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Abstract: The use of quaternion orthogonal designs (QODs) to describe point-to-point commu-
nication among dual-polarized antennas has the potential to provide higher rate orthogonal and
quasi-orthogonal complex designs exploiting polarization diversity among space and time diversities.
Furthermore, it is essential to have a space time block code (STBC) which offers a linear and decou-
pled decoder which quasi-orthogonal designs fail to attain. In this paper, we show how the realm of
quaternions unexpectedly offers us a possible solution and codes obtained from quaternion designs
mostly achieve both linear and decoupled decoders. This motivated us to perform an indispensable
search for QODs such that the code rate is bounded below by 1/2 and does not sharply decrease as
the number of transmit antennas increases. It is shown that three famous recursive techniques do
not satisfy this criteria and their code rates decrease rather rapidly. Therefore, we propose another
method of constructing quaternion designs suitable for any number of transmit antennas and verify
that these attain linear and decoupled decoders with the system model based on quaternionic channel.
It is shown that such designs outperform others in terms of transmit diversity, code rates and the
optimality of the proposed decoder is validated through simulation results.

Keywords: quaternion orthogonal designs; quasi quaternion orthogonal designs; maximum-likelihood
decoder; MIMO; Dual-polarized antennas

1. Introduction

The surge of high speed communication services has accelerated the demand for
efficient communication techniques that have the potential to make reliable data transmis-
sions without compromising on data rates. In this regard, space time block codes (STBCs),
based on orthogonal designs, are considered one of the key techniques that have moved
the capacity of wireless communication close to theoretical limits. STBCs have been used
extensively such as in third generation (3G) standard and wireless local area networks
(LANs) based on IEEE 802.11n. Initially, they were proposed by Tarokh et al. [1] as a gener-
alization of the famous Alamouti code which is a complex orthogonal design (COD) [2].
The most attractive feature of these orthogonal designs is the provision of full diversity
along with low complexity maximum-likelihood (ML) decoder. However, they achieve
this attribute at the expense of code rate, that is, the ratio of the number of independent
complex transmitted symbols and the number of total time slots taken to transmit a coding
matrix. On the other hand, a COD with full rate and maximum diversity exists only for
two single-polarized transmit antennas and maximum code rate approaches half with as
the number of transmit antennas increase [3]. To meet higher data rate demands, other
designs such as complex quasi-orthogonal STBCs have also been explored that provide
comparatively higher code rates but compromise on optimal decoders due to nonlinear and
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coupled decoding issues [4]. To further enhance the capacity of communication systems,
other combinations of diversity providing techniques are being investigated.

In [5], orthogonally polarized transmissions through both ends of a dual-polarized
antenna were modeled through quaternions and later [6] laid the foundation of orthogonal
space time polarization block codes (OSTPBCs) that utilize polarization diversity together
with space and time diversity. Polarization diversity can provide nearly similar perfor-
mance to spatial diversity without any measurable increase in antenna dimensions [7].
This is achieved with the use of dual-polarized antennas, which have two antennas of
orthogonal polarizations co-existing on a single antenna platform and there has been a
growing interest recently [8,9].

Based on the combination of polarization diversity with space and time diversities,
various quaternion orthogonal design (QOD) construction techniques have been proposed
by Seberry et al. [6]. The primary motivation of these designs has been their ability to
provide higher code rates along with a low complexity quaternion norm-based ML decoder.
To illustrate the benefit of these designs, [6] presented an example of 2× 2 order QOD
and derived linear equation based decoding solution for this configuration. They argued
that quaternion decoding statistics can provide decoupled decoding for any QOD. Their
subsequent studies [10,11] used the same QOD and emphasized the similar postulate that
quaternion ML norm can provide optimal decoupled decoding for any QOD construc-
tion. However, the authors corrected their decoding rule in [12] and highlighted that the
proposed decoding rule does not yield optimal decoding for all QODs, and therefore, the
design of semi-optimal or optimal low complexity decoders remained an open research
problem [13]. In this regard, a recent work [14], explored the designs for which quaternion
norm-based ML decoder resulted in optimal decoding solutions. However, it is important
to note that their proposed ML decoder works for a special class of STBCs.

In this paper, we investigate three famous generalized QOD construction techniques [14]
and identify two main short falls which restricts their use for large MIMO systems. Firstly,
this iterative approach works only in the case when the number of transmit antennas are in
powers of 2, which clearly restricts their use to other antenna configurations. Secondly, the
code rate decreases very sharply for higher order designs based on these iterative techniques.
Therefore, it was deem necessary to develop codes that work for any number of antenna
systems besides having the main advantage of attaining decoupled decoders in the presence
of quaternionic channel as was the case with iteratively generated designs [14]. This has been
done following the line of approach indicated in [3] which gives us a class of QODs that are
non-square and the code rate is bounded below by 1/2. The motivation behind this was to
exploit the impact of a dual-polarized transmission channel at the receiver side in such a way
that ML quaternion norm criterion simplifies to a decoupled decoding solution which reduces
the decoder complexity significantly.

