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Abstract: Power transformers are located in the electrical transmission and distribution networks
where different voltage levels are needed. The turn ratio of the low voltage and high voltage
windings is mechanically controlled by an on-load tap changer or de-energized tap changer. As
the tap changer is the transformer’s only moving part, it is highly susceptible to mechanical failure
and aging degradation. While some diagnostic tools have been used to determine the mechanical
condition of tap changer contacts, not much attention was given to use the frequency response
analysis to diagnose the transformer’s tap changers’ mechanical integrity. This paper is taking one
step forward into maturing the application of the frequency response analysis (FRA) technique to
detect transformer tap changer faults. In this regard, two common tap changer faults are created, and
experimental testing for four FRA test configurations is conducted. For a better understanding of the
tap changer fault mechanism, an electrical equivalent circuit model is proposed and designed using
Simulink. The simulation and implementation of the equivalent circuits using MATLAB\R2018a.

Keywords: power transformer; tap changer; coking; pitting; frequency response analysis

1. Introduction

Power transformers are vital components in electricity grids and should be maintained
in healthy conditions along with their entire operational life. As such several transformer
condition monitoring and fault diagnosis techniques have been developed to identify the
transformer health condition criticality and its remnant life [1–3]. The tap changer is used
in power transformers to adjust the turn’s ratio of its windings in order to maintain the
voltage at one side at the desired level. This process can be done online through an on-load
tap changer (OLTC) or offline using a de-energized tap changer (DETC) [4,5].

The OLTC is an electromechanical system mounted on the transformer to monitor
the variable load voltage levels without blocking the load current, while the DETC should
shut down the load current before changing the tap manually. This mechanical system
is the only moving part in the power transformer and is considered an essential and
costly component. The tap changer contacts must be strong enough to withstand regular
movement, friction, and mechanical stresses. The tap changer contacts must remain
functioning over the transformer’s operational lifetime since tap changer replacement is
very costly and time-consuming. Around 40–56% of all transformer failures are caused by
a tap changer malfunction [6–8]. Tap changer failures may be due to the aging effect due to
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the electrical, mechanical, thermal, and chemical stresses. The tap changer failure modes
comprise of mechanical wear and coking of the contact.

The mechanical stability of the transformer tap changer over its lifetime needs to be
assured. There are different tap changer diagnostic methods to assess the tap changer’s
stability condition that can be classified into oil and insulation analysis, tap changer contact
analysis, and mechanical analysis [9]. However, these methods comprise some drawbacks.
For instance, dissolved gas analysis (DGA) cannot identify the tap changer damage’s exact
location. The dynamic resistance measurement (DRM) method can be used to check the
tap changer contacts’ condition. In this method, a DC power supply is utilized to inject a
test voltage into the transformer winding. The vibroacoustic analysis is a new tap changer
diagnostic technique that investigates the vibroacoustic waveform transmitted from the
tap changer via the structural components to diagnose different tap changer problems [10].

While the frequency response analysis (FRA) technique has been widely used to detect
the mechanical deformations of transformer windings and core, not much attention was
given to use it for tap changer diagnosis [11,12]. In [13], FRA is used to check its sensitivity
to tap changer coking fault. However, the impact of changing the tap position on the FRA
signature is investigated. Fundamental analysis for the effect of tap changer coking and
pitting on the FRA signature is presented in [14].

Previously, the FRA method is applied for the diagnosis of the transformer core and
winding faults. Due to few studies on using the FRA method for tap changer damage
detection, this paper presents a further sensitivity analysis of the FRA signature to the
transformer tap changer’s physical faults. This study implemented faults that include
tap changer contacts coking and pitting. The impact of such faults on the FRA signature
is investigated through experimental and simulation analyses. Furthermore, the feasibil-
ity of using FRA to simultaneously detect winding deformation and tap changer faults
is investigated.

