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Abstract: Digital twin (DT) plays a pivotal role in the vision of Industry 4.0. The idea is that the
real product and its virtual counterpart are twins that travel a parallel journey from design and
development to production and service life. The intelligence that comes from DTs’ operational data
supports the interactions between the DTs to pave the way for the cyber-physical integration of
smart manufacturing. This paper presents a conceptual framework for digital twins collaboration
to provide an auto-detection of erratic operational data by utilizing operational data intelligence
in the manufacturing systems. The proposed framework provide an interaction mechanism to
understand the DT status, interact with other DTs, learn from each other DTs, and share common
semantic knowledge. In addition, it can detect the anomalies and understand the overall picture and
conditions of the operational environments. Furthermore, the proposed framework is described in
the workflow model, which breaks down into four phases: information extraction, change detection,
synchronization, and notification. A use case of Energy 4.0 fault diagnosis for wind turbines is
described to present the use of the proposed framework and DTs collaboration to identify and
diagnose the potential failure, e.g., malfunctioning nodes within the energy industry.

Keywords: digital twins; auto-detection; operational data; cyber-physical; Industry 4.0; produc-
tion system

1. Introduction

The concept of using “Twins” originates from NASA’s Apollo program (National
Aeronautics and Space Administration), where at least two identical spacecrafts were built
to reflect the conditions of the spacecraft during a mission in the outer space [1]. Then,
several definitions of digital twins (DTs) were launched in the industrial markets. Based
on literature research, we adopt the definition that the DT is an exact digital replica of
something in the physical world. The DTs data is the data gathered from the physical world,
which is sent by the Internet of things (IoT) sensors. Accordingly, a DT representation
of a physical asset has the following features [2]: (1) the DT representation has realistic
models and all available operational data on the physical asset; (2) the data has to contain
all process data acquired during operation, as well as all organizational and technical
information created during the development of the asset and production; (3) the DT has to
be always in sync with the physical asset; and (4) it has to be possible to simulate the DT of
the behavior of the physical asset.

To acquire the benefits of the DTs in manufacturing, the deployed DTs are interacting to
automatically detect the erratic operational data by understanding the DT status, interacting
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with other DTs, learning from other DTs, sharing common knowledge, detecting the
anomalies at the edge level, and understanding the overall picture and conditions of the
operational manufacturing environments. The DT receives data from wind turbines sensors
in real-time, offering the status situation, future failures and detecting under performances.
DTs’ collaboration of wind turbines reduced maintenance costs by reducing visits to the
wind farm and fixed failure. It replaced, predicting component fail time, reasons, fixed
and providing failure position. Using DTs collaboration on wind farms, the energy will
improve, creating renewable wind energy more affordable and help Industry 4.0 to become
sustainable, more intelligent and greener.

In Figure 1, we have described the high-level of the automatic detection framework of
DTs (i.e., sensors data) using semantic models and operational data (i.e., failure and erro-
neous data). It is shown that the consuming operational data from DTs is analyzed at edge
level based on semantic models, including knowledgebase management [3]. The analysis
identifies whether the DT data is a failure or erratic and shows whether the problem is
happening locally or happening for all adjacent DTs representing the same device. In case
there is a problem that exists for all of the deployed DTs, the system can intelligently
react by sending an early notification about the failure to the decision-makers. Otherwise,
the system ignores the erroneous data extracted from that DT and then updates it with the
correct data to keep the operational data consistent within the production system.

Figure 1. The high-level of the automatic detection of collaborative digital twins (DTs) using semantic
models and operational data (i.e., failure and erroneous data).

In order to guide this research work, we stated these two research questions:

• (RQ1) Is it possible to automatically detect DTs (sensors/device) producing failure/erroneous
observations at a high level of abstraction within collaborative DTs?

• (RQ2) In case the observations are failures, is this failure detected by one DT or by all deployed
DTs in the production?