After obtaining a generalized ML decoder, we take one step further by exploring
quasi-QODs. The proposed quasi-QOD provides a code rate of two for four transmit dual-
polarized antennas. However, the quasi nature of these codes leads to a slight comprise on
decoding complexity. The solutions obtained with this compromised complexity-based
decoder are still better than the coupled traditional ML decoder based solutions. A detailed
complexity analysis of the proposed constructions have been provided to illustrate the
significance of the proposed low-complexity decoder for both pure or quasi QODs.

Briefly, we summarize the main contributions made in this paper.

• We propose a new class of QODs based on Liang mechanism [3] with stable code rate
as the number of transmit antennas increases.

• The class is shown as best suitable in describing point-to-point communication among
dual-polarized antennas.

• The proposed decoder is shown to provide linear decoding solution for all STBCs
obtained from QODs.

• A brief performance analysis is carried out for all obtained QODs.
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Some remarks on notation are as follows—all matrices are denoted with bold letters.
The real and complex numbers fields are denoted in standard form R and C, respectively.
< and = represent real and imaginary parts of a complex number. Q denotes a quaternion
field comprise of a basis of non-commuting elements 1, i, j, k, such that ij = k = −ji,
jk = i = −kj, ki = j = −ik. The superscript qQ, refers to quaternion conjugate and
responsible for sign changes in i, j and k. In matrices, it also includes transpose (.)T .
Moreover, operators (.)H and tr(.) refer to the Hermitian transpose and trace operator,
respectively. Both matrices Cq and CQ, corresponds to quasi-orthogonal STBCs; however,
the subscript Q indicates that the STBC CQ is obtained from a QOD.

2. Quaternion Orthogonal Designs

A quaternion consists of four real numbers q = x0 + x1i + x2 j + x3k, such that xr ∈ R;
r = {0, 1, 2, 3}. As the space R4 is isomorphic to the complex space C×C, therefore, we
obtain an equivalent representation of a quaternion q = z1 + z2 j. This is more useful from
the point of wireless communication among dual-polarized antennas. Consequently, it
makes sense to talk about space-time-polarization block codes with quaternion elements
and investigate orthogonality condition in the quaternion domain.

Definition 1. A QOD Q comprises of quaternion variables {q1, q2, . . . , qu}, is defined as an
m× n matrix which can have entries from the set {0,±q1,±qQ

1 , . . . ,±qu,±qQ
u }, including possible

multiplications on the left and/or right by quaternion elements and satisfies the following condition

QQQ =
u

∑
h=1

(|qh|2)In = λIn, (1)

where λ is a positive real number and In×n is an n× n identity matrix.

As mentioned before that a quaternion is a combination of two complex numbers
q = z1 + z2 j, therefore, it is natural to think of QODs satisfying Q = A + Bj, where
A and B are two complex matrices. It turned out that any two arbitrary complex matrices
do not necessarily give rise to a QOD which satisfies (1). Essentially, the authors in [6]
found the key requirements on A and B to ensure (1), for the resulting QOD. Interestingly,
the amicable and symmetry conditions were found to play main role for which an extensive
theory was already in place and they used it to generate class of QODs. Later it was found
that all proposed quaternion-based designs employed symmetric-paired complex matrices.
Since the symmetry property is crucial in our study therefore we state it for a brief and
self-contained exposition.

Definition 2. Two CODs A and B based on complex variables {z1, z2, . . . , zu} form a symmetric-
paired design (A + Bj) provided AHB or BHA is symmetric.

A relatively simple way to find such symmetric-paired designs arise from the ob-
servation that swapping of certain columns of a COD generates an equivalent COD. The
resulting COD along with the original COD form a symmetric-paired design. This tech-
nique was used in [6], for the search of viable QODs. However, it is important to note that
as the dimension of COD matrix gets larger, not every permutation of columns of a COD
yields a valid QOD. Therefore, only one permutation per column is allowed to generate
valid QODs under this construction [15]. Below in Sections 2.2 and 2.3, we will describe
other possible ways to generate QODs. For square designs, three recursive construction
methods to find CODs were presented in [3], namely Adams-Lax-Phillips, Józefiak and
Wolfe constructions. It is easy to realize that all three constructions recursively generate the
same class of square QODs.
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According to these constructions, a recursive COD A is designed for l + 1 symbols
embedded in a square matrix of order 2l such that

A =

[
G2l−1(z1, z2, . . . , zl) zl+1I2l−1

−z∗l+1I2l−1 GH
2l−1(z1, z2, . . . , zl)

]
, (2)

where G2l−1(z1, z2, . . . , zl) represents a COD of order 2l−1 × 2l−1 defined on symbols
z1, z2, . . . , zl and l = {1, 2, 3, . . . }. For example, for l = 1, G1(z1) = [z1]. Taking this
as a seed element, higher order CODs such as G2(z1, z2) and G4(z1, z2, z3, z4) can be con-
structed [3], recursively. In the subsections, this way of COD generation is used to form
different generalized QOD constructions.

