
(

1 − 2ν

2
γxy) (20)

Case 2. Nonlinear stress-strain relation 2

σx = E
(1+ν)(1−2ν)

((1 − ν)εx + νεy)

σy = E
(1+ν)(1−2ν)

(νεx + (1 − ν)εy)

τxy = E
(1+ν)(1−2ν)

( 1−2ν
2 γxy)

 for abs(εx + εy) < ε0, E = E
abs(εx + εy) > ε0, E = 0.5E

, (21)

where ε0 represents a value to control the linearity limit. In numerical examples, it was
taken as 0.0001.

Case 3. Nonlinear stress-strain relation 3

σx =
E

(1 + ν)(1 − 2ν)
((1 − ν)εx + νεy)

3 (22)

σy =
E

(1 + ν)(1 − 2ν)
(νεx + (1 − ν)εy)

3 (23)

τxy =
E

(1 + ν)(1 − 2ν)
(

1 − 2ν

2
γ3

xy) (24)

In the formulation of the strain energy of the mth triangular element (Um) given as
Equation (25), strain energy density and volume of the mth triangular element are shown
as em and Vm, respectively.

Um = emVm. (25)

Equation (26) defines the volume of mth triangular element including the constant
thickness (t) of the plate under consideration.

Vm =
(ajbk − akbj)t

2
(26)
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Then, the total strain energy of a system is calculated by summing the strain energies
of all elements generating the system. By calculating the energy for all members defined
with the three nodes, as done in examples given in this study, compatibility is automatically
provided since the neighbor members are assigned with the corresponding node numbers
of the main system, as in FEM applications. As a formulation, the strain energy can be
written as in Equation (27) for a system consisting of n elements.

U =
n

∑
m=1

Um (27)

Finally, the total potential energy (Πp) that is the difference between work realized
with external forces and the total strain energy is calculated via Equation (28) if Pxi and Pyi
are the positioned point loads in x and y directions, respectively.

Πp = U −
p

∑
n=1

(Pxnun + Pynvn) (28)

As an iterative process using an appropriate optimization algorithm, the analysis
is handled as a minimization problem of Πp concerning ui’s and vi’s defined as design
variables. After finding the nodal displacements, all stresses and strains in the plate are
easily determined.

2.2. Optimization Process Via TPO/MA

In the section, the optimization process performed for the minimization of the total
potential energy is explained. In the optimization, the objective function is the total
potential energy of the system given in Equation (28). It is calculated by summing the
energy values of members and subtracting the work done by all external forces.

The flowchart of handling of metaheuristics to provide optimum energy as TPO/MA
can be shown in Figure 2.

As with all metaheuristic-based optimization algorithms, the method starts with the
definition of nodal coordinates, material constants, nodal loads, and algorithm parameters.
The nodes of the system are numbered and the nodal numbers of the members are defined.
In that case, it is not needed to define an extra relation for the compatibility of displacements
at the nodes. The design variables of the problem are the nodal displacements. For
boundary conditions of fixed freedoms, these conditions are taken as design constants and
defined as zero. All the other nodal displacements are randomly defined by considering
the algorithm rules, and since the displacements are known, it is very practical to calculate
directly the energy of all members and then, the whole system. Since the aim of the process
is the analysis instead of design, design constraints are not used.

Then, an initial solution vector that includes the candidate values of design variables
is generated. These variables are randomly selected in a predefined solution range. In
TPO/MA, the design variables are the possible displacements at the nodes of the system
that are not correct at the beginning, and then, the exact solution is obtained for the set
that has the minimum potential energy value of the system at the end of the iteration
process. Once these displacements are set, the distribution of strains in the structure can be
defined, followed by the determination of stresses in concordance with the stress-strain
relations, whether they are linear or not. Knowing the distribution of stresses and strains,
the strain energy at each element can be determined. The summation of all strain energies
in the elements gives the total strain energy in the system. Algebraically adding to this
value, the work done by external forces due to nodal displacements, the total potential
energy of the system becomes calculated. Comparison of these energies calculated for all
candidate vectors enables the determination of the best and worst vectors. According to this
evaluation, the employed algorithm determines how new candidates will be determined.
With this process, one approaches a better set of candidates, and repeatedly following this
approach, after several iterations, the final results are obtained.



