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Abstract: Multirotor drones are widely used currently in several areas of life. Their suitable size
and the tasks that they can perform are their main advantages. However, to the best of our knowledge,
they must be controlled via remote control to fly from one point to another, and they can only be used
for a specific mission (tracking, searching, computing, and so on). In this paper, we intend to present
an autonomous UAV based on Raspberry Pi and Android. Android offers a wide range of applications
for direct use by the UAV depending on the context of the assigned mission. The applications cover
a large number of areas such as object identification, facial recognition, and counting objects such as
panels, people, and so on. In addition, the proposed UAV calculates optimal trajectories, provides
autonomous navigation without external control, detects obstacles, and ensures live streaming during
the mission. Experiments are carried out to test the above-mentioned criteria.

Keywords: UAV; Raspberry Pi; Android; autonomous; intelligent

1. Introduction

Recently, technological advances in computing, electronics, and telecommunications
and their convergence in our daily lives have led to the emergence of new needs, especially
with the widespread use of intelligent devices. Among these devices, unmanned aerial
vehicles (UAVs), or drones, have been used in various missions. They were used for the first
time towards the end of the First World War by the U.S. Army [1]. The idea was to guide
piloted planes remotely without the pilot in the cockpit. Since then, UAVs have become
the subject of innovation in various fields and for several types of missions. They have long
been a military tool; however, in recent years, their use has been extended to the civilian
domain. They present a promising solution for the most dangerous, delicate, and unsuitable
missions for human pilots, which saves lives as they allow for the replacement of piloted
planes and helicopters.

There are several designs for UAVs, among which the quadrotor offers real advantages
such as:

• Their reduced size and maneuverability allow them to fly in closed or open environ-
ments and close to obstacles, unlike conventional helicopters.

• The can perform vertical take-off and landing.
• This configuration is controlled by only varying the speed of the four engines.

However, the quadrotor has a number of drawbacks that still prevent it from becom-
ing a leading technology among UAVs. Many works have addressed the problems of
modeling, designing, and controlling such complex systems. Despite its four motors and
stationary equilibrium, the quadrotor remains an underpowered and dynamically unstable
system. The objective is to equip these quadrotors with more sensors and intelligence
with the development of control algorithms to ensure their stability, as well as a certain
degree of autonomy.

Appl. Sci. 2021, 11, 3153. https://doi.org/10.3390/app11073153 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4039-0408
https://orcid.org/0000-0002-4093-402X
https://orcid.org/0000-0001-6578-4334
https://doi.org/10.3390/app11073153
https://doi.org/10.3390/app11073153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11073153
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/7/3153?type=check_update&version=3


Appl. Sci. 2021, 11, 3153 2 of 15

To the best of our knowledge, there is no prior work that has presented an intelligent
and autonomous drone with Android as the operating system. The use of Android gives
us a large array of applications for direct use by the drone depending on the context of the
mission. Therefore, the main objective of this paper is to develop a quadrotor-type flying
robot that ensures autonomous navigation and stability, as well as guarantees streaming
in real time.

The remainder of this paper is organized as follows. Section 2 discusses related works.
Section 3 presents the architecture of VAGADRONE such as the hardware and software
used and the features of our UAV. Section 4 describes the simulation and experimental
results in various scenarios. Finally, Section 5 provides some conclusions.

