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Featured Application: The proposed scheme can be utilized to develop a computer aided diagno-
sis software for assessing psoriasis severity via mobile devices.

Abstract: In this paper, an efficient instance segmentation scheme based on deep convolutional neural
networks is proposed to deal with unconstrained psoriasis images for computer-aided diagnosis. To
achieve instance segmentation, the You Only Look At CoefficienTs (YOLACT) network composed
of backbone, feature pyramid network (FPN), Protonet, and prediction head is used to deal with
psoriasis images. The backbone network is used to extract feature maps from an image, and FPN is
designed to generate multiscale feature maps for effectively classifying and localizing objects with
multiple sizes. The prediction head is used to predict the classification information, bounding box
information, and mask coefficients of objects. Some prototypes generated by Protonet are combined
with mask coefficients to estimate the pixel-level shapes for objects. To achieve instance segmentation
for unconstrained psoriasis images, YOLACT++ with a pretrained model is retrained via transfer
learning. To evaluate the performance of the proposed scheme, unconstrained psoriasis images with
different severity levels are collected for testing. As for subjective testing, the psoriasis regions and
normal skin areas can be located and classified well. The four performance indices of the proposed
scheme were higher than 93% after cross validation. About object localization, the Mean Average
Precision (mAP) rates of the proposed scheme were at least 85.9% after cross validation. As for
efficiency, the frames per second (FPS) rate of the proposed scheme reached up to 15. In addition, the
F1_score and the execution speed of the proposed scheme were higher than those of the Mask Region-
Based Convolutional Neural Networks (R-CNN)-based method. These results show that the proposed
scheme based on YOLACT++ can not only detect psoriasis regions but also distinguish psoriasis pixels
from background and normal skin pixels well. Furthermore, the proposed instance segmentation
scheme outperforms the Mask R-CNN-based method for unconstrained psoriasis images.

Keywords: instance segmentation; deep convolutional neural network; computer-aided diagnosis;
YOLACT++; Mask R-CNN

1. Introduction

Psoriasis is a skin disease which is a chronic inflammatory skin condition [1,2]. The
appearance of psoriasis on skin causes anxiety and social obstacles for patients. It results in
a low quality of life for patients. To assess psoriasis severity, the Psoriasis Area Severity
Index (PASI) composed of erythema (redness), area (the percent of area of skin involved),
desquamation (scaling), and induration (thickness) is accepted as a golden standard [1,3].
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Figure 1 illustrates some psoriasis images taken in outpatient rooms. As shown in Figure 1,
the symptoms of patients with psoriasis are erythema, desquamation, and induration. In
addition, the psoriasis regions shown in Figure 1 have different sizes and arbitrary shapes.
There is no doubt that observing and evaluating the patients’ skin to obtain PASI scores is
difficult for physicians. On the other hand, the area factor is more important among the
PASI parameters to evaluate the psoriasis severity according to physicians’ evaluations. For
instance, the ratio of psoriasis area to total skin surface less than 10% could be considered
as the mild-level severity. Therefore, efficiently measuring the ratio of psoriasis areas to
total skin surface is very helpful to assess the psoriasis severity for physicians.
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In dermatology, the symptoms of psoriasis diseases appearing on the skin surfaces
can be recorded using digital devices with cameras. It is expected that an image-based
computer-aided diagnosis (CAD) developed to analyze psoriasis images can reduce the
working load of physicians and obtain a consistent and efficient assessment. To develop an
image-based CAD method for clinical psoriasis images, image segmentation is a key process
for further analyses [2–6]. As we know, there are many traditional image segmentation
algorithms such as thresholding, region growing, watersheds, active contour model, graph
cuts, etc. [7]. However, these traditional image segmentation algorithms may not deal with
noisy or blurred images well. In addition to traditional image segmentation algorithms,
some machine-learning-based image segmentation algorithms have been used to develop
CAD methods for dermatology. To date, some CAD methods for psoriasis images have been
developed [3–5,8,9]. For example, Taur et al. proposed a psoriasis segmentation method [4].
For a psoriasis image, the texture and color features were extracted and combined with a
multiresolution-based signature subspace classifier for psoriasis segmentation. Juang et al.
presented an image processing algorithm with K-means clustering approach followed by
morphological operations for psoriasis segmentation [5]. The K-means clustering algorithm
was used to obtain the coarse segmentation, and then morphological operations were
exploited to refine the coarse results. The authors of [3] developed a machine-learning-
based method where a scaling contrast map and the texture features were measured
and combined with a support vector machine (SVM), and the Markov random field was
developed to identify scaling boundaries in psoriasis skin images. Shrivastava et al.
proposed a CAD system for psoriasis image classification [8] where texture and color
features were often extracted, and the authors combined a SVM classifier for psoriasis
image classification using many existing methods. In the existing CAD system [8], the
high-order spectra-based (HOS) features, texture features, and color features are extracted.
To reduce the feature dimensions, principal component analysis (PCA) is used to find the
dominant ones from these extracted features. The dominant features are used with a SVM
classifier to achieve psoriasis image classification. Unfortunately, the existing method [8]
seems not to be suitable for psoriasis segmentation.