In Figure 1, we briefly explain the basic nomenclature, which describes the main
working in quaternion domain. We start with two CODs that form a symmetric-pair such
that they give rise to a QOD. In earlier works, this was not directly used to describe com-
munication among dual-polarized antennas. Rather, an STBC was constructed from a QOD
and its even columns represent signals being sent through one polarization while entries in
odd columns are signals transmitted through an orthogonal polarization plane. However,
the simultaneous transmission through a dual-polarized antenna is being modeled by
quaternions in this paper. Although, we have an enriched theory of quasi-orthogonal
designs yet our main focus is to work on an approach which algorithmically identify
among them, those designs that have decoders with two main characteristics, that is, linear
and decoupled. In this work, we notice that the departure from the complex to quaternion
domain serve this purpose. The dotted line connecting CODs A, B with quasi-STBCs CQ
or Cq indicates a vivid difference between their working which distinguishes them in
terms of code rates, decoding delays at both ends, zero vs non-zero entries, linear and
decoupled decoders.

Figure 1. Quaternionic Nomenclature: Two symmetric-paired complex orthogonal designs (CODs)
A and B generate a quaternion orthogonal design (QOD) Q, which gives rise to different quasi-codes
CQ and Cq with linear and decoupled decoders.

The generalized construction techniques employ (2), which provides us the symmetric-
paired square CODs that act as seeds to generate three classes of square and non-square QODs.

2.1. Symmetric-Paired Design 1: (Square QODs)

This construction technique constructs QODs A + Bj in which COD B is obtained
from A through permutation of columns, where permutation operation on two columns
m and n results in swapping the positions of these two columns with each other. For all
CODs based on the permutation of CODs for a specific antenna dimension, the diversity
order remains the same, therefore, without loss of generality we employ (2) to arrive at the
following result.

Theorem 1. For a given COD A in (2) and its permuted version B, a complex amicable and
symmertic-paired design can be constructed such that the following realization,
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Q2l (z1, z2, . . . , zl+1) = A + Bj =
[

G2l−1 + zl+1I2l−1 j zl+1I2l−1 + G2l−1 j
−z∗l+1I2l−1 + GH

2l−1 j GH
2l−1 − z∗l+1I2l−1 j

]
, (3)

provides a QOD of dimension 2l × 2l .

The following example illustrates the construction in which we start with an Alamouti

code G2 =

[
z1 z2
−z∗2 z1

]
. Using (2), we obtain a square matrix A of order 4. Consequently,

we have a QOD.

Example 1. Using the permutation operation on A, as described above and representing it with B,
we obtain following QOD Q1 = A+Bj, to be used in the configuration of 4 dual-polarized antennas

Q1 =


z1 + z3 j z2 z3 + z1 j z2 j
−z∗2 z∗1 + z3 j −z∗2 j z3 + z∗1 j

−z∗3 + z∗1 j −z2 j z∗1 − z∗3 j −z2
z∗2 j −z∗3 + z1 j z∗2 z1 − z∗3 j

. (4)

This QOD transmits 3 complex symbols z1, z2 and z3 in four time slots and provides a
3/4 code rate.

2.2. Symmetric-Paired Design 2: (Non-Square QODs)

The designs that do not necessarily require the use of permutation operations on
columns are important for they do not limit code rates. This can be done through a rel-
atively simple way to recursively generate QODs using a single COD A and a square
diagonal matrix containing an extra symbol. Therefore, these designs perform relatively
better than the designs obtained from the first technique. Below we describe their general-
ized formulation.

Theorem 2. For a given square COD G2l−1(z1, z2, . . . , zl+1), the matrix

Q21×2l−1(z1, z2, . . . , zl+1) =

[
G2l−1(z1, z2, . . . , zl) + zl+1I2l−1 j
−z∗l+1I2l−1 + GH

2l−1(z1, z2, . . . , zl)j

]
(5)

provides a quaternion design of order 2l × 2l−1.

We again start with an Alamouti code G2, to obtain a square COD G4 following Wolfe
construction which contains three symbols because 2l−1 = 22, implies l = 3. Hence, we
arrive at the following example.