To answer these questions, we proposed a conceptual framework for collaborative
DTs to auto-detect the erratic operational data to answer these questions. The proposed
framework consists of six components: intelligent services, operational data management,
knowledgebase management, models, synchronization, and simulation. The inputs will
be DTs data which are the observations produced by the sensors within the production
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system (i.e., the data is also represented virtually using the deployed DTs). The outputs
will be indicating whether the inputs data are considered failures or erroneous. This
output will be published as semantic information so that the decision-makers can take
advantage of it by receiving an early notification about the production system’s failure.
In addition, this semantic information could be stored within the knowledgebase to be
used for future auto-detection of the sensors in the cyber-physical production system.
Furthermore, the proposed conceptual framework’s workflow will be presented; and it
consists mainly of four phases: information extraction, change detection, synchronization,
and notification.

1.1. Contribution

To the best of our knowledge, there is no auto-detection framework for collaborative
DTs that have been proposed to show how collaborative DTs and intelligence of operational
data improve the smartness of the cyber-physical production system. In particular, the pro-
posed conceptual framework collaborative DTs’ auto-detection can detect whether the DT
has erratic behavior or not by interacting with other collaborative DTs within the edge-level.
It focuses mainly on the interaction between the deployed DTs to automatically detect the
erratic DT data by understanding the DT status, interacting with other DTs, learning from
each other DTs, and sharing common semantic knowledge. Our main contributions in this
conceptual framework paper can be summarized as follows:

• A conceptual framework using collaborative DTs provides an interaction mechanism
for auto-detecting the erratic operational data that can understand the DT status,
interact with other DTs, learn from other DTs, and share common semantic knowledge.

• A workflow description of the DTs interaction which consists mainly of four phases:
information extraction, change detection, synchronization, and notification.

• Energy 4.0 fault diagnosis of wind turbines use case.

1.2. Paper Organization

The remainder of this paper is organized as follows: The related work is introduced
in Section 2. An overview of DTs collaboration is introduced in Section 3. The proposed
conceptual framework for collaborative DTs is introduced in Section 4. The workflow of
the proposed framework is presented in Section 5. The use case of the fault diagnosis for
the wind energy industry is described in Section 6. The discussion and future direction are
presented in Section 7. Finally, conclusions are presented in Section 8.

2. Related Work

Collaboration is vital to perform complex tasks efficiently and collaboratively, while
a single user cannot do it [4]. The authors of Reference [5] discussed homogeneous and
heterogeneous multi-robot collaboration to perform their complex task in a decentralized
fashion with blockchain technology. The authors of Reference [6] addressed the importance
of machine learning of multi-robot cooperation by keeping connectivity and improving
mobility in performing tasks. The authors of Reference [7] discussed the collaboration
between drone and IoT devices for improving Industry 4.0 applications, such as smart
city, smart healthcare, etc. However, not one of the above studies discussed how DTs can
collaborate to improve Industry 4.0 application. However, we discussed the collaboration
concept in DTs based on the above studies, and we discussed wind turbines as used case
for Energy 4.0 of Industry 4.0.

Smart manufacturing depends on the vast amounts of data collected by sensors and/or
their DTs and the production line’s data. These data could be erratic sensors and/or their
DTs producing and injecting incorrect data in analysis, affecting decision-making. We will
present a brief review of the state-of-the-art studies considering two main research areas:
the role of DT for both data modeling and data analytics in manufacturing systems.

Wind power 4.0 is one of the renewable energy technology that requires monitoring,
delivering, and analyzing. The authors of Reference [8] presented DT monitoring that can
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be used for monitoring and development of wind farms. For fault diagnosis, the authors
of Reference [9] discussed an approach to identify the network physical Vulnerabilities in
Industry 4.0 systems systematically. It shows the potential impact of identifying vulner-
abilities in Industry 4.0. Moreover, the authors of Reference [10] introduced supervisory
control and data acquisition method for prediction and fault diagnosis of wind turbines
using artificial intelligence. By gathering and analyzing big data from smart manufacturing
products, it could take the initiative to determine the products fault diagnosis and health
monitoring [11].