2. Related Works

Unmanned aerial vehicles (UAVs) are now widely used as autonomous flight systems
for a multitude of uses and areas of intervention, such as military (surveillance, recording),
urban (traffic), and recreational applications [2]. In addition, much research is currently
being carried out in order to improve the airworthiness, the autonomy, the accuracy of
measurement, and the smoothness of the movements of the aircraft [3]. Several works have
been carried out on the control of UAVs based on optical flow. We can take the example of
O.Dunkley and his colleagues [4], who already tried to fly a 25 g micro drone “quadcopter”,
using the optical flow calculation method for visual odometry. Indeed, this test was done
on an external computer. The size of miniature hardware also poses a limitation on the com-
munication bandwidth, which can cause a noticeable delay. To achieve a maximum level
of autonomy, it would be preferable and logical to decouple the UAV from any external
dependence. Some researchers have promoted the use of EMDsensors and other 1D signal
sensors to be able to build lightweight UAVs for autonomous flight. In the same context of
optical flow-based control and the use of 1D flow sensors, Briod et al. [5] proposed the de-
sign of a 45 g quadcopter. They continued their research on a platform weighing 278 g that
contained eight 1D flow sensors pointing in all directions. This allowed the quadcopter to
hover in different crowded environments. The team of researchers achieved impressive re-
sults, but with several single-use sensors. They could only detect movement, which did not
leave enough room to detect other variables essential for navigation. R. J. Moore et al. [6]
implemented an optical flow algorithm with efficient results for a small lightweight (2 g)
omnidirectional camera system on a 30 g helicopter. With a ring of eight low-resolution
image chips (64 × 64 pixels), the UAV was able to calculate the optical flow. It performed
the calculation of the edges, starting by compressing the images and calculating the dis-
placement by the correspondence of blocks, which addressed translational optical flow.
Vision calculations were performed on-board the helicopter at 10 Hz, but flight controls
were calculated off-board. Despite the potential for a full on-board implementation, there
was redundancy in the ratio of cameras to detected variables. A camera has the potential
to detect flow in three directions; they used eight to detect only two (forward and lateral
speed). Likewise, the optical flow can be exploited to detect obstacles; however, the UAV
must be in constant motion. This is not important in case stereo vision is used for depth
information.

In addition, H. Oleynikova and her team [7] developed a reactive avoidance controller
for a quadrocopter (30 cm in diameter). They accumulated the values along the columns
from the obtained stereo disparity map to obtain a summed disparity factor. Assuming
the obstacles are vertical and long, these can be detected quickly. The stereo card was first
computed over the entire image before it was accumulated into a vector. This has a signifi-
cant impact on the amount of computation, which makes it less suitable for implementation
on a smaller UAV.

In recent years, we have seen the appearance of a few prototypes using the Raspberry Pi,
a single-card computer with an ARM processor whose very small size allows—theoretically—
autonomy and a lighter weight. Contrary to FPGA, DSP, and GPU platforms, its datasheet
shows that it does not require much power, and it is possible to use a small battery to power
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it [8]. Based on this study, we found that the DSP processor was not an appropriate platform for
the design of higher performance UAVs and that the use of a GPU (although widespread for many
image processing applications) was too limited in terms of portability. Finally, although FPGA
technology seemed to be a good choice, the strong design constraints were a hindrance to its use
in the context of the research project. Hence, the Raspberry Pi technology seemed particularly
promising for a project like ours, which aimed to develop a highly autonomous UAV with as
few embedded systems as possible. On the other hand, it seems that this miniaturization of
the processor leads to new problems, particularly in terms of the range of functionalities allowed
and the possibility of installing programming software (quantity of input/output controls
and libraries, etc.). We therefore took a closer look at these technical difficulties by studying
research work on the development of drones based on Raspberry Pi platforms. We first studied
the work of [9], which focused on the development of the face detection functionality of a drone
using a Raspberry Pi card, associated with a classifier algorithm and the OpenCV graphics library.
This architecture was thus interesting in the context of our study, and in particular with regard
to the performances obtained by the authors, i.e., >80% real detections, whatever the camera
height. The authors thus demonstrated the interest in this card (lightness, fast design) for a UAV,
to perform face detection in a precise and relatively reliable way. On the other hand, some
performance drops were observed when the experimental conditions deteriorated, particularly
in cases of real-time data transmission and for applications where the input frame rate was
too high. After seeing the interest in integrating a Raspberry Pi card in a UAV architecture,
we studied the technical possibilities associated with the operating system carried on the card.
Today, the main OSs deployed on the Raspberry Pi are Unix and Linux, as the latter has been
specially designed and optimized to run on a Raspberry Pi equipped with an ARM processor.
However, many other OSs can be ported to the Raspberry Pi, but have limitations in memory
capacity [10] and in updating or optimizing commands. Unlike the Android operating system,
there are the disadvantages of not offering a touch screen, nor a wide choice of applications.
Therefore, it seemed interesting to look into this system, but its deployment prototypes under
Raspberry Pi are still limited to experimental installations, since no version has been optimized
and there is no support for Raspberry Pi from Android application developers. The resulting
unreliability is therefore a real difficulty to run applications, despite the continuous improvement
of the hardware aspects of the Raspberry Pi 3 [11]. Another issue also concerns the development
of video streaming functions, whose real-time mode is particularly difficult to develop under
this operating system according to the information collected in the literature on this subject [12].