Appl. Sci. 2021, 11, 3220 6 of 16
Appl. Sci. 2021, 11, 3220 7 of 17 
 

 
Figure 2. The flowchart of the Total Potential Optimization using Metaheuristic Algorithms 
(TPO/MA) including three stages used in the process. 

2.3. Structural Models 
In the present study, various numerical examples were handled for the optimization 

of three different structural models. In the analysis process, both linear and three different 
nonlinear formulations were applied to all structural models. First, a linear analysis was 
performed on Structure 1 (Section 3.1.1) by employing all of the algorithms, and then, their 
performance and success were evaluated in terms of approach to the minimum energy 
value. Then, all structure models were analyzed via the selected algorithm, which has the 
best performance. Besides, in this process, all optimization analyses are implemented us-
ing 100,000 iterations with 30 populations, and 30 cycles for each analysis phase. 

2.3.1. Structure 1: A Pipe with a Thick-Wall Subjected to Internal Pressure 
The first model is a pipe structure solved via FEM by Topçu [24]. It has walls with 

100 mm thickness under the effect of internal pressure. The internal pressure is 100 N/mm2 
as seen in Figure 3. Elasticity modulus and Poisson’s ratio of pipe used are 100 kN/mm2 
and 0.25, respectively, as reported in Topçu [24]. It can be shown that the model can be 

Define nodal coordinates, 
material constants, nodal 
loads, algorithm 
parameters 

Are the required 
optimization 

iterations completed? 

STOP 

YES 

START 

NO 

Generation of an initial solution matrix   

Calculate the potential energy of structure 
for candidate solutions  

Modification of solution matrix via 
employed metaheuristic algorithm and 
perform analysis stage 

 

PR
E-

O
PT

IM
IZ

A
TI

O
N

 S
TA

G
E 

 

A
N

A
LY

SI
S 

ST
A

G
E 

 

O
PT

IM
IZ

A
TI

O
N

 S
TA

G
E 

Figure 2. The flowchart of the Total Potential Optimization using Metaheuristic Algorithms
(TPO/MA) including three stages used in the process.

Nine different metaheuristic algorithms including the genetic-based ones (GA [14],
DE [15]), population or nature-based ones (PSO [16], ABC [17,18], FPA [19], TLBO [20],
JA [21], GWO [22]), and memory-based HS [23] are evaluated for the linear analysis of the
first structural model.

In this study, HS was applied using the modified equations. Here, two different stages
exist to find the best harmonies by a musician as given in Equation (29).{

i f HMCR > rand( )
else

Xi, min + rand ( )(Xi,max − Xi,min)

Xi,n + rand
(
−1
2 , 1

2

)
FW (Xi,max − Xi,min)

. (29)

There are two different HS parameters: HMCR is harmony consideration rate, and
FW is the fret width. Xi, min and Xi, max are also upper and lower bounds of ith design
variable, respectively. On the other hand, Xi,n is nth candidate solution and is found as
randomly, besides Xi, new expresses the new value for this variable.
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Also, an adaptive version of HS is employed in the study. To improve the performance
of HS, the initial parameters of FW and HMCR are automatically modified during iterations
in adaptive HS (AHS) according to Equations (30) and (31). IN and MI represent the current
iteration number and maximum iteration number used in optimization, respectively. In
addition, a consideration rate was used to allow the best current solution to be more chosen
as Xi,n.

FW = FWin

(
1 − IN

MI

)
(30)

HMCR = HMCRin

(
1 − IN

MI

)
. (31)

2.3. Structural Models

In the present study, various numerical examples were handled for the optimization
of three different structural models. In the analysis process, both linear and three different
nonlinear formulations were applied to all structural models. First, a linear analysis was
performed on Structure 1 (Section 3.1.1) by employing all of the algorithms, and then, their
performance and success were evaluated in terms of approach to the minimum energy
value. Then, all structure models were analyzed via the selected algorithm, which has
the best performance. Besides, in this process, all optimization analyses are implemented
using 100,000 iterations with 30 populations, and 30 cycles for each analysis phase.