Concerning DT and data modeling, many research works use semantic technologies
to enhance DTs models. Evgeny et al. have proposed OSIsoft PI system augmented with
semantic models [12]. The OSIsoft PI system has targeted DTs to capture, process, analyze,
and store real-time operational data within the oil and gas industries. On the other hand,
Agniva et al. have introduced a simple mechanism of formalizing knowledge as DT models
coming from sensors in industrial production lines [3]. Their proposed mechanism utilizes
graph-based query language to extract features from data, infer knowledge from large-scale
production line data, and enhance manufacturing process management with reasoning
capabilities. In addition, the authors of Reference [13] have introduced a conceptual archi-
tecture and model for smart manufacturing, relying on service-based DTs. The proposed
architecture has described how automatically DTs compose the corresponding physical pro-
cesses, sharing some analogies with web service composition. In addition, Aivaliotis et al.
have proposed an advanced physics-based modeling approach for predictive maintenance
using DTs [14]. The proposed approach has been presented in three phases to reduce the
modeling efforts and provide a common framework for the modeling of different resources
enabling DTs: (1) machine modeling, including modeling the dynamic behavior of the
machine using a black box, grey box, and white box models; (2) virtual sensor modeling,
data is gathered during the simulation; (3) modeling parameters definition, the modeling
parameters are updated with a suitable frequency to ensure the DT of the machine.

Regarding the role of DTs and data analytics, Song et al. have proposed a model-
based machine predictive maintenance that comprises a plurality of DTs, and a simulation
platform [15]. The majority of DTs corresponds to the plurality of remotely located phys-
ical machines. Each respective DT comprises product nameplate data corresponding to
a unique physical device, one or more simulation models, and a database containing
run time log data collected from sensors associated with the special physical machine.
Furthermore, a modular-based corrective maintenance methodology using DTs has been
proposed to automate decision-making in complex systems [16]. The proposed modular
corrective maintenance methodology has relied on developing DTs from engineering data
using AutomationML.

In Reference [17], the authors discussed the DT and big data in smart manufacturing
by focusing on applications, production, manufacturing, maintenance prediction, etc.
In contrast, the authors of Reference [18] presented the enabling tools and technologies
for DT in smart manufacturing. B. He et al. [19] introduced the DT-driven sustainable
smart manufacturing. Furthermore, the authors of Reference [20] focused on DTs with
Industry 4.0 and data analytics. Sivalingam et al. [21] discussed the investigation of wind
farm used and power consumption for smart manufacturing. They mainly focused on data
analytics and IoT device within DT to predict and perform wind turbines maintenance.
These studies focused on the importance of DT for smart manufacturing and data analysis.
Still, our proposed framework focuses on DTs’ collaboration for erratic automatic operation
data prediction for Energy 4.0 for wind turbines in smart manufacturing. Furthermore,
Table 1 describes a comparison of existing work and the present work concerning the
applications, including collaboration-based, DT-bases, Industry 4.0-based, and operational
data analysis-based.
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Table 1. Comparison of existing work and the present work.

Ref Highlighted
Applications

Collaboration-Based DT-Based Industry 4.0-Based Operational Data-Based

[5] (2019) The homogeneous and heterogeneous of multi-robot collaboration to
perform their complex task in decentralized fashion with blockchain technology

X X X X

[6] (2019) The importance of machine learning of multi-robot cooperation by keeping connectivity
and improving mobility in performing tasks.

X X X X

[7] (2019) The collaboration between drone and IoT devices for improving Industry 4.0 applications,
such as smart city, smart healthcare.