3. VAGADRONE

In the sequel, we present the architecture of our intelligent and autonomous drone
and its features.

3.1. VAGADRONE: Architecture

This drone is able to ensure several missions, namely autonomous flight and ob-
stacle detection. Therefore, its architecture must be defined in a way to ensure robust
and high-performance operation during navigation. We thought about the conceptual
choices for realization by which we approached the general architecture of the solution,
the architecture of the UAV, and the architecture of the Linux server.

3.1.1. Global Architecture

In order to limit the scope of the work, it is necessary to cleverly determine a set of
choices for the the realization. Our choice was based on a complex architecture composed
of three main layers, which was used to model and present this system as a stack of three
levels. Each component of the overall architecture had a well-specified description and
characteristics; the role of each one is described as follows (see Figure 1):

1. VGADRONE: This is the main component of the solution. It is an intelligent and au-
tonomous UAV based on the unique Pi 3B and Android 9 map allowing autonomous
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navigation and live streaming, etc. This component processes messages sent by the server
in the form of several types of data (image, command, and text).

2. Network system/event notification: This is the component that ensures on the one
hand a secure communication between the UAV and the server via three standards
(radio, WiFi, 3G/4G); on the other hand, it allows standardizing the communication
between the Android UAV and the Linux server. Actually, the standardization is
based on a state machine allowing the synchronization between the different requests
sent by the server and the notifications sent by the UAV to the server.

3. Server: It monitors and controls the UAV. It allows images to be sent to the UAV
in order to launch a search session for individuals and objects and records the UAV’s
navigation history.

Figure 1. Global architecture of the proposed system.

3.1.2. Hardware Architecture

The architecture and interactions of the different components that build the UAV are
illustrated in Figure 2.

The UAV was composed of several modules to ensure automatic piloting, live streaming of
captured videos, facial recognition, and connection with the server via the standards supported
by the Raspberry Pi 3B+ network card. Each component of the hardware architecture had a well-
specified description and characteristics, and the role of each one is described as follows:

• NAVIO+: Linux autopilot for the Raspberry Pi 3B+. It allows ensuring the autonomous
navigation of the UAV via radio communication technology.

• Ardu Copter-quad: This is the flight controller that allows the operation of multi-
torque unmanned aircraft and traditional radio-controlled helicopters.

• Smart card reader (4G Shield): This is the module that provides a 4G connection
and offers ultra-fast Internet connectivity for live streaming.

• Camera: This is the CSI interface camera that allows video streams to be recorded on
the SD card built into the Raspberry Pi 3B+.

3.1.3. Software Architecture

The UAV’s software architecture is divided into several specific modules. Each module is
also composed of sub-modules. The UAV’s software architecture is made up of five layers as
shown in Figure 3:

• The application layer acts as an interface between the UAV and the various functional-
ities required by the server.

• The second layer, the Java API Framework, enables the acquisition and processing of
the functionalities and access to programs. It is the application execution layer.

• The third layer, Android Runtime, represents the OS execution environment.
• The fourth layer is the abstraction layer between the kernel environment and the ap-

plication environment.
• Finally, the fifth pilot layer contains the drivers and the Linux kernel.
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Figure 2. The hardware architecture of VAGADRONE.

Figure 3. The software architecture of VAGADRONE.
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3.1.4. Server

The architecture of the server is simpler compared to the UAV architecture (see Figure 4).
It is composed of several modules allowing the sending of images, the recording of the flight
history, and the reading of the video streams sent by the UAV. The architecture of the server is
defined by several components to ensure the proper functioning of the UAV. These components
are:

• WiFi peer-to-peer: This is the network card installed in the Linux Ubuntu server
certified as 802.11 a/g/n to support high-speed communication between the server
and the Raspberry Pi 3B+ card.