The following sections of this work are organized as follows: Section 2 presents the
experimental setup, FRA open circuit measurements are introduced in Section 3, FRA
short circuit test is expressed in Section 4, capacitive and inductive interwinding tests are
presented in Sections 5 and 6 respectively, and final conclusions and recommendations are
introduced in Section 7.

2. Experimental Setup

Experimental testing has been conducted on a three-phase 50 Hz, 11/0.415 kV, 500 kVA
distribution transformer with a de-energized tap changer. The transformer, windings, and
the tap changer configurations are shown in Figure 1 and Table 1. For example, tap 4 and
5 represent Tap1, which selects the whole winding, while Tap5 connects 2 and 7, which
only selects the lowest number of turns in the winding.

Table 1. The 11/0.415 kV 500 kVA transformer tap changer configurations.

Tap No. Input Voltage (kV) Connected Terminals in Figure 1b

Tap 1 11.550 4, 5
Tap 2 11.275 5, 3
Tap 3 11.000 3, 6
Tap 4 10.725 6, 2
Tap 5 10.450 2, 7
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Figure 1. (a) The 11/0.415 kV, 500 kVA distribution transformer and (b) winding configuration.

For the tap changer faults simulation, an arcing switch was represented by
22.5 mm × 30 mm bare copper tape. This conductor was exposed to specific failure modes
with real stipulating mechanisms that took place within DETC contacts. Two failure modes,
namely, coking and pitting, were applied in the experiment. The FRA was then conducted
on the faulty tap changer condition and the tap changer during normal conditions to
facilitate comparative analysis. The two implemented faults are elaborated below.

2.1. Coking Formulation

Oil-immersed tap changer is usually subjected to coking process due to the formation
of carbonaceous deposits. In a transformer, this process occurs when carbon is extracted
from the surrounding transformer oil and deposited on the tap changer contacts due to
the heating process during tap position change [15–18]. In this paper, this process was
achieved by heating the tap changer contacts to a high-temperature level. The tap changer
was immersed in transformer oil over a certain period to form a stipulating condition
like practical conditions. Once a carbonaceous deposit film was observed on the contact,
experimental FRA measurement was conducted. The polymerized thin oil film reduced
the conductivity of the tap changer contact due to its high insulation resistance, which
can be detected by FRA. By increasing the thermal stress, more carbonaceous layers will
be deposited on the contacts and resulting in higher insulation resistance, as shown in
Figure 2.
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Figure 2. Tap contacts coking (a) 50% and (b) 100%.

2.2. Pitting Formation

Pitting corrosion is formed as cavities in metal materials such as copper. This type of
fault is considered to be more harmful and is hard to diagnose [19]. In this paper, pitting of
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different levels on the copper surface was achieved using mechanical tools. The resultant
copper tape with 50% and 100% pitting was as illustrated in Figure 3.
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Figure 3. Tap surface pitting (a) 50% and (b) 100%.

3. FRA Open Circuit Measurement

End to end open circuit FRA measurement was performed using a commercial fre-
quency response analyzer by injecting 20 V input voltage signal (Vi) of low amplitude and
variable frequency to one terminal of the HV winding and measuring the output voltage
(Vo) at the other end of the same winding while all LV windings are left open [7]. The FRA
signature was plotted at all tap positions as the winding transfer function (Vo/Vi) in dB, as
shown in Figure 4.
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According to [20], the FRA technique can be developed based on the fact that trans-
former components can be presented by a complex network of a distributed resistance
R, inductance L, capacitance C, and conductance G parameters. In [21,22], the equivalent
circuit of the transformer considered the series and paralleled resistance, inductance, and
capacitance RLC elements are presented, as shown in Figure 5. Where n is the number of
disc. In this study, a new simplified circuit model was proposed to simulate the measured
transformer FRA. Hence, the proposed lumped RLC circuit model in Figure 6 represented
the transformer in a normal tap changer at the end-to-end open circuit measurement. The
Rs and Ls, refers to series resistance and inductance, and Cp is the primary capacitance.
Each wire resistance R and reference resistance Rref were 50 Ω.
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The parameters of the transformer equivalent circuit shown in Figure 6 obtained
through finite element analysis simulation to the investigated transformer using its physical
dimensions, insulation properties, and winding topology as detailed in [23–25]. These
parameters are given in Table 2.