X X X X

[8] (2018) DT monitoring that for monitoring and development of wind farms. X X X X

[9] (2017) An approach for identifying the network physical vulnerabilities in Industry 4.0 systems. X X X X

[10] (2014) AI-based supervisory control and data acquisition method for prediction and fault
diagnosis of wind turbines

X X X X

[13] (2019) A conceptual architecture and model for smart manufacturing relying on service-based DTs X X X X

[14] (2019) Advanced physics-based modeling approach for predictive maintenance using DTs X X X X

[15] (2016) A model-based machine predictive maintenance -based on DTs and a simulation platform X X X X

[16] (2018) A modular-based corrective maintenance methodology using DTs to automate decision
making in complex systems

X X X X

[17] (2018) Discussion of the DT and big data in smart manufacturing in terms of applications,
production, manufacturing, maintenance prediction

X X X X

[18] (2019) A tool and technologies for DT in smart manufacturing X X X X

[19] (2020) A DT-driven sustainable technique smart manufacturing X X X X

[20] (2020) Focusing on DTs with Industry 4.0 and data analytics X X X X

[21] (2018) Investigation wind farm and power consumption for smart manufacturing using IoT
and DTs to perform wind turbines maintenance.

X X X X

[22] (2020) Collaboration of drone and IoT to enhance smartness of smart cities applications. X X X X

Our work
A conceptual framework for DTs collaboration to provide an auto-detection of
erratic operational data by utilizing the intelligence of operational data in the
manufacturing systems.

X X X X
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3. Overview of Digital Twins Collaboration

DTs are merging the virtual worlds and real worlds. It is used to describe the de-
tailed presentation of machine, device, robots in the warehouse, production, and process.
The DTs’ advantages in Industry 4.0 include improving data security and quality, reducing
cost, and making faster decision-making. The authors of Reference [23] described DTs
as one to one virtual replica of machine, robots, and devices containing data, function,
and communication interfaces. The main parts of DTs are physical entity, virtual entity,
and information that connect virtual and physical entities [24,25], as shown in Figure 2.

Figure 2. The main parts of DTs.

Collaboration means sharing and exchange information among entities and share
task to act accordingly. The authors of Reference [6,26] discussed the importance of
Artificial Intelligence (AI) and Machine Learning (ML) for robot collaboration based on
improving quality of services, connectivity and reliability. Furthermore, collaboration of
drone and Internet of things to enhance smartness of smart cities applications [27] and
public safety [7], and for better Quality of Service (QoS) [22]. The collaboration among
multi-user and identifying the activities is described in Reference [4]. Collaboration of DTs
and human described with details in Reference [28]. However, the authors highlighted the
challenges of collaboration in industry platform [29–31].

Furthermore, the authors of Reference [5,32] discussed the collaboration among multi-
robot to perform common task effectively and efficiently. The Internet of forest aims
to detect the forest fire detection discussed [33]. All of the above literature discussed
collaboration in smart industries. Still, none of the studies focused on discussing the
collaboration of DTs for automatic erratic operational data detection in Industry 4.0, which
we address in this paper.

4. Proposed Conceptual Framework of Collaborative Digital Twins

In this paper, a conceptual framework of DTs’ auto-detection is proposed to enable ser-
vices, such as fault diagnostics, anomaly detection, and optimization, to understand the DT
status, interact with other DTs at the edge level, learn from other DTs, and share common
semantic knowledge within automated production system. The proposed framework is
considered one level higher than the DT in a cyber-physical production system that could
be developed and implemented on top of the DT platform. Furthermore, the conceptual
framework for auto-detection of erratic operational data can add value in the context of
“plug-and-produce” for Industry 4.0, including predictive maintenance using stored oper-
ational data and semantic knowledgebase DT throughout the life-cycle. Six components
are required to equip the conceptual framework of DTs with auto-detection intelligence.
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As shown in Figure 3, the components being the DT model comprehension, intelligent
services, operational data management, knowledgebase management, synchronization,
simulation and extra interfaces for communicating with the physical asset are added to
make the DTs communicate automatically. These parts will be elaborated flowingly.

Figure 3. The architecture of the conceptual framework for collaborative DTs.

4.1. Proposed Framework Model

For representing the DT with the physical asset throughout the entire lifecycle, an el-
ement is needed to understand and manage all models and data. For example, Figure 4
shows a DT reference model [34]. At the technical core, the development of DT needs three
components: (1) an information model that abstracts the specifications of a physical object;
(2) a communication mechanism that transfers bi-directional data between a DT and its
physical counterpart; and (3) a data processing module that can extract information from
heterogeneous multi-source data to construct the live representation of a physical object.
These three components must work together for constructing a DT. Without an information
model to abstract a physical entity’s features, data transmitted to cyberspace will lose its
meaning and context.