• ConnMan/WPA supplicant: This is the network manager and the application to open
a peer-to-peer connection between two devices.

• Event notification process: This is a state machine allowing the sending and receiving
of notifications between the UAV and the server.

• Database: This is used to record the flight histories.
• Video GStreamer: This is the module that decodes the video streams sent by the UAV.

Figure 4. The server architecture.

3.2. VAGADRONE: Features

We studied the possibility of ensuring the autonomous navigation of the UAV without
any external control (remote controls or another control source) while respecting real-time
constraints and ensuring high-performance and robust navigation. Indeed, our UAV had to
calculate an optimal path from WGS coordinates indicated by the Ubuntu Server in order
to optimize battery consumption and increase operating performance to cover the search
area. The main features of our UAV are:

1. The calculation of the optimal UAV navigation trajectory to cover a search area.
2. Automatic piloting of the Raspberry Pi 3B+ embedded Android from the Ubuntu server.
3. Detection of obstacles during the navigation of the UAV.
4. Live streaming of the mission

In the sequel, we detail the above-mentioned features. Indeed, we start with the prepa-
ration of the area to cover and the computation of the optimal trajectory

3.2.1. Optimal Trajectory Computation

We started by modeling the terrain as an oriented graph. However, instead of basing
our graph on classical meshing, we opted for intelligent modeling, which allowed us to
reduce the calculation time on this graph without losing precision (which is the classical
problem with meshing). The modeling was based on the notion of a visibility graph and in-
tegrated the consideration of obstacles, danger zones, and the non-holonomy constraint of
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the aircraft that implies a maximum steering angle. The resulting graph was then cleaned
to keep only the strict minimum necessary for trajectory calculation. The generation of
the graph can require much computation time, but this generation is done only once before
the planning stage and therefore does not affect the trajectory computation times. We also
developed another graph containing less information and not taking into account the non-
holonomy constraint. The advantage of the latter is that the time for its generation is very
short. On the other hand, its use requires the implementation of a procedure to correct
the trajectory to make it non-holonomous. This correction is feasible in the context of our
missions, but not for all types of autonomous vehicles. Once this graph was generated,
we proposed a procedure for calculating a shorter continuous non-holonomic path in a risky
environment and in the presence of obstacles. Since the graph used already integrated all
the constraints, we modeled the problem as a search for a shorter path with a resource
constraint (the resource was the amount of risk allocated). The results were very satisfying
since the routes were non-holonomic trajectories that respected all constraints. Moreover,
the computation time was very short. For the cases of the simplified graph, we created
a procedure for correcting the trajectory to make it non-holonomic. All non-holonomy
calculations were based on the curves of Dubins [13]. The UAV was allowed to evolve
in 3D space. At first, we discretized it in a regular way to model it (Figure 5). The resulting
graph was then easily implemented with MATLAB.

Figure 5. Discretization of the 3D space.

The results were loaded into a matrix whose coefficients represented the “state” as
mentioned in Table 1.

Table 1. Discretization of the space.

Value State

−1 Obstacle
0 Start
1 Goal
2 Crossable cell

The objective of the first part of the problem was to find a path between the start (0)
and the goal (1) by avoiding obstacles (−1). There are many algorithms that would allow
us to find, if it exists, a path connecting two points on this graph. One of the best known is
the Dijkstra algorithm and A* algorithm.

In this part, we illustrate the tests performed to validate and verify the behavior of
the A* algorithm in order to compute an optimal path from the WGS coordinates sent
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by the server. Figure 6 shows a scenario to find the optimal path from Point 1 (sstart) to
the endpoint (sgoal) while passing from several nodes s1 to s4.

Figure 6. A* algorithm (a) after initialization (b) after the expansion of Sstart (c) after the expansion
of S2 (d) after the expansion of S1 (e) after the expansion of S4 (f) after the expansion of Sgoal .