Since visual features in an image play an important role in many applications,
researchers have paid more attention to visual feature extraction to solve the image classifi-
cation, object detection, and image segmentation problems. Convolution Neural Networks
(CNNs) [10,11], one of deep learning models, have been demonstrated to be useful to
learn the multilevel visual features from images. The main advantage of CNN is that
strong features invariant to distortion and position at the same time can be extracted for
image classification. Since 2012, the ability of the deep learning method AlexNet has
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been demonstrated for image classification compared with traditional machine-learning
methods. In addition to AlexNet, there are some popular CNNs such as VGGNet, ResNet,
GoogleNet, Inception, and DarkNet. For example, VGGNet stacks more than ten 3 × 3
convolution layers to generate a deeper network. To reduce the effect of the vanishing
gradient problem, the core idea of ResNet is the identity shortcut connection for designing
a deeper network. It is expected that CNNs can be exploited to extract useful features to
develop CAD methods for medical image analysis. For instance, an existing method [12]
developed based on a sliding-window approach was proposed for psoriasis images. The
authors of [12] used a CNN to extract useful features from a local rectangle region. Then,
these features were exploited to determine whether one pixel was a psoriasis pixel. Af-
ter evaluating each pixel based on these features, the psoriasis regions can be separated
from the others in a psoriasis image. Though the existing method [12] can provide a
better performance, its computational complexity is a little high. Actually, some state-
of-the-art deep learning-based medical image segmentation methods such as the Fully
Convolution Neural Network (FCN) and U-Net have been proposed [11,13–20]. To achieve
pixel-wise classification, the fully connected layer is replaced by a fully convolutional layer
in FCNs [19,20]. Another popular approach is the U-Net, which was developed based
on the encoder-decoder structure [13,19,20]. In U-Net, the encoder compresses the input
into a feature-space (also called latent-space) representation and the decoder predicts the
network’s output from the feature-space representation. Some existing methods based
on the U-Net have been proposed to analyze mammogram, computed tomography, and
Magnetic Resonance Imaging (MRI) images.

From the view of segmentation output, image segmentation can be categorized into
semantic segmentation and instance segmentation [11,17]. Semantic segmentation achieves
pixel-level classification with a set of object categories such as buildings, vehicles, and
humans for all image pixels. Compared with semantic segmentation, instance segmentation
can not only assign the pixel-level label information but also identify each individual region
on the basis of specific categories in an image. Actually, the skin image shown in Figure 1
may have several psoriasis regions, and physicians often prefer to observe and evaluate
the status of psoriasis regions for further treatment research in real applications [3]. This
means that detecting and identifying each psoriasis regions in a skin image is helpful in
conducting further treatment research for physicians. Although the U-net can achieve
semantic segmentation, it cannot distinguish different regions of the same category. This
means that an instance segmentation scheme is suitable for psoriasis image segmentation
compared with semantic segmentation.

So far, most existing methods have been designed to deal with psoriasis skin images
captured under a simple background or without a background, i.e., constrained psoriasis
images [1,3,21]. Furthermore, images captured by smartphones or digital cameras may
have a poor visual quality to factors such as motion blurring, image resolution, noise,
etc. Unfortunately, the psoriasis images captured by smartphones or digital cameras in
outpatient rooms may also have a complex background. This means that the captured
clinical psoriasis images are often unconstrained in real applications. However, the existing
image segmentation algorithms may not be robust to deal with unconstrained psoriasis
images well. Therefore, these motivate us to develop a robust instance segmentation
scheme to deal with the clinical unconstrained psoriasis skin images in dermatology.

The rest of this paper is organized as follows. Section 2 describes the proposed instance
segmentation scheme systematically. In Section 3, we elaborate each part of the proposed
instance segmentation scheme based on transfer learning. Section 4 demonstrates the
experimental results. Finally, Section 5 concludes this paper.

2. System Description

As shown in Figure 1, a clinical psoriasis skin image often has normal skin regions,
psoriasis areas, and a simple background. Consider an input image of size NW × NH ,
where NW and NH represent the width and height of the input image, respectively. The
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goal of the proposed scheme is to separate some objects or instances (normal skin regions
and psoriasis areas) from the background in an unconstrained image. Then, these instances
are classified into three categories: Normal Cn, psoriasis Cp, and background Cb. This
means that each pixel of an unconstrained image will be assigned with one of the class
information (Cn, Cp, and Cb) after image segmentation.