Furthermore, the model is used to semantically model the data, reflecting the DT
features and their relations using object-oriented concepts. Some semantic work could be
done in this module to describe the relationship between the models using model-to-model,
e.g., OOP, RDF, and OWL when the complex DT systems have heterogeneous DTs types.

Figure 4. A DT reference model [34].
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4.2. Intelligent Services

Automatic detection for the DT of an asset should include all the functionalities
that can identify the anomalies and erroneous data produced from sensors in the real
world from various tasks. These services interact intelligently to manage the real product
and its virtual counterpart, which are twins to travel a parallel journey from design and
development to production and service life. An example of such a service is a robot in
the production line, which can cut, drill, glue, etc. DT shows the up-to-date status of
the robot. Once the robot changes in the dynamic setting, e.g., the temperature increases
in the robot or vibration level is high. These functionalities can identify the problem by
analyzing the local operational data at the edge level, e.g., DT level. They can figure out
what the problem is and then take appropriate action. For instance, the services can be
used within communication with other DTs to make the best decision for abnormal data
and warn the decision-makers in case of failure or ignore the erroneous data based on
their understanding from other DTs within the machine. Six intelligent services interact
together to perform the automatic detection of erratic operational for DT, which are: fault
diagnostics, fault prediction, anomaly detection, communication interfaces, optimization
and decision-making, and they are described in the following:

4.2.1. Fault Diagnostic Service

It is used to detect the new failures (i.e., which potentially happen) by applying
knowledge and rules-based analysis.

4.2.2. Fault Prediction Service

It is used to predict future failures based on the current machine status by applying
machine learning and statistical analysis.

4.2.3. Anomaly Detection Service

It is used to identify the rare items, events or observations which raise suspicions
by differing significantly from the majority of the data. This brings us to one of the key
objectives: how do we identify whether data points are normal, erroneous or anomalous using
machine learning and statistics.

4.2.4. Communication Interfaces Service

It is used to enable automatic access to the physical asset to read the up-to-date data,
as well as communicate with other DTs within the operational environment.

4.2.5. Optimization Service

It can implement different optimization methods to improve the auto-detection of
DT within the virtual world. For example, swarm intelligence (SI) could be employed
for decentralized deployed DTs’ collective behavior. In regards to DTs data, SI could
consist typically of a population of DTs interacting locally with another one and with their
environment where the data models of the DTs follow defined rules (i.e., failure rules).
For DTs’ behavior, there is no centralized control structure dictating how individual DTs
should behave. Local and degree of uncertainty should be monitored and studied toward
global behavior, which is considered the production system’s health conditions.

4.2.6. Decision-Making Service

It is used to identify a decision based on the gathering information and assessing
alternative solutions within the production system.

4.3. Operational Data Management

Operational data management is used to manage up-to-date data in real-time. Ac-
cording to the DT context, operational data management manages the DT data, reflecting
the physical, cyber world in real-time. This component consists of three sub-components,
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including data acquisition, data query, and running database [35,36]. The data acquisition
component is used to collect the sensors data in the real world, which will be injected into
the simulated environment parallel to the real world. The data query component is used to
retrieve information from the running operational database actively. Running database
holds the up-to-date values of the deployed DTs within the virtual cyber system.

4.4. Knowledgebase Management

This component is used to manage the knowledgebase within the proposed DT auto-
detection framework. It consists of three sub-components, including knowledge acquisition,
knowledge rules, and knowledgebase. Knowledge acquisition is a process that is used to
define the rules and ontologies required for a knowledgebase [37]. This process describes
the initial tasks associated with developing an expert system. In particular, the experts
determine the failure rules, the DTs’ semantic ontologies, and DTs’ hierarchy within the
edge level.