To find the optimal path, we had to take into consideration the length of the path
between linked nodes g and the distance between the current node and sgoal, denoted by
h, which verifies:

h = S −→ R
s −→ a > 0; ∀s 6= sgoal

(1)

if h(s1) < h(s2) ⇔ s1 is the nearest to sgoal (h(sgoal) = 0). Nodes with bold outlines
are OPEN. After sgoal is found, the path is shown in bold.

To illustrate the advantages of this algorithm, we used the previous example of a map
without obstacles, with sstartin (100, 50) and sgoal in (200, 50). We noticed that the path was
found much faster (100 iterations compared to 20,000 with the Dijkstra algorithm).

We present the function:

k(s) = g(s) + h(s) (2)
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where g(s), as was mentioned before, is the length of the path from sstart to the current
node s and h(s) is the heuristic, i.e., an estimate of the distance between node s and sgoal .
This function determines the order in which the nodes are reached using the A* algorithm.
In order to accelerate the search towards sgoal , we could modify the expression of k(s)
in order to bring more weight to the heuristics. We note:

k(s) = g(s) + ε.h(s) (3)

ε = 0 corresponds to a non-oriented search, and ε >= 1 defines the weighted A* algorithm.
This algorithm significantly reduces the number of iterations required to obtain a so-

lution in many cases. However, we no longer have a guarantee of the optimality of
the solution returned by the algorithm. Nevertheless, the use of a heuristic that does not
overestimate the cost of going from the current node to the sgoal node allows us to have
control over the “sub-optimality” of the path between sstart and sgoal . Indeed, for such
a heuristic (Euclidean distance for example), we have:

lengthPathε>1 < ε× LengthPathOptimal (4)

3.2.2. Automatic Control of the UAV

In this part, we integrate the NAVIO+ map under the Raspberry Pi 3B+ in order to
improve the performance and to find a solution for the navigation constraint encountered
while computing the optimal trajectory.

The NAVIO+ card is an extension of the Raspberry Pi 3B+. It is a very powerful card
and has a variety of sensors and input/output for communication with the exterior. The
NAVIO (Figure 7) card has several components namely:

• Dual IMU: MPU-9250: This has all the necessary sensors for the knowledge of the an-
gular position and linear acceleration of our system. It integrates an accelerometer,
a gyroscope, and a magnetometer with very high sensitivities, which helped us greatly
in the automation of the UAV.

• GNSS receiver: NEO-M8M: This is the GPS module integrated in the NAVIO+ card.
This module communicates with the card via an SPI link, sends messages containing
location information, and receives configuration data.

• High-resolution barometer: MS5611: This is a high-resolution barometer with a reso-
lution of 10 cm for accurate UAV altitude values.

• Extension ports: The NAVIO+ card has a variety of interfaces available for possible
extensions, namely ADC, I2C, and UART interfaces.

Figure 7. NAVIO+ card.

3.2.3. Obstacle Detection while Navigating

Flying autonomously can be ensured if our drone is capable of detecting obstacles.
For this purpose, we chose to install and integrate the component IR E18-D80NK obstacle
detection sensor under the Raspberry Pi 3B+. It helps to detect obstacles by measuring
the angle of reflection of the emission of modulated IR.
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The E18-D80NK infrared sensor allowed us to detect the presence of obstacles with
great precision and speed because this detection could act as an interruption in our software
for the modification of our trajectory when our UAV was navigating. The 80 cm were
sufficient for the change of our trajectory at the time of the detection of an obstacle.

3.2.4. Live Streaming

We tried sharing video captured by the camera integrated under the Ubuntu UAV
and server, respecting security and memory constraints. The UAV should broadcast
the video stream captured by the camera to the server instantaneously and in real time,
taking into account the two constraints: on the one hand, securing the data exchanged
between the two devices against fraudsters and, on the other hand, optimizing the use of
memory, given that the Raspberry Pi B3+ is limited in terms of capacity (16 GB in memory).

We implemented a video stream recording mechanism. It was optimized in terms
of real-time consumable memory by the media-sharing algorithm between the UAV and
the server.

The problems that can be encountered as a result of the memory constraint are:

• Latency in the operation of the UAV’s navigation module (navigation, obstacle detection, etc.).
• The problem of real-time image processing by the facial recognition algorithm.
• Macroblocks in captured videos.