Generally, an instance segmentation method can be divided into two parts: object
detection and pixel classification. Currently, the instance segmentation methods are usually
developed based on object detection algorithms such as single-shot detector (SSD) [22] and
Faster Region-Based Convolutional Neural Networks (Faster R-CNN) [23]. According to
the different types of object detection architecture, instance segmentation methods can be
divided into two categories: Single-stage [24,25] and two-stage [26–28].

As for the two-stage category, these instance segmentation methods are developed
based on existing two-stage object detection algorithms. For example, Mask R-CNN [24] is
an extension of Faster R-CNN. To achieve instance segmentation, Mask R-CNN is composed
of backbone network, Regional Proposal Network (RPN), feature pyramid network (FPN),
ROIAlign, and FCN. The backbone network composed of several convolutional layers is
utilized to extract multilevel feature maps from an image, and FPN is designed to generate
multiscale feature maps for effectively classifying and localizing objects with multiple sizes.
RPN is used to find regions of interest (ROIs) from these multiscale feature maps. ROIAlign
is exploited to reduce the misalignment of an object position between the feature map and
the spatial coordinate. The last key component, the FCN network, is used to find the precise
boundary of each ROI. Another existing method [25] predicts a set of position-sensitive
output score maps which simultaneously address object classes, boxes, and masks. The
above state-of-the-art two-stage methods can achieve satisfying performance, but they are
time-consuming.

As for single-stage instance segmentation, the existing methods are usually proposed
based one-stage object detection methods. Polarmask [27] formulates the instance segmen-
tation problem as instance center classification and dense distance regression in a polar
coordinate. SPRNet [28] has an encoder-decoder structure where classification, regression,
and mask branches are processed in parallel. SPRNet generates each instance mask from a
single pixel, and then resizes the mask to fit the corresponding box to gain the final instance
level prediction. In the decoding part, each pixel is exploited as an instance carrier to
create the instance mask on which consecutive deconvolutions are applied to gain the final
predictions. The authors of [26] proposed an instance segmentation network, You Only
Look At CoefficienTs (YOLACT), for real-time applications. Compared with the existing
image segmentation methods, YOLACT is more efficient because one-stage object detector
is adopted as the base.

As mentioned in Section 1, the goal of the proposed instance segmentation scheme
is to effectively detect and identify psoriasis regions and normal skin areas in clinical
psoriasis images. Currently, most deep learning frameworks are developed to deal with
natural images, and only a few deep-learning-based frameworks are designed for psoriasis
images [12,21]. Though these existing learning-based segmentation methods are developed
for dealing with natural images, they can be modified to develop a CAD scheme for
medical images. Unfortunately, it may be difficult to collect many medical images and
corresponding labeling information for training deeper networks. On the other hand,
transfer learning [20,29] is to transfer the knowledge from a related domain (source domain)
to increase the performance in a specific domain (target domain). It is expected that transfer
learning is a time-saving approach for building a machine-learning-based method when
only a small training dataset is available in real applications. Therefore, an instance
segmentation scheme based on single-stage instance segmentation can be developed via
transfer learning for psoriasis images.

Figure 2 shows the methodological illustration of the proposed scheme via transfer
learning. As shown in Figure 2, a pretrained deep neural network is selected from the
source domain and can be retrained on the target domain to generate a CAD system via
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transfer learning. In real applications, the source domain DS with the corresponding task
TS is often collected as follows:

DS =
{(

xS
1 , yS

1

)
,
(

xS
2 , yS

2

)
, · · · ,

(
xS

ns, yS
ns

)}
, (1)

where xS
i and yS

i denote the i-th instance and the corresponding label information in DS,
respectively, and ns means the number of instances in DS. For example, there are some
popular datasets such as ImageNet [10] and MSCOCO [30], and these datasets are used for
computer vision tasks such as image classification, object detection, image segmentation,
and so on. For instance, in segmentation, the label space YS =

{
yS

i
}

contains the class, the
bounding box, and the mask information of the i-th instance in DS. Similarly, the data in
the target domain DT with the corresponding task TT are mentioned below:

