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Abstract: This study focuses on calibration and test campaigns of an IoT camera-based sensor sys-
tem to monitor occupancy, as part of an ongoing research project aiming at defining a Building 
Management System (BMS) for facility management based on an occupancy-oriented Digital Twin 
(DT). The research project aims to facilitate the optimization of building operational stage through 
advanced monitoring techniques and data analytics. The quality of collected data, which are the 
input for analyses and simulations on the DT virtual entity, is critical to ensure the quality of the 
results. Therefore, calibration and test campaigns are essential to ensure data quality and efficiency 
of the IoT sensor system. The paper describes the general methodology for the BMS definition, and 
method and results of first stages of the research. The preliminary analyses included Indicative 
Post-Occupancy Evaluations (POEs) supported by Building Information Modelling (BIM) to opti-
mize sensor system planning. Test campaign are then performed to evaluate collected data quality 
and system efficiency. The method was applied on a Department of Politecnico di Milano. The pe-
riod of the year in which tests are performed was critical for lighting conditions. In addition, spac-
es’ geometric features and user behavior caused major issues and faults in the system. 

Keywords: Building Management System; Digital Twin; Post-Occupancy Evaluations; facility 
management; asset management 
 

1. Introduction 
The operation and maintenance (O&M) phase of buildings and civil infrastructures 

ranges between 20–30 years for buildings, but it can cover more than 50 years of the 
whole lifecycle [1]. It is essential to ensure an actual and efficient management of build-
ings during the O&M phase. Occupancy and actual use of spaces strongly affect the or-
ganizational effectiveness and functioning during the operational phase [2,3]. Typically, 
standardized and fixed values of occupancy are considered during design phases, e.g., 
maximum occupancy values from fire regulations or scheduled occupancy for energy 
models [4]. Consequently, actual occupancy and space use levels may significantly vary 
from and rarely correspond to the values considered during the design phase. Occu-
pancy strongly influences use and cleanness of spaces, which in turn are related to 
well-being, satisfaction, and productivity of users [5,6]. In recent years, a consistent 
number of studies investigated the segment of the performance gap between expected 
energy consumptions, defined during the design phase, and actual consumptions, due to 
human-building interaction and variable occupancy [6–17]. However, other promising 
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fields in building management include security, safety, cleanness, and space manage-
ment. These aspects can have a crucial role, especially in light of current sanitary emer-
gencies related to the spread of the COVID-19 pandemic: space monitoring is a key as-
pect to guarantee safety in existing buildings [18]. 

In this context, the aim of the ongoing research project here presented is to define a 
Building Management Systems (BMS) based on an occupancy-oriented Digital Twin 
(DT), evolving from and enriching the Building Information Model (BIM) and integrating 
occupancy levels and additional relevant data from Post-Occupancy Evaluations (POEs). 
Analyses and simulations of the occupancy-oriented DT would support the deci-
sion-making processes during the O&M phase. 

The case study for the application of the methodology is an existing office building 
hosting the Department of Architecture, built environment, and construction engineering 
(DABC) at Politecnico di Milano, Italy, used by people working at the university and 
performing their research and administrative activities in the indoor spaces of the 
building. The maintenance and cleanness of the distribution spaces and offices is a very 
important aspect in the facility management of the building and department business 
plan; strong variations in occupants’ flows are experienced by the users and particularly 
during the pandemic. 

The IoT network of sensors that represents the source of data for the occupan-
cy-oriented DT and that was tested and calibrated as described in this article was pro-
vided and installed by an external consulting company (Laser Navigation srl). They 
provided the hardware part of the system that is the camera-based sensors with an em-
bedded deep learning algorithm, the installation, and the technical settings of the sensors. 
They also provided an online platform named SophyAI and integrated with the IoT sys-
tem, that allows to visualize, store, and download collected data. 

This paper focuses on the preparatory phases for the definition of the DT, i.e., sensor 
system calibration and collected data quality validation. In fact, a fundamental charac-
teristic of a DT is the connection, alignment, and reciprocity between the physical and 
virtual part [19]. Therefore, a key aspect is the data collection process, ensuring data 
quality on which the correct digital representation of the physical phenomenon depends 
[20,21], since, in order to obtain satisfactory results, is essential to ensure the quality of 
input data [22]. In this perspective, fundamental steps are the selection of sensor types 
that are most suitable for the specific application [23], the spatial distribution of sensors 
in the indoor spaces [24], and the setting and calibration of the IoT sensor system [25,26], 
to allow a correct detection and collection of data. 