Example 2. The COD G4 along with a diagonal matrix containing an extra symbol z4 in Equation (5)
gives rise to

Q2 =



z1 + z4 j z2 z3 0
−z∗2 z∗1 + z4 j 0 z3
−z∗3 0 z∗1 + z4 j −z2

0 −z∗3 z∗2 z1 + z4 j
−z∗4 + z∗1 j −z2 j −z3 j 0

z∗2 −z∗4 + z1 j 0 −z3 j
z∗3 j 0 −z∗4 + z1 j z2 j
0 z∗3 j −z∗2 j −z∗4 + z∗1 j


. (6)

This QOD transmits 4 complex symbols z1, z2, z3 and z4 in eight time slots, thus
provides a relatively better code rate of 1/2.
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2.3. Symmetric-Paired Design 3: (Non-Square QODs)

We now come to address main issues related with quasi-CODs which promise a high
data rate at the expense of coding and decoding delays besides coupled and non-linear
decoding. This issue can be resolved in the quaternion domain. For example, in [16], a
quasi-COD of rate 1 was designed for four transmit antennas

Cq =

[
G2 L2
−L∗2 G∗2

]
, (7)

using two CODs G2 =

[
z1 z2
−z∗2 z1

]
and L2 =

[
z3 z4
−z∗4 z3

]
, which was shown to have pair-

wise decoding. We now subject these two CODs G2 and L2 to the quaternion domain
which helps us reclaim decoupled and linear decoding solutions. First of all, we note that
the concept used in design 2, can be generalized such that in place of a diagonal matrix
which merely contains a single extra symbol, we can use a COD. It turns out that the
following theorem provides us a possibility of incorporating L2 with G2, in place of a
diagonal matrix. Resultantly, we obtain another recursive construction technique which
can be proved easily.

Theorem 3. For two recursively generated CODs G2l−1(z1, z2, . . . , zl) and L2l−1(z1+2, z2, . . . ,
z2l+2), a symmetric-paired design,

Q2l+1×2l (z1, . . . , z2(l+1)) =

[
G2l + L2l j
L2l + G2l j

]
, (8)

is a QOD of dimension 2l+1 × 2l .

It is easy to implement this technique as is shown in the subsequent example.

Example 3. To generate a QOD for 4 dual-polarized antenna, we use G2 and L2 to obtain two
CODs of higher orders G4 and L4 using Wolfe construction. Consequently, Equation (8) gives rise
to a QOD of rate 3/4

Q3 =



z1 + z4 j z2 + z5 j z3 + z6 j 0
−z∗2 − z∗5 j z∗1 + z∗4 j 0 z3 + z6 j
−z∗3 − z∗6 j 0 z∗1 + z∗4 j −z2 − z5 j

0 −z∗3 − z∗6 j z∗2 + z∗5 j z1 + z4 j
z4 + z1 j z5 + z2 j z6 + z3 j 0
−z∗5 − z∗2 j z∗4 + z∗1 j 0 z6 + z3 j
−z∗6 − z∗3 j 0 z∗4 + z∗1 j −z5 − z2 j

0 −z∗6 − z∗3 j z∗5 + z∗2 j z4 + z1 j


. (9)

Therefore, we have three recursive techniques to generate square and rectangular
QODs from square CODs. As all of the above QODs are obtained from the recursive tech-
niques of CODs based on famous Adams-Lax-Phillips, Józefiak and Wolfe constructions,
therefore, we can use an upper bound on these to arrive at the following result.

Theorem 4. The rate rQ, of all possible QODs in (3), (8) and (11) obtained from square CODs is
given by

rQ =
l + 1

2l . (10)

This provides us a class of QODs, which are fully diverse [17] and earlier these were
shown to have decoupled decoders based on a semi-quaternionic channel model [15]. In
this paper we use the system model [18] based on the characterization of pure quaternionic
channel and it is shown that the above designs all have decoupled decoders and optimal
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decoding delays. Besides these advantages, there is one drawback as mentioned in the
remark below.

Remark 1. All of the above construction techniques generate QODs for only configurations when
the number of dual-polarized transmit antennas are in powers of 2, i.e., 2, 4, 8, 16, . . . which puts a
heavy toll on the code rate as 1/2l sharply declines as the number of antennas increase.

Following above remark, it is essential to find quaternion designs for general configu-
ration of dual-polarized antennas like for a (nT × 1)−system such that nT ∈ N and these
codes have maximal coding rates. We developed such QODs in the subsequent section.

2.4. Maximal Rate QODs for General Configuration of Dual-Polarized Antennas

In Liang’s paper [3], rectangular CODs of maximal rates are found algorithmically.
The general procedure was given in the paper, however, such designs do not carry a
compact form as was found in the case of (2). As demonstrated below that our proposed
procedure successfully works on the famous examples given in [3], to generate designs for
3 and 5 dual-polarized antennas among other configurations, respectively.