DT =
{(

xT
1 , yT

1

)
,
(

xT
2 , yT

2

)
, · · · ,

(
xT

nt, yT
nt

)}
, (2)

where xT
i and yT

i represent the i-th instance and the corresponding label information in DT,
respectively, and nt is the number of instances in DT. Here, the target task TT is instance
segmentation for psoriasis images. Then the following problem is how to efficiently learn a
network model with high accuracy for TT according to DS or trained models in DS.
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To date, some approaches such as model finetuning, multi-task learning, and domain-
adversarial learning have been developed in transfer learning [20,29]. As for model finetun-
ing, layer transfer is a common approach for network-based methods. Since the proposed
psoriasis segmentation scheme is a network-based method, as shown in Figure 2, layer
transfer is then a suitable approach to train the network model in the proposed scheme. In
addition, it is worth mentioning that overfitting may happen if a small dataset is used to
train a deep neural network. Unfortunately, nt may be less than ns in some applications,
e.g., medical image analysis and computer-aided diagnosis. As we know, data augmen-
tation is a very powerful method to prevent the model overfitting issue [31]. Due to the
limited size of psoriasis images, data augmentation was adopted to enlarge the size of the
training image dataset here.

3. Proposed Scheme

Similar to Mask R-CNN [24], the basic concept of YOLACT++ was developed by
adding a mask branch to an existing one-stage object detection model for instance segmen-
tation. Figure 3 illustrates the systematic flowchart of the proposed instance segmentation
scheme based on YOLACT++ for unconstrained psoriasis images. As shown in Figure 3,
the proposed scheme was composed of several parts: Backbone, FPN, Protonet, and predic-
tion head for instance psoriasis image segmentation. In addition, according to the concept
of layer transfer, Figure 4 illustrates how to build the proposed scheme using transfer
learning. We elaborate each part of the proposed scheme in the following.
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3.1. Backbone with FPN

In YOLACT++, the backbone network can be one of the popular CNNs, ResNet and
DarkNet, for extracting feature maps from an image. As shown in Figure 3, ResNet is
composed of five convolutional blocks, including conv1(C1), conv2_x(C2), conv3_x(C3),
conv4_x(C4), and conv5_x(C5), which was selected to yield some feature maps with
different sizes in the proposed scheme.

In real applications, the psoriasis regions often have arbitrary shapes, as shown
in Figure 1, and geometric variations often occur due to viewpoint change. To deal
with arbitrary shapes and reduce the effect of geometric variations, a deformable CNN
(DCN) [29] where the samples can be on irregular and offset locations was proposed for
feature extraction. In DCN [32], the regular grid Ω is augmented with the offsets ∆pn, and
the resulting feature map Z = {z(p0)} can be expressed as follows:

z(p0) = ∑
pn∈Ω

w(pn) · x(p0 + pn + ∆pn), (3)

where Ω represents the neighborhood of p0, pn denotes the neighboring point in Ω, w(pn)
means the corresponding weight of pn, and X = {x(p0)} stands for the input signal. As
we can see in Equation (3), the signals in the irregular grid ∆pn were selected to compute
the resulting output. As shown by the authors of [32], the receptive field in deformable
convolutions can be adaptive according to the scale of the objects. To correctly locate the
objects with arbitrary boundaries, aspect ratios, and rotations, the DCN is then adopted in
YOLACT++ [33]. This means that unlike YOLACT, 3 × 3 deformable convolutional layers
can be utilized to replace the 3 × 3 convolution layers in YOLACT++. It is expected that
YOLACT++ with DCN can extract more useful visual feature maps from psoriasis images
for further analyses.

As shown in Figure 1, these psoriasis regions have different sizes. To detect multiscale
objects (i.e., psoriasis regions), FPN was adopted to obtain a feature pyramid with strong
semantic information. As shown in Figure 3, P3, P4, and P5 in the FPN were from C3, C4,
and C5. P6 and P7 were generated based on 3 × 3 convolutional layers with stride 2 from
P5. It is expected that a bigger feature map (e.g., P3) can be used to detect smaller objects,
while a smaller feature map (e.g., P7) can be used to detect larger objects. Therefore, the
backbone and FPN can be utilized to yield multiscale feature maps from a psoriasis image
for further analyses.

3.2. Sub-Nets

To achieve instance segmentation, as shown in Figure 3, YOLACT++ contains two
branches: The prediction head and the prototype mask generation. The prediction head
branch, composed of three parts, is exploited to predict the class confidences, the bounding
box information, and mask coefficients. To predict the class confidences, the bounding box
information, and mask coefficients for multiscale psoriasis regions, the prediction head
analyzes the multilevel feature maps, P3–P7. The first two outputs of the prediction head
are the class confidences and the bounding boxes of each detected object for the three
classes (Cn, Cp, and Cb). This means that the prediction head of YOLACT++ can identify
and locate each individual psoriasis region and skin area in an image. Non-maximum
suppression (NMS) is also adopted to eliminate the bounding boxes that cover the same
psoriasis regions or normal skin areas. The third part of the prediction head is utilized to
predict mask coefficients where one coefficient corresponds to a prototype.