Regarding the hierarchy of DTs, each DT relation to other DTs is defined and stored,
such as instance-instance relations, inheritance, parent-child relations, and so on, for the
whole system to remain consistent. Knowledgebase contains the set of knowledge learned
through relevant machine learning techniques from historical maintenance. Knowledge
rules are used to refine the knowledgebase by identifying new failures conditions using
rule-based analysis.

4.5. Simulation

This component is responsible for the simulation of the data exchange among DTs
and the entire production system’s process flow in the real world. In particular, the DT can
extrapolate how an object, process, product, or production system will work in the future
after all necessary structural changes are implemented and the potential failures that might
happen within the manufacturing process.

4.6. Synchronization

The DT should always be in sync with the existing manufacturing cells. The physical
asset and its physical relations with other assets within the cyber system (e.g., wiring,
physical fixation position, etc.) can be changed very often during its life-cycle. Accord-
ingly, synchronization is implemented as a synchronization interface. It is necessary for
synchronizing interdisciplinary models and their relations in a DT to keep a parallel
synchronization consistency within the production system.

5. Workflow Description

In the context of Industry 4.0, cyber-physical production systems (CPPs) contain dif-
ferent cyber-physical systems (CPSs), which are an integration of digital data and cyber
methods with physical processes. These CPSs have their intelligence and communication
capabilities. As the DT platform of the CPPS is a composite of many individual DTs of dif-
ferent CPSs, it has significant capabilities regarding the processing of acquired operational
data. It can apply appropriate algorithms and semantic technologies to the data to conduct
data analysis. For example, to detect and understand the DT status, behavioral analytics
can be used to refine the DT models by extracting new knowledge from the data. The ex-
tracted knowledge reveals new insights into DTs’ behavior, which provides assistance to
the manufacturers to optimize their production in various concerns. Consequently, in this
work, we proposed an auto-detection conceptual framework of erratic operational data
described into a workflow model. The workflow of the proposed framework can be used
to notify the decision-makers about the potential failures based on the DTs’ operational
data leading to an increased quality of the manufacturing process. It is presented in terms
of four phases; information extraction, change detection, synchronization, and notification,
as described below, where their steps are listed according to Figure 5.
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Figure 5. The workflow for auto-detection of erratic operational data using collaborative DTs.

5.1. Information Extraction

In the phase, the required information (i.e., the features and values) of the deployed
DTs, including all adjacent DTs and their replica, are extracted. We describe this phase in
three steps: importing the list of adjacent DTs, importing the list of DTs replicas, and query-
ing information [38]. The DTs adjacent list is retrieved from the production system’s
metadata, which is defined as production system setup. Then, the list of the DT replica is
retrieved from the metadata of the production. Finally, the query data component is used
to retrieve the information [39]. Furthermore, some semantic can be performed on the base
of the more complex DT models to retrieve the required information.

5.2. Notification

In this phase, one step is performed. The notification will be sent to the decision-maker
in case the anomaly detection service detects the potential failures.

5.3. Change Detection

In this phase, we identify the change of the operational data within the DT. Six steps are
performed in this phase listed, as shown in Figure 5. The values of the extracted features of
the DT and its adjacent and replica are compared. DT adjacents and replica of the extracted
features are equal, and then there is a probability that the data are normal or abnormal.
Therefore, the data is sent to the anomaly detection service. The anomaly detection
service, which implements machine learning techniques and statistics tests using the stored
knowledgebase, finds the correlations of operation data with the historical process data of
production plants to predict future maintenance. In the case when no anomaly is detected,
no notifications will be sent to decision-makers. Furthermore, the simulated virtualized
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environment of the production system, i.e., deployed DTs, is considered working in healthy
conditions. When all features values of the DT, its adjacents, and replica are unequal.
Then, the data acquisition component collects the sensors’ data again to overcome the
erroneous and noisy data. The rule-based analysis is applied by using the rules as the
stored knowledge representation to interpret information from the collected operational
data. These knowledgebase rules are used to diagnose and analyse new faults. These rules
are sometimes referred to as ‘if statements’, which depend on the expert system as they
tend to follow the line of ‘IF X happens, THEN do Y’.