Following these constraints and problems encountered for the storage of data in the SD
card, we implemented an intelligent solution for recording video in the Raspberry Pi 3B+.
This solution consisted of storing the video chunks in a cyclic way in order to respect
the memory area dedicated to storage, as shown in Figure 8.

In order to have a good video quality and optimized stream without having mac-
roblocks or black screens, which are due to memory overflow or data consumption from
empty memory space, we implemented an algorithm using circular buffers. The circular
buffer allowed managing the data flow in real time in an optimized way.

Figure 8. Example of the circular buffer algorithm.

4. Experiments and Results

In this section, we detail the results of various experiments to evaluate the performance
of real-time applications using VAGADRONE (Figure 9).
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Figure 9. VAGADRONE.

For the experiments, we used our VAGADRONE, which was a quadcopter com-
posed of:

• A Raspberry Pi 3B+ board based on an ARM Cortex-A53 64 bit, quad-core 1.2 GHz
processor. We chose this board for several reasons:

1. The size of the Raspberry Pi 3B+ is small, and so, the card is perfectly suited to be used
in a drone.

2. The Raspberry Pi 3B+ is very powerful. It includes a 4 core processor, a 1 GB
processor, and 1 GB of RAM, so one can install a real operating system like An-
droid and run Android and applications that can be used during the realization
of the project.

• The NAVIO2 flight controller described in the previous section.
• A camera attached to the Raspberry Pi 3 Model B, by means of a Pin 15 ribbon cable,

via the dedicated 15 pin serial interface (CSI) camera. It supports 1080 p × 720 p with
60 frames per second thanks to the 5 MP sensor. This module was intended to be used
in the context of a broadcast. It should allow monitoring its environment in real time
and saving a history of images if necessary.

• Ultrasonic sensors (E18-D80NK infrared sensor).
• Brushless motors Readytosky 920KV defined by several characteristics:

1. KV refers to the number of turns per minute per Volt. A motor with a very high
KV will fall into the category of very high speed, but low torque motors, while
a motor with a low KV will fall into the opposite category. The chosen motor was
a Readytosky Motor with a KV of 920 powered by a battery that provides about
11.1 V; our motor would run at 11.1 × 920 = 10.212 rpm.

2. The voltage that the motor can withstand is generally a range expressed as
a number S, 1 S being equivalent to 3.7 V. In the case of the motor we chose, its
operation must be with batteries of type 3 S.

3. Another element to take into account is the number of amperes that the motor
will consume at full load, because this value will be used to choose the electronic
speed control (ESC).

• The ESC driver. This controller allows managing the motor rotation speed.
• A LiPo battery.

The assembly of our drone followed the NAVIO2 manual published by Emlid. Figure 10
shows the wiring diagram (a) and the image of the components with the chassis (b).
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Figure 10. The assembly of the VAGADRONE components (a) the wiring diagram (b) the components
with the chassis.

We started by testing the computation of the optimal path to reach the zone of
the mission. For this purpose, we applied the weighted A* algorithm. Thus, we modified
the weight ε and computed the number of iterations to find the best trajectory. The results
for different ε are given in the following Table 2.

Table 2. Optimal path for different ε using the weighted A* algorithm.

Epsilon 0 1 1.5 5

Number of iterations 145 72 36 28
Length of the path 23.8995 23.8995 25.3137 29.7990

Thus, in our case, the use of the A* algorithm allowed reducing the number of visited
cells by two compared to the Dijkstra algorithm to obtain an optimal path. If there was no
constraint in terms of the distance to travel, but an obligation to find a solution as quickly
as possible, the weighting on the heuristic could be increased (epsilon = 1.5 and 5). Setting
ε to 1.5 means tolerating a sub-optimality of 50% on the distance traveled to reach the goal.
In this example, we can see that the UAV would take half the time to obtain a path that
would be, in our example, only 5.92% longer.

Next, we tested the automatic control of the UAV. Before assembling our system,
we had to perform unit tests and complete measurements for all our sensors in order to
properly parameterize the UAV. For each module, we developed test binaries from which
we made measurements to understand the real behavior of each sensor.