The prototype generation branch, Protonet, is used to predict a set of prototype masks
for the entire image. Similar to FCN, the Protonet analyzes the feature map P3 to obtain
some prototypes. Then, the prototypes from Protonet are linearly combined using the
corresponding predicted mask coefficients shown as follows:

Ψ = ∑
j

αj ·Ψj, (4)
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where αj and Ψj denote mask coefficient and the corresponding prototype, respectively,
and Ψ means the weighted prototype. Then, Ψ is cropped with a predicting bounding
box. After thresholding the cropped Ψ, the binary mask information of each object can be
obtained. This means that YOLACT++ can output an arbitrary shape for each psoriasis
region and skin area. Therefore, the proposed scheme based on YOLACT++ can not only
identify each individual region but also assign the pixel-level semantic information for a
psoriasis image.

3.3. Loss Function

As mentioned in Section 2, layer transfer was adopted to modify a pretrained network
for the instance psoriasis image segmentation. The strategy of training the proposed deep
learning-based scheme involved reusing the convolutional layers (C1, C2, C3, C4, C5)
in a pretrained deep neural network. The others (FPN, prediction head, and Protonet)
were retrained on the psoriasis image dataset to generate a modified network. Figure 4
illustrates the strategy of training the proposed scheme using transfer learning. As we know,
ImageNet is one of the most widely used image datasets in many applications. It is expected
that the convolutional layers of a pretrained YOLACT++ based on ImageNet should contain
a lot of rich knowledge extracted from natural images. This means that the convolutional
layers in a pretrained YOLACT++ can be reused to analyze psoriasis images. However, the
others (FPN, prediction head, and Protonet) should be retrained using psoriasis images to
create a modified YOLACT++ for instance psoriasis image segmentation.

To re-rain YOLACT++ for instance psoriasis image segmentation, a total loss function
was determined as follows:

Ltotal = β1 · Lcls + β2 · Lbox + β3 · Lmask, (5)

where Lcls, Lbox, and Lmask represent the classification loss, the bounding box regression loss,
and mask loss for network training, and βi (i = 1, 2, 3) is the weight. For object classification,
the confidence loss was the softmax loss over multiple classes confidences [22,26]. For
object localization, the smooth L1 loss was applied as the loss function to the box regression
subnet [22,26]. For mask loss, the pixel-wise cross entropy between assembled mask and
the ground truth was measured. It is expected that βi can be adjusted according to the
requirements in applications. According to Ltotal , the model of YOLACT++ can be modified
to achieve instance segmentation for psoriasis images.

4. Experimental Results

To evaluate the proposed instance segmentation scheme, YOLACT++ [33] was imple-
mented in a PC with CPU i7-9700, 32 GB RAM, and NVIDIA Tesla T4. The backbone was
ResNet-101, which had 100 convolutional layers and 1 fully connected layer. The output
feature maps of the backbone were combined to yield multilevel visual feature maps in
YOLACT++. The parameters of YOLACT++ are listed in Table 1. Since the input size of
the proposed scheme was 550 × 550 pixels, each input image was resized. Moreover, in
line with our experiences, the weights in Equation (5) were predefined as follows: β1 = 1,
β2 = 1.5, and β3 = 6.125. Here, the optimizer for network model learning was the stochastic
gradient descent algorithm where the values of the learning rate and momentum were
0.0001 and 0.9, respectively. The parameter, IOU_THRESHOLD, was a threshold exploited
in NMS.
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Table 1. Parameters of YOLACT++ for model training.

Parameter Value

Input size 550 × 550
IOU_THRESHOLD 0.5

EPOCH 36
Learning rate 0.0001
Momentum 0.9
Batch size 12

4.1. Data Augmentation

The psoriasis images were captured using smartphones or digital cameras in outpa-
tient rooms. For performance evaluation, there were 52 unconstrained psoriasis images
with spatial resolutions of 3000 × 4000 pixels. These high-resolution images were parti-
tioned to obtain 400 psoriasis images with 640 × 480 pixels. Some unconstrained psoriasis
images are shown in Figure 5. As shown in Figure 5, we can observe some factors. These
psoriasis images have different backgrounds, the sizes of psoriasis regions are different, and
the psoriasis regions have different severity levels and arbitrary boundaries. For example,
the left image in the top row of Figure 5 has a background including clothes and a chair.
Furthermore, these psoriasis regions have different sizes and severity levels, as shown in
Figure 5. After image partition, these 400 images were divided into training, validation,
and testing sets for model training and performance evaluation.
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Figure 5. Examples of psoriasis images for performance evaluation.