Table 2. RLC circuit parameters for the tap changer at different positions for the FRA open circuit test.

Tap Position L (µH) Rs Ω Ls (µH) Cp (pF)

Tap 4–5 5.00 1 100 100
Tap 5–3 4.75 1.5 110 95
Tap 3–6 4.50 1.10 120 90
Tap 6–2 4.25 1.15 130 85
Tap 2–7 4.00 1.20 140 80

Figure 4 shows that FRA signatures for all tap settings in normal tap conditions had
a similar trend with the same resonance frequencies but slight changes in the transfer
function’s magnitude. The leakage and magnetizing inductances of the core affected
the FRA at low frequency (below 2 kHz), which begins with the decreasing magnitude
of −20 dB/decade under normal tap changer contacts. At the mid-frequency range,
resonances appeared intermittently due to parasitic capacitances and inductances of the
transformer. At higher frequencies above 1 MHz, the transformer structure affected the
signature. The connection leads and measurement setups were taken into this high-
frequency range.
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The FRA of the proposed lumped RLC model was plotted at the same tap positions by
changing the RLC values shown in Figure 7, which shows a similar profile to the measured
signatures shown in Figure 5. The slight change in the transfer function magnitude from a
tap position to another was attributed to the change in the equivalent electrical parameters.
However, the location of resonance frequencies was not changing.
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3.1. Measured and Simulated FRA Signature for Normal vs. Coking Taps

Figure 8 shows the measured FRA signature for 50% and 100% tap contacts coking
along with the normal condition FRA signature. It can be seen that there was a dramatic
reduction in the FRA signature due to the tap changer coking contact at the low-frequency
region, 20 Hz to 2 kHz. This effect was attributed to the increase in the tap resistance due
to coking, as explained above. This effect could be simulated by changing the equivalent
circuit parameters, as shown in Table 3. The parameters were obtained through finite
element analysis simulation to the investigated transformer using its physical dimensions,
insulation properties, and winding topology as detailed in [23–25]. The measured and
simulated FRA signatures are plotted as shown in Figures 8 and 9, which revealed a similar
trend for both. Thus, the RLC model could better understand the effect of tap changer
faults on the FRA signature. It can be seen that, while the series resistance was significantly
increasing due to coking, the capacitive and inductive components were almost constant,
as shown in Table 3. This explains the signature magnitude changes, particularly in the
low-frequency range without an observable change in the resonance frequencies. A slight
variation can be observed by comparing coking at different levels of degradation severity
(50% and 100% coking) (Figure 8). This variation at the low-frequency range was due to
increased resistance of the contacts with more deposited oil film layers. However, at the
high frequencies range, the winding structure influenced the frequency response and made
a rising trend in the signature due to the winding structure’s high capacitance.

Table 3. Simulated RLC model parametric values for normal and coking.

Condition L (µH) Ls (µH) Rs Ω Cp (pF)

Normal 5 1 1 0.593
Coking 50% 5 0.909 100 0.538

Coking 100% 5 0.909 110 0.538
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Figure 9. Simulated FRA for normal, vs. 50% and 100% coking.

3.2. Measured and Simulated FRA for Normal vs. Pitting

Naturally, pitting or contact wear occurs due to the mechanical stress on the con-
tact’s surface during load transfers. This degradation affected the normal tap changer
accompanied by coking. Unlike other defects, pitting on the arcing switch contact surface
seemed to have no significant impact on the FRA measurements. Since pitting reduces the
contact surface area, it results in increased resistance [11], although other research findings
show a reduction in the resistance value using the dynamic resistance measurement [9,12].
Pitting probably occurs due to the copper conductor’s compaction of chemical properties,
which causes more free electrons to flow in the conductor, thus increasing the conductivity.
However, a further investigation is required to evaluate the cause of resistance reduction
in pitting conditions. The measured and simulated FRA signatures due to pitting are
presented in Figures 10 and 11, respectively. A simulated FRA signature during pitting
condition was obtained using the circuit parameters listed in Table 4.
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Figure 10. Measured FRA for normal, vs. 50% and 100% pitting.
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Figure 11. Simulated FRA for normal, vs. 50% pitting and 100% pitting.