2.3.1. Structure 1: A Pipe with a Thick-Wall Subjected to Internal Pressure

The first model is a pipe structure solved via FEM by Topçu [24]. It has walls with
100 mm thickness under the effect of internal pressure. The internal pressure is 100 N/mm2

as seen in Figure 3. Elasticity modulus and Poisson’s ratio of pipe used are 100 kN/mm2

and 0.25, respectively, as reported in Topçu [24]. It can be shown that the model can be
handled using a quarter of it with 4 members and 6 nodes due to the symmetry of the pipe
as shown in Figure 4.
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The same problem was analyzed for a finer meshing option. Similarly, it is analyzed
as a quarter system using a different meshing model. This mesh difference is related to the
use of members and node numbers as 12 and 14, respectively, in Figure 5.
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2.3.2. Structure 2: A Cantilever Retaining Wall (with 14 Members-16 Nodes)

Finally, the third structural model is a reinforced concrete (RC) cantilever retaining wall
(Structure 2). The model is shown in Figure 6 with the loading conditions. Additionally,
the model is generated with a meshing of the system by considering 14 members-16
nodes in Figure 7. Properties of an RC cantilever retaining wall material are selected as
32 × 106 kN/m2 and 0.2 for the elasticity modulus (E) and Poisson’s ratio, respectively.
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3. Results
3.1. Structure 1
3.1.1. Linear Analysis to Evaluate Nine Employed Metaheuristics

This case aims to find the best suitable algorithm for the problem to apply this algo-
rithm to advance and nonlinear cases. The optimization results provided by nine algorithms
for the present structure are represented in Table 1. From the table, the most effective and
successful algorithms are AHS, DE, TLBO, FPA, and JA in terms of approaching minimum
energy. FEM can be easily and directly applied to linear systems to find the exact solutions,
and the solution of nodal displacements is the same for FEM results reported in Topçu [24]
and the mentioned successful algorithms. The essential advantage of TPOMA is the solving
ability of nonlinear systems without implementations of an additional method, while FEM
needs to be combined with other iterative methods to solve a specific nonlinear case.

Table 1. Optimization results for the structural system with 4 members-6 nodes (linear).

TPOMA

Method
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Πp

(Nmm)∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

FEM 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581

GA 2.208 0.000 2.239 0.000 1.521 0.054 1.168 0.131 0.000 −0.698 0.000 −0.980 34,413.583

DE 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581

PSO 0.393 0.000 0.335 0.000 0.329 0.430 0.272 0.336 0.000 0.577 0.000 0.529 −7511.990

HS 0.471 0.000 0.424 0.000 0.369 0.362 0.294 0.290 0.000 0.474 0.000 0.424 −7607.300

AHS 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581

ABC −0.389 0.000 −0.486 0.000 −0.185 0.325 −0.039 0.320 0.000 0.492 0.000 0.461 470.741

TLBO 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581

FPA 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581

GWO −0.656 0.000 0.037 0.000 −0.400 −2.337 0.816 −2.336 0.000 0.048 0.000 −0.553 359,953.164

JA 0.472 0.000 0.424 0.000 0.370 0.370 0.297 0.297 0.000 0.472 0.000 0.424 −7611.581

Besides, the best iteration steps from all iterations in each cycle were evaluated with
the direction of providing the best objective function in Table 2. The total potential energies,
i.e., the best and average values, and the standard deviations are the same for the best 5
methods. The following analyses are conducted via AHS since this method was arriving at
the best total potential energy with the least number of iterations, as compared to the other
algorithms, as can be seen in Table 2.

Table 2. Evaluation of best iteration steps among maximum iteration numbers to reach the minimum
total energy.

Best
Methods

Πp
(Nmm)

Mean of Πp
(Nmm)

Standard Deviation of
Πp (Nmm)

Best
Iteration

DE −7611.581 −7611.581 0.000000000002 93,515
TLBO −7611.581 −7611.581 0.000000000002 4882
FPA −7611.581 −7611.581 0.000000000002 2824
JA −7611.581 −7611.581 0.000000000002 10,698

AHS −7611.581 −7611.581 0.000000000002 2023

3.1.2. Nonlinear Analysis by Employing AHS

For nonlinear cases, the nodal displacement and minimum total potential energy are
presented in Table 3. The example has only 8 non-zero displacements. That is why the
method is presented for a higher number of freedoms than structure 1 in other numerical
examples. The nonlinear constitutive equations used in the paper show that the nonlinear
stress-strain relationship in case 2 is very close to one in the linear case, while the other
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2 relationships corresponding to case 1 and case 3 are very different from the one in the
linear case. Cases 1 and 3 involve cubic powers of the strain on the right-hand side of the
equations, while the only difference between nonlinear case 2 and linear relationships is
the shifting of the value of the elasticity modulus according to the values of strains. In
numerical examples, the value of elasticity modulus for the nonlinear part of case 2 is half
of the linear case. It seems that the strains generally tend to the nonlinear part with the half
elasticity modulus value that is resulted in the doubling of displacements compared to the
linear case. Similarly, the total potential energy value in case 2 is double than in the linear
case, while the other nonlinear cases have very small total potential energy values. All total
potential energies are negative, and the absolute values of the total potential energy show
an increase with the direct increase in the nodal displacements.