As we know, the more data a machine learning-based scheme can access, the more
powerful and robust the scheme can be. Here, data augmentation [31] was adopted to
increase the variability of the input images for model training, enabling the proposed
scheme to process unseen images well. The generic ways for augmenting images are to
perform geometric transformation [7] and photometric change [7]. Here, some geometric
transformations such as flipping and translation, two photometric changes, and noise
insertion were adopted. A combination of these operations was also used for data augmen-
tation. Thus, we obtained 38,400 augmented psoriasis images for model training. Figure
6 shows some examples of augmented psoriasis images. In Figure 6, the first column
(Figure 6(a1,a2)) shows the original images and the second column (Figure 6(b1,b2)) shows
the results of brightness adjustment. Figure 6(c1,c2) are the resulting images after com-
bining three operations: Flipping, brightness increasing, and translation. Figure 6(d1,d2)
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are the resulting images after combining three operations: Flipping, brightness decreasing,
and translation.
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4.2. Performance Indices

For objective evaluation, several performance indices are used to assess the perfor-
mance of image segmentation. The recall and precision rates are widely used in many
applications such as object detection, shot change detection, etc. We utilized them to evalu-
ate the performance of the proposed scheme. The recall rate is the ratio of correct detections
to the total number of pixels in the i-th class (Cn, Cp, and Cb), the precision rate is the ratio
of correct detections to total number of detected pixels in the i-th class, and F1_score is the
weighted mean of recall and precision for the i-th class [14,34–36]. The definitions of the
performance indices are described as follows:

Recall =
TP

TP + FN
, (6)

Precision =
TP

TP + FP
, (7)

F1_score = 2× Precision× Recall
Precision + Recall

, (8)

where TP, FP, TN, and FN represent the true positive, false positive, true negative, and false
negative for classifying pixels into the i-th class. Theoretically, if an image segmentation
scheme achieves high recall and precision rates, its performance is considered effectively.
In addition, we also utilize the accuracy rate to evaluate the proposed scheme [14,37]. The
accuracy rate can be calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

As we can see in Equation (9), the higher the value of the accuracy rate, the better the
scheme’s performance.

As for object detection, Mean Average Precision (mAP) [22,23] was utilized to assess
whether a scheme can simultaneously detect several kinds of objects successfully. In
addition, intersection over union (IoU) [22,23] was also adopted as a performance index to
evaluate whether the proposed scheme can locate objects precisely. We expected that the
higher the mAP and IoU, the better the performance.
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4.3. Performance Analysis

Here, we conducted the qualitative and quantitative evaluation for performance analysis.

4.3.1. Qualitative Evaluation

Figure 7 illustrates the instance segmentation results. Figure 7a,b are the input images
and the ground truth, respectively. As shown in Figure 7(a1–a4), the input images contained
some psoriasis areas with different sizes, arbitrary boundaries, and different severity levels.
For example, the psoriasis region in Figure 7(a4) is larger than that in Figure 7(a1,a4) and has
more blur effect compared with Figure 7(a1). In addition, the input images also have some
background regions with different sizes. For example, the images in Figure 7(a1,a2) have
a bigger background, and those in Figure 7(a4) only include a small part of background.
The color information of some background areas is a little similar than the skin region in
Figure 7(a3), and a little background region (the seal) is similar to the psoriasis area in
Figure 7(a1).
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The instance segmentation results of the proposed scheme are shown in the third
column of Figure 7. In Figure 7c,d, the background remains unchanged, different colors
are used to represent each detected individual psoriasis region and the skin area, and each
bounding box represents an instance. Compared with Figure 7b,c, the psoriasis regions
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and normal skin areas were localized and classified well using the proposed scheme. The
results show that the proposed scheme located the psoriasis regions well despite their
different sizes, severity levels, and arbitrary boundaries. Furthermore, although the input
images contained different background regions, the proposed scheme not only located
psoriasis regions but also distinguished the psoriasis regions from the normal skin and the
background well. These experimental results show that the instance segmentation scheme
can deal with unconstrained psoriasis images well.

To evaluate the robustness of the proposed scheme, two common operators (blurring
and noise insertion) were selected as postprocessing for testing. Figure 8 illustrates the
instance segmentation results of the proposed scheme for the blurred and noisy images.
The first and second columns of Figure 8 are the input images and the ground truth, respec-
tively. In the third column of Figure 8, the first two images are blurred versions, and the
others are noisy versions. As we can observe in Figure 8(c2), a part of the background was
similar to the skin and the blur effect was obvious. The last column of Figure 8 shows the
instance segmentation results. As we can see in Figure 8d, the proposed scheme detected
these psoriasis regions and normal skin areas in blurred and noisy images. The results
show that the proposed scheme was robust to blurring and noise insertion. Furthermore,
according to Figures 7 and 8, these experimental results show that the proposed scheme pro-
cessed unconstrained psoriasis images effectively even when blurring and noise insertion
occurred.
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4.3.2. Quantitative Evaluation