Given the importance of data quality for the proper digital representation of the 
building occupancy phenomenon, the objectives of the research are: optimization of spa-
tial distribution and orientation of sensors for system planning and installation, identifi-
cation of issues and faults of the detection system, and resolution of issues and faults by 
performing an assessment of the detection system through test campaigns. This study 
proposes method and evaluation criteria for system calibration and data quality valida-
tion, also defining parameters for occupancy analysis. Two test campaigns were per-
formed until all major faults have been checked and solved, allowing for the verification 
and validation of collected data quality to monitor building occupancy. The study also 
describes and tests the use of the platform SophyAI for real-time visualization of data 
during the test campaigns. 

2. Literature Review 
2.1. Evolution, Main Applications, and Features of Post-Occupancy Evaluations 

Post-Occupancy Evaluations (POEs) aim at assessing building performances, users’ 
behavior, and feedback regarding existing buildings during the operational phase and 
once the building has been occupied for some time [27–31]. POEs were first introduced in 
the UK and US in the 1960s in order to assess building performances from user perspec-
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tive, by means of interviews, questionnaires, photographic surveys, and walk-through 
surveys [27,28]. The major developments of POEs were during the 1980s, aiming at ana-
lyzing and optimizing the facility management and design [29]. POEs had been per-
formed in the US, mainly in the public sector, UK, New Zealand, and Canada [32], and, 
since a correlation between workplace features and worker productivity was proposed in 
1985, they have been also applied in the private sector to improve costumer and worker 
satisfaction and to optimize the workplaces [30]. In the mid-90s, the interest moved from 
analyses during the operational phase alone to an entire building life cycle process, i.e., 
Building Performance Evaluation (BPE) [33,34]. Insights and findings from POEs could 
be applied in the subsequent design and building life cycle process [34–36]. 

In the last two decades, POEs have mainly been applied to assess and optimize 
building energy performances, and to reduce the building environmental impacts [37]. A 
less investigated but promising research field is the optimization of occupancy patterns, 
and cleaning activities and contracts. Space features and workplace cleanness have been 
classified as basic factors affecting user satisfaction [5], and, consequently, user produc-
tivity. The variable “interior use of space” can account for around 43% of the variance in 
employees’ enjoyment at work, well-being, and perceived productivity [6]. 

As above mentioned, POEs are analyses of the built environment, aiming at defining 
the effectiveness and functionality of spaces for users, building performances, and user 
satisfaction and perception regarding facilities in general and workplaces in particular 
[27,38]. There are three levels of POEs depending on accuracy, time needed to be per-
formed, tools, and levels of invasiveness of user privacy [7,30]: 
• Indicative POEs enable to perform overall non-invasive analyses of the building, 

with selected interviews and photographic surveys to detect critical areas of the 
building. 

• Investigative POEs are more in-depth analyses, and more invasive, with question-
naires, video recordings, and measurement, and they are meant to find causes and 
consequences of the building performances. 

• Diagnostic POEs are the most in-depth analyses, with high levels of user privacy 
invasiveness and high costs, since they can imply the use of sensor systems to mon-
itor the building, providing data to analyze and optimize building performances 
and future designs. 
Despite being expensive and invasive for user privacy, especially when performing 

diagnostic analyses, POEs can have several benefits, ranging from the optimization of the 
operational phase in terms of performances and user satisfaction, to an increased facility 
adaptation to organizational change and growth over time [27,30], and to the definition 
of design criteria and requirements based on actual user and space needs for similar 
buildings [39]. 