Table 3. Optimum solutions for the system with 4 members-6 nodes (adaptive harmony
search (AHS)).

TPOMA
(linear)

TPOMA
(Nonlinear 1)

TPOMA
(Nonlinear 2)

TPOMA
(Nonlinear 3)

Node ∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

1 0.475 0 24.576 0 0.9436 0.0000 24.2151 0.0000
2 0.424 0 −13.677 0 0.8473 0.0000 15.3721 0.0000
3 0.370 0.370 79.170 79.170 0.7392 0.7392 24.4123 24.4124
4 0.297 0.297 74.359 74.359 0.5936 0.5936 24.1185 24.1185
5 0 0.472 0 24.576 0.0000 0.9436 0.0000 24.2157
6 0 0.424 0 −13.677 0.0000 0.8473 0.0000 15.3726

Πp (Nmm) −7611.581 −7.3478558728 × 107 −15,223.1614 −674,376.1117

To verify the nonlinear cases, Poisson’s ratio values are checked between 0.27 and 0.3
for all cases and the results are presented in Table 4. For the linear case and nonlinear case
2, the effect of the Poisson’s ratio is limited. In the linear case, the percentage of change of
energies is 0.47% by considering minimum and maximum energies. The same value for
nonlinear case 2 is 0.47%. For the other cases, the increases of Poisson’s ratio significantly
affect both displacement and total potential energy values. It is observed that the absolutes
of the total potential energy values show an increase with the increase in Poisson’s ratio.
The increase in absolute displacement values in nonlinear case 1 is directly proportional
to that of the Poisson’s ratio and the difference ratio between maximum and minimum
energies is 36.74%. In nonlinear case 3 where the cubic powers are also included for the
Poisson’s ratio values, specific displacements increase, while other ones show a decreasing
manner by the increase in the Poisson’s ratio values. The maximum percentage difference
of total potential energy values is 4.47% for this case.

Table 4. Optimum solutions for the system with 4 members-6 nodes for different Poisson’s ratio
values (nonlinear via AHS).

ν

TPOMA
(Linear)

TPOMA
(Nonlinear 1)

TPOMA
(Nonlinear 2)

TPOMA
(Nonlinear 3)

Node ∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

0.27

1 0.4694 0.0000 25.6721 0.0000 0.9389 0.0000 20.1678 0.0000
2 0.4171 0.0000 −14.9597 0.0000 0.8341 0.0000 10.1456 0.0000
3 0.3696 0.3696 85.3729 85.3729 0.7392 0.7392 28.1996 28.1996
4 0.2920 0.2920 79.8247 79.8247 0.5841 0.5841 26.3712 26.3712
5 0.0000 0.4694 0.0000 25.6721 0.0000 0.9389 0.0000 20.1678
6 0.0000 0.4171 0.0000 −14.9597 0.0000 0.8341 0.0000 10.1456

Πp (Nmm) −7593.8609 −101,203,819.3376 −15,187.7219 −689,396.1522



Appl. Sci. 2021, 11, 3220 12 of 16

Table 4. Cont.

ν

TPOMA
(Linear)

TPOMA
(Nonlinear 1)

TPOMA
(Nonlinear 2)

TPOMA
(Nonlinear 3)

Node ∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

0.28

1 0.4681 0.0000 26.2344 0.0000 0.9362 0.0000 19.5071 0.0000
2 0.4136 0.0000 −15.5831 0.0000 0.8273 0.0000 9.0151 0.0000
3 0.3696 0.3696 88.4359 88.4359 0.7391 0.7391 29.2697 29.2697
4 0.2895 0.2895 82.5355 82.5355 0.5791 0.5791 27.1497 27.1497
5 0.0000 0.4681 0.0000 26.2344 0.0000 0.9362 0.0000 19.5071
6 0.0000 0.4136 0.0000 −15.5831 0.0000 0.8273 0.0000 9.0151