Table 4. Values of a simulated circuit model for pitting.

Condition L (µH) Ls (µH) Rs Ω Cp (pF)

Normal 500 0.001 1 0.512
Pitting 50% 500 0.002 909.1 0.464
Pitting 100% 500 0.003 833.3 0.464

Results in Figures 10 and 11 show a slight variation in the FRA signature due to contact
pitting. At the low-frequency region and due to pitting, the FRA signature tended to shift
upward when compared with the normal condition due to the reduction in resistance and
inductance values. At the mid and high frequency ranges, the FRA response tended to shift
downward due to a decrease in the capacitance value. According to the degree of severity,
it can be shown that at 100% pitting, the signature exhibited a higher shift than the 50%
pitting, which was attributed to their effects on the resistive and capacitive components.
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4. FRA Short Circuit Test

This test was conducted similar to the above case study but with the low voltage
windings shorted together to eliminate the effect of the magnetizing inductance of the
magnetic core. This configuration can be modeled using the equivalent circuit shown in
Figure 12 with the parameters listed in Table 5 [7]. The proposed lumped RLC circuit
model represented the transformer at normal, coking, and pitting at the end-to-end short
circuit measurement.
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Figure 12. The RLC circuit model for the tap changer under the FRA short circuit test.

Table 5. Values of simulated short circuit model parameters.

Condition Lp (mH) Cp (pF) Rs Ω Ls (mH) Cs (nF)

Normal 1 0.10 1 100 1.12
Pitting 1 0.10 1000 100 1.12
Coking 1 0.83 1000 50 1.01

The measured and simulated FRA signatures for this configuration under coking and
pitting conditions of different levels are shown in Figures 13 and 14, respectively. For the
normal signature, the resonance frequencies were shifted toward a higher range due to
the absence of a transformer core effect. The low and mid frequency regions’ response
was dominated by the leakage inductance and was characterized by a negative slope. At
higher frequencies, the transformer was considered purely capacitive, and the response
was approximately similar for the investigated cases shown in both figures.

Figures 13 and 14 revealed a significant effect of the tap changer contact coking on
the FRA signature in the low and mid-frequency ranges. This effect occurred due to the
increment of transformer leakage inductance and the reduction in the winding resistance.
Additionally, the resonance frequency was shifted towards higher frequencies due to the
decrease in the magnetizing impedance. On the other hand, pitting shows no variation
in the FRA signature at low frequencies. However, a hardly observable deviation in the
FRA curve occurred at higher frequencies because of the slight reduction in the series and
ground capacitances with no deviation in the resonance frequency.
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Figure 13. Measured FRA for normal, vs. 100% coking and 100% pitting.
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Figure 14. Simulated FRA for normal, vs. 100% coking and 100% pitting.