Lemma 1. A maximal rateRQ = 3/4 QOD for 3 dual-polarized antennas is given by

Q4 =


z1 + z2 j z2 + z1 j z3 + z3 j
−z∗2 + z∗1 j z∗1 − z∗2 j 0
−z∗3 −z∗3 j z∗1 + z∗1 j
−z∗3 j −z∗3 z∗2 + z∗2 j

. (11)

Proof. We start with a rectangular COD of maximal rate 3/4 given by

U =


z1 z2 z3
−z∗2 z∗1 0
−z∗3 0 z∗1

0 −z∗3 z∗2

, (12)

and construct an equivalent COD V based on the same principle of permutation of columns
such that UHV is symmetric which can be verified easily. Such an equivalent COD is

V =


z2 z1 z3
z∗1 −z∗2 0
0 −z∗3 z∗1
−z∗3 0 z∗2

. (13)

Consequently, we obtain a QOD for three dual-polarized antennas of rate 3/4 given
by U + Vj = Q4.

To complete the discussion, we include one QOD which is suitable for 4 dual-polarized
antennas and is obtained using Liang’s approach. This will be compared with the QODs
based on recursive approach for the same number of antennas.

Q5 =



z1 z1 j z2 + z3 j z3 + z2 j
z1 j z1 z4 + z5 j z5 + z4 j

−z∗2 − z∗4 j −z∗4 − z∗2 j z∗1 z∗1 j
−z∗3 − z∗5 j −z∗5 − z∗3 j z∗1 j z∗1
−z4 + z2 j z2 − z4 j z6 j z6
−z∗6 j −z∗6 −z∗3 + z∗2 j z∗2 − z∗3 j

−z5 + z3 j z3 − z5 j −z6 −z6 j
z∗6 z∗6 j −z∗5 + z∗4 j z∗4 − z∗5 j


. (14)



Appl. Sci. 2021, 11, 3131 8 of 15

Lastly, we construct a QOD for 5 dual-polarized antennas.

Lemma 2. A maximal rateRQ = 2/3 QOD for 5 dual-polarized antennas is given by

Q6 =



z1 z1 j z2 + z3 j z3 + z2 j z4 + z4 j
z1 j z1 z5 + z6 j z6 + z5 j z7 + z7 j

−z∗2 − z∗5 j −z∗5 − z∗2 j z∗1 z∗1 j 0
−z∗3 − z∗6 j −z∗6 − z∗3 j z∗1 j z∗1 0
−z∗4 − z∗7 j −z∗7 − z∗4 j 0 0 z∗1 + z∗1 j
−z5 + z2 j z2 − z5 j z8 j z8 z9 + z9 j
−z∗8 j −z∗8 −z∗3 + z∗2 j z∗2 − z∗3 j 0
−z∗9 j −z∗9 −z∗4 −z∗4 j z∗2 + z∗2 j

−z6 + z3 j z3 − z6 j −z8 −z8 j z10 + z10 j
−z∗10 j −z∗10 −z∗4 j −z∗4 z∗3 + z∗3 j
−z7 + z4 j z4 − z7 j −z9 − z10 j −z10 − z9 j 0

z∗8 z∗8 j −z∗6 + z∗5 j z∗5 − z∗6 j 0
z∗9 z∗9 j −z∗7 −z∗7 j z∗5 + z∗5 j
z∗10 z∗10 j −z∗7 j −z∗7 z∗6 + z∗6 j
0 0 z∗10 − z∗9 j −z∗9 + z∗10 j z∗8 + z∗8 j



. (15)

Proof. The proof of this lemma is similar to the Lemma 1, however, in this case the
underlying COD U is given in Equation (100) in [3].

Following the same lines, it is easy to construct QODs for higher number of trans-
mit antennas nT = 6, 7, 8, . . . starting with the CODs given in [3] (Equation (101) and
Appendices C and D, respectively).

3. Comparative Analysis of the Construction Techniques
3.1. Code Rates

An important result, which gives us bounds on the upper limits of code rates of above
QODs can be proved easily. For instance, the underlying CODs which we employ in the
construction of such codes have upper bounds (Theorem 5 and Theorem 6 in [3]), therefore,
result below follows immediately.

Theorem 5. (a) For an even number of transmit dual-polarized antennas, the highest possible rate
of QODs arising from rectangular CODs is bounded above by

RQ ≤
n + 2

2n
. (16)

(b) For an odd number of transmit dual-polarized antennas, the highest possible rate of QODs
arising from rectangular CODs is bounded above by

RQ ≤
n + 3

2n + 2
. (17)

Note that there is substantial difference between the code rates of QODs obtained from
the above approach, denoted by RQ, and those which are based on recursive techniques
represented with rQ. Below figure clearly describes that as the number of dual-polarized
transmit antennas increases the code rate rQ sharply declines. Quite contrary, the code
rates RQ of QODs based on Liang’s approach remain stable. In Figure 2, we compare the
code rate curves from both approaches where red curve represent the code rate rQ of QODs
based on recursive methods and code rates RQ of QODs based on Liang’s approach are
depicted with green curve. Regardless of the number of transmit antennas, we can always
obtain a QOD with code rate higher than or equal to 0.5, as is clear from Figure 2. So we
obtain a robust approach of developing QODs based on Liang’s mechanism.
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Figure 2. The code rate RQ of QODs based on new approach remains stable around 0.5.