To test the IMU module, the MPU9250 driver was used, and the NAVIO/MPU9250.h
file contained the methods for communicating with this circuit. We tested it, and it gave us
results in real time as follows (Figure 11).

Figure 11. Results of the IMU test. Acc: linear accelerations on the x, y, and z axes, respectively. Gyr:
the angular velocities respectively around the x, y, and z axes. Mag: data provided by the magne-
tometer indicating the orientation of the UAV.

We also tested the Barometer MS5611, a pressure sensor that also integrates a tempera-
ture sensor for calibration purposes. This sensor has a resolution of 10 cm.
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As shown in Figure 12, the temperature values were high compared to the tempera-
tures in the laboratory, and this was due to the heating of the Raspberry Pi card.

Figure 12. Results of the barometer test.

The NAVIO card is very powerful. The level of abstraction of the library helped us
quickly develop our prototype. The overweight problem was solved with this card (23 g
after assembly with the Raspberry Pi 3B+).

We also tested the live streaming module of our VAGADRONE system. In this part,
we test the performance of the solution of using circular buffers to optimize the recording
of videos in the SD card. The objective of this test was to verify the proper functioning of
the solution and its optimization with respect to memory consumption. The test procedure:

- We launched a recording of a video with the CSI interface camera under the Raspberry
Pi 3B+.

- Under the terminal of the Raspberry Pi 3B+, we ran the command below to launch
the program to generate the circular buffer.

/usr/bin/gen_circular_bu f f er/tmp/v_109845689345.ts
The duration of the video v_109845689345.tswas 15.36 min with a size of 5 GB. Table 3

illustrates the result found after the binary launch of the circular buffer generation solution.

Table 3. Results of the circular buffer solution.

Chunk (.ts) Duration (s) Size (MB) Comment

First cycle (recorded content of 1500 MB)

0000.ts 25 250
0001.ts 25 250
0002.ts 25 250
0003.ts 25 250
0004.ts 25 250
0005.ts 25 250

Second cycle (recorded content of 1500 MB)

0000.ts 25 250 Removed old content
0001.ts 25 250 Removed old content
0002.ts 25 250 Removed old content
0003.ts 25 250 Removed old content
0004.ts 25 250 Removed old content
0005.ts 25 250 Removed old content

Third cycle (recorded content of 1500 MB)

0000.ts 25 250 Removed old content
0001.ts 25 250 Removed old content
0002.ts 25 250 Removed old content
0003.ts 25 250 Removed old content
0004.ts 25 250 Removed old content
0005.ts 25 250 Removed old content

Fourth cycle (recorded content of 500 MB)

0000.ts 25 250 Removed old content
0001.ts 25 250 Removed old content
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As shown in Table 3, this algorithm recorded every 25 s of video captured by the cam-
era in the form of an HD chunk (.ts) transport stream. With this solution, we ensured
the optimization of the memory used by the video recording while keeping the performance
of the UAV operation.

We tested the behavior of our VAGADRONE while navigating in four different areas
(a park, a small village, a dense village, and half village/half park). We ran the test
using a well-charged drone for 1000 s in four different zones. Figure 13 shows the battery
performance test result as a function of time.

Figure 13. Battery performance test over time.

It was quite clear that the drone in Zone 4 (park) discharged slowly when compared
to other zones. This was due to the density of obstacles present in Zones 1, 2, and 3
compared to Zone 4. Thus, our VAGADRONE consumed more battery to avoid obstacles.

5. Conclusions

In this paper, we proposed VAGADRONE, an autonomous and intelligent drone.
The contribution of this paper was the cross-compilation of Android with Linux. Android
allowed us to achieve many applications depending on the mission of the UAV such as
object identification, facial recognition, and counting objects such as panels, people, and
so on. On the other hand, VAGADRONE had many features that ensured autonomous
navigation. It calculated the optimal UAV navigation trajectory to cover a search area. It had
automatic piloting from the Raspberry Pi 3B+ with Android embedded from the Ubuntu
server. It detected obstacles during its navigation, and it offered live streaming while
respecting the constraints of the memory, real-time performance, and security.
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