5.4. Synchronization

In this phase, we identify the change of the operational data within the DT. Six steps
are performed in this phase listed, as shown in Figure 5. In this phase, the new updates are
synchronized and stored to make the DT platform consistent. Two steps are performed
in this phase listed, as shown in Figure 5. In case the data is diagnosed as a new fault,
the new fault will be annotated, published as semantic information, and stored in the
knowledgebase. In case the data is not diagnosed as a new fault, it is considered as
erroneous data, and then the DT should be updated based on its replica to avoid incorrect
observations within the simulated environment.

6. Energy 4.0 Fault Diagnosis of Wind Turbines

Fault diagnosis is used to identify the fault cause of the online abnormality, which is
crucial for efficient and optimal operation of industrial processes. Due to the time-sensitive
industrial applications, the historical fault data may consist of multiple patterns and cannot
be described accurately in real-time. So, using a DTs collaboration to estimate the potential
fault of the industrial processes in real-time will be useful to detect early faults and take
the proper action to decrease downtime within the production systems.

Concerning Energy 4.0, i.e., the wind energy industry, the DTs are used to represent
the wind energy system composed of the DTs’ representation of the geographical wind
farms. The DTs collaboration is used to optimize the operation of the wind energy system
and perform early maintenance of physical assets, systems, and production processes to
increase the life cycle of their wind systems. The physical asset could be an engine or a
turbine that has a set of sensors that can collect real-time data and operational status about
the wind system. And, DTs of the wind system are collaborated to track wind farms and
identify issues by visualizing the change of the wind system over time.

For a turbine, two main typical elements within a turbine that receive information
from sensors are: Programmable Logic Controller (PLC) and Supervisory Control and
Data Acquisition (SCADA). PLCs receive information from sensors transforming electrical
signals to digital data while SCADA systems are physically connected to the sensors/PLCs
collecting signals and other data. For the SCADA system, one turbine could contain
20–30 sensors, and a typical wind farm has 10–100 turbines where zones or geographical
regions incorporate 5–50 wind farms. So, it is difficult to detect the fault within the wind
system comprising multiple turbines that generate high-frequency data within some tens
of milliseconds from geographically wind farms [40]. Furthermore, the generated wind
data has other variables, such as weather data, which could affect the wind energy systems.

The DTs system which represents the wind energy system can collaborate to diagnose
the fault of the wind system whether caused by hardware failures within a turbine or a
farm or weather conditions e.g., wind speed, temperature, humidity. In particular, Figure 6
shows the high-level of the DTs collaboration for fault diagnosis in the wind energy industry
where the faulty node could be detected including malfunctioning machines or devices
within a farm or a turbine. The DTs collaboration can understand each DT status, interact
with other DTs, learn from each other DTs, and share common semantic knowledge across
geographically wind farms. For weather conditions, each wind farm which is located in
different stations gives weather data including wind speed, temperature, and humidity at
predefined time intervals, such as 10 min. There is a strong cross-correlation between the



Appl. Sci. 2021, 11, 3186 12 of 15

weather data and the failure data which cause turbulence according to wind farm locations
geographically. For example, wind speed turbulence could cause vibration and resonance,
high wind speeds could lead to brake failure, low temperatures could leak to brittleness or
lubricant freezing, and temperature variations could cause expansions and contractions.
So, to keep tracking the weather data within the wind energy system, the DT for the wind
energy system represents the weather data of a wind farm. The DTs are collaborated
to link these real-time digital weather data to online detect the turbulence of the wind
energy system. It allows interaction with other DTs within other wind farms and sharing
common semantic knowledge to indicate how weather conditions may affect offshore wind
turbine(s) failure rates and increase the downtime of the wind energy system.

Figure 6. DTs collaboration for Energy 4.0 fault diagnosis of wind tribunes.