Πp (Nmm) −7583.2397 −118167,986.0712 −15,166.4795 −699,183.7821

0.29

1 0.4667 0.0000 26.8047 0.0000 0.9334 0.0000 19.0866 0.0000
2 0.4101 0.0000 −16.1982 0.0000 0.8202 0.0000 8.1306 0.0000
3 0.3695 0.3695 91.4805 91.4805 0.7390 0.7390 30.2294 30.2294
4 0.2869 0.2869 85.2366 85.2366 0.5739 0.5739 27.9006 27.9006
5 0.0000 0.4667 0.0000 26.8047 0.0000 0.9334 0.0000 19.0866
6 0.0000 0.4101 0.0000 −16.1982 0.0000 0.8202 0.0000 8.1306

Πp (Nmm) −7571.4371 −137,625,581.0665 −15,142.8743 −709,938.7099

0.30

1 0.4652 0.0000 27.3819 0.0000 0.9304 0.0000 18.7847 0.0000
2 0.4064 0.0000 −16.8072 0.0000 0.8128 0.0000 7.3561 0.0000
3 0.3694 0.3694 94.5115 94.5115 0.7387 0.7387 31.1627 31.1627
4 0.2843 0.2843 87.9316 87.9316 0.5686 0.5686 28.6625 28.6625
5 0.0000 0.4652 0.0000 27.3819 0.0000 0.9304 0.0000 18.7847
6 0.0000 0.4064 0.0000 −16.8072 0.0000 0.8128 0.0000 7.3561

Πp (Nmm) −7558.4473 −159,977,948.1027 −15,116.8946 −721,624.5843

3.1.3. Advanced Case of Structure 1 with 12 Members-14 Nodes

The applied loads on nodes for this meshing option can be seen in Table 5.

Table 5. Applied concentrated loads for Structure 2.

Concentrated Loads (N)

Node x Direction y Direction

1 P11 = 2610.5 P12 = 171.1
3 P31 = 5043.1 P32 = 1351.3
5 P51 = 4521.6 P52 = 2610.5
7 P71 = 3691.8 P72 = 3691.8
9 P91 = 2610.5 P92 = 4521.6
11 P111 = 1351.3 P112 = 5043.1
13 P113 = 171.1 P113 = 2610.5

The results of the analyses are shown in Table 6. From the table, optimization results
of the linear analysis are closely compared with the first meshing option in Figure 4. The
displacement results show a great match with the FEM results for the linear case. However,
nonlinear analysis results are very different from this structure, especially for nonlinear
cases as 1 and 3. Besides that, in this model, energies can be provided less than the first
model. Similar behavior with the other meshing option is observed as expected for the
comparison of linear and nonlinear cases.
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Table 6. Optimum results for the system with 12 members-14 nodes (AHS).

FEM
(Linear)

TPOMA
(Linear)

TPOMA
(Nonlinear 1)

TPOMA
(Nonlinear 2)

TPOMA
(Nonlinear 3)

Node ∆x
(mm)

∆x
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

∆x
(mm)

∆y
(mm)

1 0.479 0.000 0.479 0.000 29.882 0.000 0.959 0.000 27.652 0.000
2 0.422 0.000 0.422 0.000 −0.219 0.000 0.845 0.000 20.305 0.000
3 0.480 0.131 0.480 0.131 40.580 25.3407 0.961 0.261 28.044 9.018
4 0.404 0.104 0.404 0.104 8.190 18.872 0.807 0.208 18.110 6.868
5 0.442 0.254 0.442 0.254 59.811 53.252 0.883 0.508 28.741 18.130
6 0.368 0.210 0.368 0.210 40.500 48.925 0.736 0.420 21.545 16.379
7 0.373 0.373 0.373 0.373 86.303 86.303 0.746 0.746 24.585 24.585
8 0.294 0.294 0.294 0.294 84.501 84.501 0.588 0.588 25.376 25.376
9 0.254 0.442 0.254 0.442 53.252 59.811 0.508 0.883 18.130 28.741