3.2. Coding & Decoding Delays

In order to optimize throughput, it is essential to have codes with optimal coding
delay and QODs have an advantage of it. The decoding delay, denoted here as ξ, is an
important performance measure for STBCs. Essentially, the decoding delay signifies the
total number of time slots a receiver has to wait to receive a complete block of code before
starting the decoding process. This implies that higher order code matrices require larger
decoding delays. The performance of different STBCs schemes, that is, symmetric-paired
designs 2.1, 2.2, 2.3 and Liang’s approach 2.4 are compared. We enlist values of ξ for
codes in case of 3, 4 and 5 dual-polarized antenna arrangements in Table 1. In the table,
Nt denotes the number of dual-polarized transmit antennas. From the table, it is seen
that for 3 and 5 dual-polarized antenna systems there is no QOD obtainable from iterative
techniques which we represent with ∗.

Table 1. Decoding Delays.

Code Designs Nt = 3 Nt = 4 Nt = 5

Design 2.1 ∗ ξ = 2 ∗
Design 2.2 ∗ ξ = 4 ∗
Design 2.3 ∗ ξ = 4 ∗
Design 2.4 ξ = 4 ξ = 8 ξ = 15

4. Quaternionic Channel Model

The simultaneous transmission from both ends of a dual-polarized antenna can be
regarded as a hyper signal which consists of two complex numbers in two orthogonal
polarizations. It propagates through space and received as a hyper signal by the dual-
polarized antenna at the receiver end in a given time slot. This hyper signal can be
represented as a quaternion [5] which gives us a reason to develop system model in the
quaternion domain. An important component of the system model is the channel which
we assume to be quaternionic following the line of approach followed in [18]. Therein,
we observe that the product in the quaternion domain holds a key of consistent and
viable model.
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We first consider a two-input and single-output system (TISO) of dual-polarized
antennas. It is necessary to emphasize the role of quaternions which is more recognizable
in this case, therefore, we have

R =

[
r1
r2

]
=

[
q1 q2
q3 q4

][
h1
h2

]
+

[
n1
n2

]
, (18)

where each element in the above construction is a quaternion. Through each antenna in the
above TISO system, the transmission of a pair of two complex symbols is encoded in q1 and
another pair in q3. This indicates that the above QOD exploits time and space diversities
along with polarization diversity. It is worth pointing out that each quaternionic product,
for example, qahb contains a crucial information about the nature of quaternion domain.
If we decompose it for a general quaternionic product then we obtain qa1hb1 − qa2hb2 +
j(qa1hb2 + qa2hb1), where qa = qa1 + jqa2 and hb = hb1 + jhb2. Therefore, we will obtain
four complex channel gains for each antenna in a 2× 1 system. Note that we have four
complex channel gains between a TISO system of dual-polarized antennas. As this system
is equivalent to a MIMO 4× 2 system of single-polarized antennas, therefore, it may appear
that it should have eight channel gains in total with two for each link. However, in our
proposed model each quaternionic product results in the same number of channel gains.

Subsequently, a system model for a MIMO system of dual-polarized antennas can be
constructed in the same way for such a system with Nt × Nrdual-polarized antennas

RT×Nr = QT×Nt HNt×Nr + NT×Nr , (19)

which transmits symbols in T−times slots, which are assumed to be points in the quadra-
ture phase shift keying (QPSK) constellation. The channel matrix is H = [hρσ], where
ρ = 1, 2, . . . , Nt and σ = 1, 2, . . . , Nr. The channel is assumed to represent a flat fading chan-
nel and the path gain from ρ transmit dual-polarized antenna to receive dual-polarized an-
tenna σ given by a quaternion hρσ = hρσ1 + hρσ2 j. The complex channel gains, hρσ1 and hρσ2
incorporate the effects of cross polar scattering and each element of channel gain matrix is a
complex Gaussian random variable (RV) with zero mean and unit variance. Moreover, the
noise N = [nTσ]

T , and nTσ = nTσ1 + nTσ2 j, such that nTσ1, nTσ2 ∀ σ = {1, 2, . . . , Nr}, repre-
sent the entries of white noise as two dimensional independent and identically distributed
(i.i.d.) complex Gaussian RVs with zero mean and identical variance per dimension.

Linear and Decoupled ML Decoder

Based on the system model given in (19), the following theorem confirms a linear
decoupled solution at the receiver for all QODs constructed in Section 2. It was previously
proved for non-iterative QODs in [18] but we now confirm its validity for all QODs obtained
in Section 2.