For the hardware failures, the proposed framework for DTs collaboration can detect the
DTs that contain the faulty operational data and locate the sensors within a specific turbine
in a particular wind farm that the human eye would miss. For example, the collaborative
DTs can compare the power generated by each turbine for that moment (i.e., represented in
LV ActivePower (kW) value within a DT) with other adjacent turbines. Considering the
homogeneity of turbine manufacturing and the same weather conditions within a farm,
the collaborative DTs can detect the faulty turbine(s) or accurately predict the potential
failure of a turbine(s) that generate lower power. Furthermore, if the collaborative DTs
detect a new fault, the newly diagnosed fault will be annotated, published as semantic
information, and stored in the distributed knowledgebase accessible by other DTs within
the digital wind energy system. Furthermore, wind farm operators could use the proposed
framework based on DT collaboration to predict what might happen if they increase their
turbines’ power rate or what might happen for the power rate of their turbines under the
forecasted weather conditions.

Generally, the DT model is constructed by leveraging physics-based models and data-
driven analytics for fault diagnosis. The collaborative DT model is defined based on the
basic DT model, and it is composed of three major components, including digital model,
data analytics, and knowledgebase [34]. These components are integrated to investigate
the DTs collaboration ability of localization for fault diagnosis within the wind energy
system. The components includes the digital model, data analysis, and knowledgebase.

The digital model of the operational data contains semi-structured content, e.g., JSON
and XML. According to the wind energy industry domain, the data is generated from
turbines or weather sensors. The wind turbine data describes the turbine’s physical system,
and the weather sensors are used to monitor climate change. Their data represent the
weather variables, including wind speed, temperature, humidity, CO, and CO2. Data
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analytics supports health analyses and maintenance decision-making by leveraging digital
simulation and data-driven intelligence. For instance, data analytics can be used within DTs’
interaction and communication to describe, diagnose, predict, and prescribe the physical
wind system’s behavior for fault diagnosis. The data analytics outcome will be used as
inputs to notify the decision-makers to make the best decision for abnormal data in case
of potential failure over the wind energy industry system. Furthermore, knowledgebase
contains the set of knowledge learned through relevant machine learning techniques from
historical maintenance.

7. Discussion and Future Direction

Additional semantic capabilities (e.g., knowledge graphs) could be explored to rep-
resent complex cyber-physical production systems. Furthermore, the DT model is used
to semantically modeling the data, reflecting the DT features and their relations using
object-oriented concepts. Some semantic work could be done to describe the relationships
between the DTs models using model-to-model, e.g., OOP, RDF, and OWL in the complex
DT systems heterogeneous DTs types.

Task allocation issues also arises as machine or robot, and human, can achieve the
task. Therefore, simulation can allocate and distribute the tasks between robot and human-
based on availability and resource. Thus, the DTs, which represent human and robot, can
collaborate efficiently in smart manufacturing to achieve tasks accordingly. For flexibility
and productivity, DTs should be used to balance and increase processing during work.
For any change in the task execution, the robot must take a new trajectory to reach the goal
and achieve the tasks. Therefore, collaboration between the DTs representing human and
robot in smart manufacturing can help each other accomplish the required tasks effectively
and efficiently.

Furthermore, blockchain technology could be combined with DTs collaboration to
guarantee transparency, decentralized data storage, data sharing, peer-to-peer communica-
tion, secure and trusted traceability, and scalability.

8. Conclusions

In this research work, we presented a conceptual framework for DTs collaboration
to auto-detect the production system’s erratic operational. The DTs collaboration can
detect failures and erratic sensors, device, and annotate them on the DT platform using
semantic capabilities, such as knowledgebase and knowledgebase rules. The proposed DTs
collaboration-based framework also provides an interaction mechanism to understand the
DT status, interact with other DTs, learn from other DTs, and share common knowledge.
Furthermore, the interaction mechanism can detect the anomalies at the edge level and
understand the operational environments’ overall picture and conditions. A use case of
Energy 4.0 fault diagnosis for wind turbines is described to discuss how the proposed
auto-detection framework using the DTs collaboration can help identify and diagnose the
potential failure, e.g., malfunctioning nodes within the energy industry.
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