10 0.210 0.368 0.210 0.368 48.925 40.500 0.420 0.736 16.379 21.545
11 0.131 0.480 0.131 0.480 25.341 40.580 0.261 0.961 9.018 28.044
12 0.104 0.404 0.104 0.404 18.872 8.190 0.208 0.807 6.868 18.110
13 0.000 0.479 0.000 0.479 0 29.882 0.000 0.959 0.000 27.652
14 0.000 0.422 0.000 0.422 0 −0.219 0.000 0.845 0.000 20.305

Πp (Nmm) −7887.851 −1.09356257515 × 108 −15,775.702 −740,764.295

3.2. Structure 2

The ensured optimum analysis results are shown in Table 7. As expected, linear and
nonlinear results are different from each other. The linear results of FEM show a good
match with those of TPO/MA. Both displacement and total potential energy of the second
nonlinear case are the same as those of the linear case since all deformations are within the
limitation of the linearity. Different from the other example, the strain values of nonlinear
case 2 are the same as those of the linear case because the linearity limit used in nonlinear
case 2 was not exceeded. The same structure was analyzed for different Poisson’s ratio
values, and the minimum total potential energy values are shown in Table 8. From the
results, the changes of Poisson’s ratio have a small effect on the values for the cases with a
small absolute value of the total potential energy. Although the results of nonlinear case
1 show a linear and expected reduction by the increase in the Poisson’s ratio, the effects
are significant due to big energy values in absolute value. The different percentages of
maximum and minimum energy values are 0.52%, 63.90%, 0.52%, and 3.86% for the linear
case, nonlinear case1, nonlinear case2, and nonlinear case3, respectively.

Table 7. Solutions for the system with 14 members (AHS).

FEM
(Linear)

TPOMA
(Linear)

TPOMA
(Nonlinear 1)

TPOMA
(Nonlinear 2)

TPOMA
(Nonlinear 3)

Node ∆x
(m)

∆y
(m)

∆x
(m)

∆y
(m)

∆x
(m)

∆y
(m)

∆x
(m)

∆y
(m)

∆x
(m)

∆y
(m)

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.000000 −0.000002 0.000000 −0.000002 0.000000 −0.176510 0.000000 −0.000002 0.000000 −0.002403
3 −0.000002 0.000000 −0.000002 0.000000 0.176644 0.000000 −0.000002 0.000000 −0.002019 0.000000
4 −0.000010 −0.000014 −0.000010 −0.000014 −0.177006 −0.177006 −0.000010 −0.000014 −0.013126 −0.012299
5 −0.000013 0.000000 −0.000013 0.000000 0.353080 0.000000 −0.000013 0.000000 −0.017347 0.000000
6 −0.000014 0.000011 −0.000014 0.000011 0.353137 −0.176261 −0.000014 0.000011 −0.022839 0.014085
7 −0.000018 0.000000 −0.000018 0.000000 0.706119 0.000000 −0.000018 0.000000 −0.035964 0.000000
8 −0.000020 0.000000 −0.000020 0.000000 0.706354 −0.177103 −0.000020 0.000000 −0.042223 0.005558
9 −0.000140 −0.000032 −0.000141 −0.000032 0.193755 −0.531293 −0.000140 −0.000032 −0.118902 −0.024612

10 −0.000139 0.000036 −0.000140 0.000036 0.349492 −0.528870 −0.000138 0.000036 −0.112289 0.035232
11 −0.000340 −0.000031 −0.000342 −0.000032 0.211354 −0.884866 −0.000339 −0.000031 −0.283322 −0.027028
12 −0.000339 0.000047 −0.000341 0.000047 0.342311 −0.881895 −0.000338 0.000047 −0.278773 0.042540
13 −0.000573 −0.000022 −0.000576 −0.000023 0.224691 −1.237878 −0.000571 −0.000022 −0.492982 −0.024042
14 −0.000573 0.000050 −0.000576 0.000050 0.334289 −1.235242 −0.000571 0.000050 −0.490333 0.045575
15 −0.000814 −0.000009 −0.000818 −0.000009 0.237355 −1.590342 −0.000811 −0.000009 −0.730701 −0.015649
16 −0.000814 0.000051 −0.000818 0.000051 0.325597 −1.588350 −0.000811 0.000051 −0.729844 0.042830

Πp (kNm) −0.031567 −1,385,982.025122 −0.031567 −40.719902
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Table 8. The total energy values for the system with 14 members by changing Poisson’s ratio (AHS).