5. Capacitive Interwinding Test

In the capacitive interwinding test, the input signal was injected at one terminal of
the high voltage winding, and the response was measured at the end of the low voltage
winding on the same phase, while the terminals of other windings were kept floating [7].
Measured response is shown in Figure 15. The simulated FRA responses, obtained using
the circuit model shown in Figure 16. The proposed simplified capacitive lumped RLC
circuit model represented the transformer at normal, coking, pitting at the capacitive
interwinding measurement. This configuration measured and simulated responses are
presented in Figures 15 and 17. In Figure 15, the frequency response was highly capacitive,
revealed by the increment of magnitude due to the very high impedance, which results
in a plot beginning at a low dB value. There was a significant difference in the frequency
response at low frequencies, particularly from 20 to 1 kHz. The coking caused an increase
in the contact’s impedance, which results in the plot beginning at very low dB. This gradual
increase exhibited the dominant influence of the inter-winding capacitance of the power
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transformer. The model of the transformer was used in conjunction with the analysis of
interwinding capacitances. There was a good agreement between simulated and measured
FRA signatures. Results show that coking affected the response at the low-frequency
range by reducing its magnitude while the effect of pitting was not visibly observed. The
resistance and inductance of tap contacts show no significant impact on the response due
to the domination of the interwinding capacitance that is listed in Table 6.
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Figure 15. Measured capacitive interwinding FRA for normal vs. 100% coking and 100% pitting tap conditions.
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Figure 16. Capacitive interwinding test configuration.
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Table 6. Capacitive intertwining value of different conditions.

Condition Interwinding Capacitance (µF)

Normal 0.05
Pitting 0.0495
Coking 0.0381

6. Inductive Interwinding Test

In the inductive interwinding test, the input signal was applied at one terminal of the
HV winding, and the output signal was measured at the terminal of the LV winding of the
same phase [7]. The proposed simplified inductive lumped RLC circuit model represented
the transformer at normal, coking, pitting at the inductive interwinding measurement. The
circuit model is shown in Figure 18 with parameters listed in Table 7. The other HV and LV
terminals are connected to the ground. The FRA plots for normal and faulty tap conditions
are presented in Figure 19.
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Table 7. Values of simulated short circuit model parameters.

Condition Lp (mH) Cp (µF) Rs Ω Cs (µF)

Normal 1 1 2 2000
Pitting 1 1.5 2380 0.0202
Coking 1 1.27 2380 0.0263
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Figure 19. Measured FRA for normal, 100% coking, and 100% pitting.
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In normal conditions, the FRA signature starts with a constant magnitude due to the
absence of the mutual inductances. The winding structure influences the region between
100 kHz and 1 MHz, in which the response was affected by leakage inductance together
with the winding series and ground capacitances. In this region, the series capacitance
is the most influential factor in determining the response’s shape as a generic rising
amplitude with few resonance frequencies, while the connection leads effect occurred at
higher frequencies (>1 MHz). The FRA signatures obtained from the simulation model for
different tap changer conditions are shown in Figure 20.
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Figure 20. Simulated FRA for normal, vs. 100% coking and 100% pitting.

Like the measured FRA signatures, Figure 20 indicates a significant reduction in the
transfer function’s amplitude in the frequency range 20 Hz to 3 kHz for both types of
faults. For both faults, the slight increase in the resistance contributes to reducing FRA
signature toward negative magnitude. However, there is a drastic decrease in transformer
capacitance, which causes the frequency slope to shift towards low magnitudes in the
low-frequency region. There was also a slight shift in the frequency response toward the
low frequencies, as shown in the inset plot in Figure 20. This shift occurred due to the
increase in transformer shunt capacitance.

7. Conclusions

In this paper, an attempt was made to evaluate the effect of degraded tap changer
contacts on the transformer FRA signature. Obtained experimental and simulation results
revealed the feasibility of using FRA measurement to identify various contact faults such as
coking and pitting. While coking had an observable effect on the FRA signatures obtained
using different measurement configurations, the impact of pitting fault was only visually
observed in the inductive interwinding configuration. The effects of these faults on the
FRA signatures were explained through the proposed RLC equivalent circuit model. The
shift of the signature in the low-frequency range due to contact faults could be used as
an indicator for the detection of degraded tap contacts, and the amount of change could
be correlated to the severity of fault level. Results also show that open circuit, short
circuit, and inductive interwinding give some FRA variations due to both faults at the
low frequency range, while capacitive interwinding was not effective to evacuate the tap
contacts degradations, especially for affected contacts due to sliding mechanical stress
(pitting). The inductive interwinding test configuration is a more useful test configuration
for diagnosing transformer tap contact degradation, including pitting, which is hardly
observable in other connection setups.
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