Cross validation (CV) is a common method to evaluate the performance of machine-
learning-models on limited data samples [38]. Then, the holdout CV is adopted to evaluate
the performance of the proposed scheme. For each holdout CV, these 400 psoriasis images
were partitioned into training, validation, and testing sets. The ratio among the training,
validation, and testing sets was 80:10:10, respectively. Here, we performed the holdout CV
three times. Figure 9 illustrates the image segmentation results of the proposed scheme
after CV. As shown in Figure 9, the average precision, recall, accuracy, and F1-score values
of the proposed scheme were at least 94.74%, 93.17%, 96.12%, and 93.77%, respectively.
These performance indexes were higher than 93% after CV. Since the F1-score values
of the proposed scheme were at least 93.77%, the result shows that most pixels in the
unconstrained psoriasis images were correctly classified using the proposed scheme. These
experimental results demonstrate that the proposed scheme can not only detect the psoriasis
and normal skin regions but also classify these pixels into three categories effectively for
unconstrained psoriasis images.
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Figure 9. Image segmentation results after cross validation.

As for object localization, IoU was determined as 0.5 for computing the mAP rate. The
mAP rates of the proposed scheme were 92.53%, 96.16%, and 85.9% after CV. The results
show that the proposed scheme can locate and recognize the psoriasis regions and the
normal skin areas successfully for unconstrained psoriasis skin images.

During CV2, these images in the testing dataset were also used to perform robustness
evaluation. Table 2 shows the experimental results of the proposed scheme for robustness
evaluation. As shown in Table 2, the average precision, recall, accuracy, and F1-score values
of the proposed scheme were at least 93.05%, 81.62%, 97.34%, and 84.34%, respectively, for
psoriasis regions after noise insertion or blurring. Since these performance indices were at
least more than 81.6%, the results show that the proposed scheme still located psoriasis
regions effectively even when blurring or noise insertion occurred. For normal skin areas,
the average precision, recall, accuracy, and F1-score values of the proposed scheme were
at least 96.31%, 97.14%, 96.72%, and 96.57%, respectively, after noise insertion or blurring.
These performance indices were at least more than 96.3%, so the results show that the
proposed scheme located the normal skin areas correctly for blurred or noisy psoriasis
images. For psoriasis regions and normal skin areas, the average precision, recall, accuracy,
and F1-score values of the proposed scheme were 95.86%, 95.62%, 97.03%, and 95.73%,
respectively. The F1_score reached up to 95.73% for psoriasis regions and normal skin areas
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even when blurring or noise insertion occurred. These experimental results demonstrate
that the proposed scheme can distinguish pixels in psoriasis and normal skin regions from
the background pixels regardless of whether blurring or noise insertion exists.

Table 2. Experimental results of the proposed scheme for robustness evaluation.

Precision Recall Accuracy F1_Score

Psoriasis
noise

insertion 93.05% 84.37% 97.67% 86.87%

blurring 93.13% 81.62% 97.34% 84.34%

Normal skin
noise

insertion 96.32% 97.55% 96.89% 96.87%

blurring 96.31% 97.14% 96.72% 96.57%

Psoriasis +
Normal skin

noise
insertion 96.00% 96.04% 97.29% 96.02%

blurring 95.86% 95.62% 97.03% 95.73%

4.4. Comparison with Mask R-CNN-Based Method

As mentioned in Section 2, Mask R-CNN is one of the state-of-the-art instance segmen-
tation methods [11,24]. To make a comparison, we retrained Mask R-CNN for instance pso-
riasis segmentation. A pr-trained Mask R-CNN model based on the MSCOCO dataset [30]
was retrained for psoriasis image segmentation via transfer learning.

Figure 7d shows the results of Mask R-CNN. As shown in Figure 7(d2,d3), the bound-
aries of skin and background may not be located well using Mask R-CNN. Compared
with Figure 7c,d, the normal skin regions can be localized and identified well using the
proposed scheme. Furthermore, although the input images contain background regions,
the proposed scheme can not only detect psoriasis regions but also distinguish the psoriasis
regions and the normal skin areas from the background well.

Figure 10 illustrates the performance indices of the proposed scheme and the Mask
R-CNN-based method. As shown in Figure 10, the average precision, recall, accuracy,
and F1-score values of the proposed scheme were 90.88%, 96.14%, 97.30%, and 96.08%,
respectively. The results show that the proposed scheme performed instance segmentation
well for unconstrained psoriasis images. In addition, the average precision, recall, accuracy,
and F1-score values of the Mask R-CNN-based method were 92.83%, 90.88%, 94.08%, and
91.82%, respectively. Compared with the Mask R-CNN-based method, the recall rate was
better and the increment of F1_score was 4.2% for psoriasis regions and normal skin areas
using the proposed scheme. Therefore, according to the above experimental results, the
proposed scheme can provide a better instance segmentation performance compared with
the Mask R-CNN-based method for unconstrained psoriasis images.