Theorem 6. For a given system model in (19), the ML-decoding rule assumes a linear decou-
pled form

min
z
||R−QH||2 =min

z

(
tr(RQR) + λtr

(
HQH

)
− 2<

(
tr
(
RQQH

)))
. (20)

The main contributing factor in the above rule is <
(
tr
(
RQQH

))
, which needs to be

minimized for any transmitted symbol encoded as a quaternion in a given time slot. The
appearance of Q indicates the linearity of the decoder as well as the computational load at
the receiver is reduced significantly.

As an illustration of the above result, we choose QODs given in (4) and (6) and
demonstrate that the above ML-decoding rule is both linear and decoupled. For remaining
QODs Q3, Q4, Q5 and Q6 in (9), (11), (14), (15) respectively, a similar decoding result can
be obtained easily.
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Corollary 1. The ML-decoding rule (20) for QOD given in (11), reduces to the real part of

− 2 min
z1

(rQ
1 z1(h1 + jh2) + rQ

2 z∗1(jh1 + h2) + rQ
3 z∗1(1 + j)h3) ,

− 2 min
z2

(rQ
1 z2(jh1 + h2)− rQ

2 z∗2(h1 + jh2) + rQ
4 z∗2(1 + j)h3) ,

− 2 min
z3

(rQ
1 z3(1 + j)h3 − rQ

3 z∗3(h1 + jh2)− rQ
4 z∗3(jh1 + h2)) , (21)

where R = [r1 r2 r3 r4]
T , is a received quaternion vector and h1 = h11 + h12 j, h2 = h21 + h22 j

and h3 = h31 + h32 j.

We now broaden our discussion to include designs, which have significantly higher
code rates than those obtained from the approaches discussed in this paper. In order to
do that we need to compromise on orthogonality in which case it is not possible to have
decoupled linear decoder like (20). It turns out that such quasi designs have other features
to offer. Subsequently, we construct these quasi QODs by extending the standard approach
as developed for the complex domain [16].

5. Quasi Quaternion Orthogonal Designs

Unlike the complex domain, for two dual-polarized antennas there exists a QOD of
rate 2 and was shown to attain a decoupled decoder [18]. We employ it

P1 =

[
z1 + z2 j z3 + z4 j
z∗2 − z∗1 j −z∗4 + z∗3 j

]
, (22)

to construct a higher rate quasi QOD Qquasi as follows. By considering an identical code
matrix with different symbols

P2 =

[
z5 + z6 j z7 + z8 j
z∗6 − z∗5 j −z∗8 + z∗7 j

]
, (23)

following the same line of approach as used for quasi CODs [16], we obtain a quasi QOD

Qquasi =

[
P1 P2

−PQ
2 PQ

1

]
. (24)

Resultantly, we obtain a quasi QOD to be used in the configuration of 4 dual-polarized
antennas capable of sending 8 complex symbols in four time slots yielding a code rate of 2,
given by

Qquasi =


z1 + z2 j z3 + z4 j z5 + z6 j z7 + z8 j
z∗2 − z∗1 j −z∗4 + z∗3 j z∗6 − z∗5 j −z∗8 + z∗7 j
−z∗5 − z6 j −z6 + z∗5 j z∗1 + z2 j z2 − z∗1 j
−z∗7 − z8 j z8 − z∗7 j z∗3 + z4 j −z4 + z∗3 j

. (25)

The above code Qquasi does not satisfy the main quaternion orthogonality condition as

QQ
quasiQquasi 6= λI4×4, (26)

where λ = ||z1||2 + ||z2||2 + ||z3||2 + ||z4||2 + ||z5||2 + ||z6||2 + ||z7||2 + ||z8||2. However,
the simulation curve for the above code is obtained in the next section.

6. Simulation and Results

To evaluate the performance and diversity gains, we employ QODs, that is, Q1 −Q6,
corresponding to single and dual-polarized receive antenna configurations. We obtain their
bit-error-rate (BER) curves against signal-to-noise (SNR) ratios. For simulations, quadrature
phase shift keying is used. The receivers are aware of the channel coefficients and uniform
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white noise is added in each polarization. We have utilized the basic concepts of pure
quaternion algebra, the matrix computations and complex domain calculations to optimize
the overall system model in MATLAB.

The codes constructed using the Liang based construction technique provides a lower
number of complex receivers. For the codes Q1−Q6, in Figure 3, it is clear that these codes
have linear and decoupled decoding at the receiving end due to the use of the specific
construction technique using the dual-polarized antennas and the quaternionic channel
model. This has been possible due to the quaternionic channel exploiting the polarization
diversity independently using the polar as well as cross-polar scattering between the dual-
polarized antennas. The codes Q1, Q2, Q3 and Q5 are transmitted using four dual-polarized
antennas at the transmitting end and have the code rates of 3

2 , 1
2 , 3

4 and 3
4 , respectively.