ν TPOMA (Linear) TPOMA (Nonlinear 1) TPOMA (Nonlinear 2) TPOMA (Nonlinear 3)

0.15 −0.031403525 −654458.4484 −0.031403525 −39.59712014
0.16 −0.031457332 −771097.8575 −0.031457332 −39.81729795
0.17 −0.031501216 −900090.841 −0.031501216 −40.03945641
0.18 −0.031534625 −1044225.23 −0.031534625 −40.26378793
0.19 −0.031556952 −1205801.743 −0.031556952 −40.49051621
0.2 −0.031567536 −1385982.025 −0.031567536 −40.71990187

0.21 −0.031565648 −1586562.796 −0.031565648 −40.95224928
0.22 −0.031550489 −1812681.81 −0.031550489 −41.18791476

4. Discussions

In the present study, the best method in finding the minimum potential energy level is
found to be AHS. Methods taken into account are compared with each other according to
their performance in solving the verification case, which is the 4 member model of pipe
example. Five of 10 algorithms are found to be effective in finding the optimum value.
Their robustness is checked by solving the same problem 30 times and evaluating the results
obtained in all these runs. It has been seen in this evaluation that all these algorithms were
robust giving nearly zero standard deviation values. The essential advantage of AHS was
the computing time. Indeed, AHS could reach the optimum results with 2023 iterations,
while for DE, TLBO, FPA, and JA, the number of iterations was 93513, 4882, 2824, and
10698, respectively.

After finding the best method, the nonlinear cases were handled by only changing the
employed equations for the stress-strain relationship. It is seen that, as expected, there were
no difficulties in solving these nonlinear problems once relevant stress-strain equations
are used.

5. Conclusions

In the present study, it is shown that TPO/MA is an efficient method in solving plane
strain problems too whether the constitutive equation is linear or not.

Until now, TPO/MA was applied to truss systems [5–8], tensegrity structures [9],
cable structures [10,11], and plane stress problems [12,13] for a wide range of examples. By
including plane-strain problems in the application record, it is shown in this paper that
the application area of this technique is not limited to previous ones. It is hoped that in
the future, the method TPO/MA will be shown to apply to many other types of structural
analysis problems.

Currently, there are quite a big number of metaheuristic algorithms. Although all
of them can be implemented in TPO/MA, it is seen that there may be differences in
inaccuracies and time consumed, probably depending on problems. In this paper, 10
metaheuristic algorithms were compared with each other on an exemplary problem that
was a 4 member pipe with a linear stress-strain relationship. It is seen that among the
algorithms tried, five were more efficient than the others, and AHS among them was the
most successful if the CPU time is taken into account.

Three different nonlinear behaviors are reflected with stress-strain relationships that
are different from the linear material. The nonlinear stress-strain relations in case 2 are
very close to those of the linear case since it differs from the linear problem by only with
the shifting of the value of the elasticity modulus according to the values of strains. For
example, displacements of nonlinear case 2 in structure 1 were double those in the linear
case due to the tendency of the nonlinear part with the half value of the elasticity modulus
of the linear situation. Differently, displacements in nonlinear case 2 of structure 2 tend to
have the same value of the elasticity modulus of the linear case. Both displacements and
total potential energy of nonlinear case 1 and case 3 are very different from those of linear
case since these cases involve cubic powers.
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The method TPO/MA can automatically deal with nonlinear stress-strain relationship
formulations by only changing the coded equation without the need for additional user
interventions like in FEM. In addition, TPO/MA can handle the total potential energy
process quickly. For example, the process for the linear case of structure 1 via AHS can
reach the optimum solution after 0.4 s of computing time.

As indicated above, the nonlinear analyses were done by employing AHS after seeing
its success in applications on the linear case. Indeed, it was among the five algorithms that
reached the minimum energy level in all cycles, and the one necessitating minimum CPU
time. For nonlinear cases, the processing time is between 1 and 2 s according to the number
of design variables.

This study has shown that TPO/MA is a real and powerful alternative to other
methods in solving statical analysis problems especially when there are nonlinearities in
the problem. In future researches, complex systems; especially space structures can be
constructed as plane stress or plane strain members can be solved via the proposed method
to increase the generality of TPOMA. As more complexity than the existing ones, the plate
member that include rotational freedoms and those which are under-constrained can be
considered. Via this capacity, it will be possible to make the full detailed analysis of a
structure using a single method.
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