To evaluate the proposed scheme in psoriasis images with different sizes, the test
images with 3000 × 4000 pixels were tested. Figure 11 illustrates the instance segmentation
results of Mask R-CNN and the proposed scheme. Figure 11a,b are the input images and the
ground truth, respectively. As shown in Figure 11a,b, the test images had psoriasis regions
with different severity levels, different sizes, and arbitrary boundaries. Figure 11c,d are the
segmentation results of the proposed scheme and Mask R-CNN, respectively. As we can
observe in Figure 11c, the proposed scheme located psoriasis regions with different severity
levels and then provided good object segmentation boundaries. There is a false classified
region in the bottom of Figure 11(c3). As we can see in Figure 11d, the boundaries between
normal skin and background may not be separated well using the Mask-R-CNN-based
method. There are false classified regions in the bottom of Figure 11(d2,d3). Compared
with Mask R-CNN, the proposed scheme can find the boundaries between normal skin and
background well. The main reason is that DCN was adopted in YOLACT++ to enhance
the capability of handling objects with arbitrary boundaries and then reduce the effect of
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geometric variations. Furthermore, Figure 12 illustrates the instance segmentation results
for local regions. The first and second columns of Figure 12 are the original regions and the
label information, respectively. The third and fourth columns of Figure 12 are the results of
the proposed scheme and Mask RCNN-based method, respectively. As shown in Figure 12,
both methods detected psoriasis regions effectively.
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To evaluate the execution speed, 300 psoriasis images were used for testing. The
performance index, frame (i.e., image) per second (FPS), is adopted here. The FPSs were
0.44 and 15.1 for the Mask-RCNN-based method and the proposed scheme, respectively.
The result shows that the proposed scheme is much faster than the Mask-RCNN-based
method. This means that the proposed scheme is suitable for real applications.

According to the abovementioned experimental results, the proposed scheme not
only had a higher F1_Score but also a larger FPS compared with the Mask-RCNN-based
method for psoriasis image segmentation. Therefore, these results demonstrate that the
proposed instance segmentation scheme based on YOLACT++ is superior to the Mask-
RCNN-based method in terms of the F1_score and the FPS for dealing with unconstrained
psoriasis images.

5. Conclusions

To assess psoriasis severity, the Psoriasis Area Severity Index (PASI), composed of
erythema, area, desquamation, and induration, is accepted as a golden standard. Actually,
the area factor is more important among the PASI parameters to evaluate the psoriasis
severity according to physicians’ evaluations. Furthermore, these clinical skin images
captured in outpatient rooms are often unconstrained. To efficiently measure the area
factor, an efficient instance segmentation scheme based on deep convolutional neural
networks was proposed to deal with unconstrained psoriasis images for computer-aided
diagnosis. To achieve instance segmentation, the YOLACT network composed of backbone,
feature pyramid network (FPN), Protonet, and prediction head was utilized to deal with
psoriasis images. The backbone network was used to extract feature maps from an image,
and FPN was designed to generate multiscale feature maps for effectively classifying and
localizing objects with multiple sizes. The prediction head was exploited to predict the
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classification information and bounding box information of objects and mask coefficients.
Some prototypes generated by Protonet were combined with mask coefficients to estimate
the pixel-level shapes for objects. To achieve instance segmentation for unconstrained
psoriasis images, YOLACT++ with a pretrained model was retrained via transfer learning.

To evaluate the performance of the proposed scheme, unconstrained psoriasis images
with different severity levels were collected for testing. For objective evaluation, some
performance indices, including recall, precision, accuracy, F1-score, and mAP values,
are adopted. As for subjective testing, the psoriasis region and normal skin areas could
be located and classified well. For testing images, the four performance indices of the
proposed scheme were higher than 93% after cross validation. About object localization,
the mAP rates were at least 85.9% after cross validation. As for efficiency, the FPS rate of
the proposed scheme reached up to 15. In addition, the F1_score and the execution speed
of the proposed scheme were higher than those of the Mask R-CNN-based method. These
experimental results demonstrate that the proposed scheme based on YOLACT++ and
transfer learning can not only locate the psoriasis regions but also distinguish psoriasis
pixels from background and normal skin pixels well. Furthermore, the proposed instance
segmentation scheme is superior to the Mask R-CNN-based method in terms of the F1_score
and the execution speed for dealing with unconstrained psoriasis images.
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