These codes seem to show similar curves but they differ in their intrinsic behaviors based
on the number of timeslots used and the symbols transmitted per timeslot. The codes
Q2 and Q3 show similar performance as Q1, but they will experience the issue of peak-
to-average power ratio (PAPR), where switching on and off of one of the dual-polarized
antenna in every timeslot is a tradeoff. Also, Q5 shows competitive response in comparison
to Q1 by transmitting double the number of complex symbols in every timeslot, however,
this has been achieved at a compromise on the increased number of timeslots used in Q5.
Thus, it takes longer time to decode the complete code block in case of Q5 with increased
number of complex symbols when compared to Q1, where the receiver is able to decode
the original information faster from the received code block. While, the codes Q4 and Q6
use three and four dual-polarized antennas in transmission which have codes rate 3

4 and 2
3 ,

respectively. These codes demonstrate that the proposed scheme is successful with odd
number of transmit dual-polarized antennas also. Code Q6 is a unique presentation of
pure quaternion code designs that favors the utility of this approach in massive MIMO
systems in future wireless communication systems. We can see that the proposed code
construction technique has no restrictions on the number of transmit and receive antennas.
This is demonstrated in the Figure 3 where both even and odd number of dual-polarized
antennas are used to transmit the codes.
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Figure 3. BER vs. SNR performance of Q1, Q2, Q3, Q4, Q5 & Q6 for single receive dual-polarized
antenna.

The effects of increasing the receiver diversity are visible in the Figure 4. It clearly
shows that the receiver diversity has positive impact on the diversity gains. Use of the
quaternionic channel exploits the polarization diversity and promises decoupled decoder
for any number of receive dual-polarized antennas. In comparison to the work done int he
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past, the proposed design does not compromise the code rates when the number of transmit
antennas are increased. Such an increase in the code rates with higher diversity gains
are the requirements of the future MIMO systems to support greater channel utilization
and efficiency. The freedom of the number of receive antennas that can be utilized by
the QODs during their transmission from a quaternionic channel-based system has been
further emphasized in the Figure 5. The code Q4 shows increasing diversity gains as the
number of receive dual-polarized antennas are increased at the receiving end.
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Figure 4. BER vs. SNR performance of Q1, Q2, Q3, Q4, Q5 & Q6 for two receive dual-polarized
antenna.
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Figure 5. BER vs. SNR performance of Q4 for one, two and three receive dual-polarized antenna.

The computational complexity of the proposed decoder used for the codes in the
Figures 3–5 promises linear and decoupled decoding at the receiver. The decoder remains
independent of the number of unique transmitted symbols, that is, ζ. This has a huge
impact in simplifying the complexity of the receiver in terms of the calculations to be
performed. In case of the coupled decoder, the receiver complexity remains dependent
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on the number of unique transmitted symbols and has an exponential relationship with it.
Considering N transmit antennas and T time slots used to transmit a single block of code,
the computational complexity of the coupled decoder is O(4ζ(N)(T)(2)). However, this
reduces significantly in the case of the proposed decoder design, where the computation
complexity reduces to O(4(N)(T)(2)).

The decoupled decoding of the quasi-orthogonal codes has been a research problem
as this compromises the coding rate for increased number of transmit antennas. A unique
construction technique has been presented to form quasi QODs with higher code rates.
For the antenna configuration of four transmit single receive dual-polarized antennas, the
quasi QOD presented in (25) has a compromised receiver complexity but promises higher
gains in comparison to the coupled traditional ML-based decoder designs as is clear from
the Figure 6.
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Figure 6. BER vs. SNR performance of Qquasi for one receive dual-polarized antenna.

7. Conclusions

Quaternion orthogonal designs with dual-polarized antennas have been studied to
provide higher diversity gains and code rates. This paper presents the construction of
QODs based on the Liang approach using the dual-polarized antennas and the quaternionic
channel model. The unique method of constructing QODs provides linear and decoupled
decoding at the receiving side where the computational complexity of the decoder remains
independent of the number of unique transmitted symbols. Also, construction technique of
quasi-QODs has been presented where the code rate is not compromised at higher number
of transmit antennas. In future, these designs can be investigated for optimizing the receiver
complexity further considering their suitability for future wireless communication systems.
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Abbreviations
The following abbreviations are used in this manuscript:

H Horizontal
V Vertical
STBC Space Time Block Codes
COD Complex orthogonal designs
QOD Quaternion orthogonal designs
3G Third generation
5G Fifth generation
MIMO Multiple-input multiple-output
SISO Single-input single-output
TISO Two-input single-output
LAN Local Area Network
MISO Multiple-input single-output
OSTPBC Orthogonal space time polarization block code
QPSK Quadrature phase shift keying
PAPR Peak-to-average power ratio
FLOPs Floating point operations
BER Bit error rate
SNR Signal-to-noise ratio
ML Maximum Likelihood
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