2.2. From Building Information Models to Digital Twins for Asset Management 
In recent years, a major evolution of Building Information Modelling (BIM) occurred 

in the construction sector. BIM models are parametric models, centralized sources of in-
formation mostly for the design and construction phases, and instruments to improve 
collaboration among specialists and document management [40]. The application of BIM 
for facility management can result in several benefits: customer services improvement, 
time and cost reduction resulting from better planning capabilities, and higher con-
sistency of data [41,42]. The integration of POEs in a BIM approach enables the connec-
tion between POE data and the digital model [8,12,43], with the advantages of defining a 
single source and storage of POE and building data, integrating structured data into the 
BIM, and identifying POE data and related issues in a visual representation of the 
building space [8,44,45]. Despite the advantages of adopting BIM during the operational 
phase, a BIM approach for asset management lacks of information richness, analysis, and 
simulation capability, which are usually manually implemented and time-consuming 
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when using a BIM model [20]. In addition, an effective and efficient management of 
buildings during the operational phase strongly rely on continuous flows of real time 
data regarding the building, its performances, and conditions [20,46]. However, BIM 
models present limitations for the integration with different data sources and systems, 
e.g., sensor data, and lack of automatic updating and evolution over time [20]. Therefore, 
in order to overcome these limitations, the definition of a Digital Twin is investigated. 

2.3. Evolution of the Digital Twin Concept 
The Digital Twin (DT) concept dates back in 2002 when the idea of a virtual space 

containing the information of and linked to the real space emerged in the field of study of 
complex systems, in particular regarding the Product Lifecycle Management (PLM) [19]. 
When the concept emerged, it was not referred to as DT, but it was presented as the 
“Conceptual Ideal for PLM” [19], evolved then to Mirrored Spaces Model in 2005 [47] and 
to Information Mirroring Model in 2006 [48] and 2011, when also the term Digital Twin 
was first used to describe the model [49]. In recent years, the concept of a DT has been 
studied also in the aerospace sector: the DT represents an ultra-realistic digital replica of 
real flying vehicles, considering one or more interconnected systems allowing for proba-
bilistic simulations that take into account physical characteristics and models, sensor 
data, and history of previous flights and vehicles [50–52]. Recent definitions of DTs can 
be found in various sectors, with a wide use and diffusion of the concept of a virtual 
replica of physical entities whose purpose is to manage, optimize, and control the phys-
ical asset itself. In the infrastructure sector, DT was defined as a realistic virtual repre-
sentation of the corresponding infrastructure, adding the built or natural context in 
which the object is contained and to which it is connected [53]. In the manufacturing 
sector, the idea of the connection between physical components and virtual models is 
widened, adding the necessary mono- or bi-directional flow of data between the physical 
asset and its virtual counterpart in order to real-time monitoring the actual object, sup-
porting simulations, analytics, and control capabilities of the dynamic virtual model [54]. 
The construction industry can be still considered in its beginning regarding the definition 
of a DT for buildings. Despite the various attempts to define a DT in construction indus-
try [21,24,53,55,56], a comprehensive definition was proposed by Al-Sehrawy and Kumar 
[57]: “an approach for connecting a physical system to its virtual representation via bi-
directional communication (with or without human in the loop) using temporally up-
dated Big Data […] to allow for exploitation of Artificial Intelligence and Big Data Ana-
lytics by harnessing this data to unlock value through optimization and prediction of 
future state”. This definition includes all the fundamental parts of a DT, which are de-
scribed in detail in the following paragraph. 

2.4. Elements and Characteristics of a Digital Twin 
As stated, a DT is composed by some elements. A list of components for DTs in 

construction industry is provided as follows: 
• A physical asset and its virtual counterpart, and data connecting them [23]; 
• Platform to visualize and manage sensor data, e.g., data and virtual model visuali-

zation, analysis, and simulation, which is a key aspect for real-time remote moni-
toring [23]. The platform should return insights, alerts, or predictions regarding the 
physical object, thus supporting the decision-making process for the definition of 
O&M objectives and plans [40,58]; 

• An acquisition layer such as an IoT system [40,46,53,59], since sensing is a vital 
component of a DT [60–63], allowing for continuous monitoring of the physical asset. 
The virtual component enriched with real-time data regarding the real object rep-
resents a dynamic digital replica of the physical asset [46,53]; 
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• BIM model as a starting point, especially as regards the geometrical virtual replica of 
the building, allowing for the evolution and information enrichment of the BIM 
model itself [20,23]; 

• Artificial intelligence (AI) tools to analyze data and provide predictions, simulations, 
and data analytics [20,46]. 
In addition, some characteristics are fundamental for the correct definition of a DT: 

• Synchronization between physical and virtual component [40], with data flowing at 
least in one direction allowing for analyses, control, and simulation on the virtual 
model [20,46,64]. Any change in the monitored characteristics or conditions of the 
asset is detected and, through data flow, is reflected in the virtual counterpart 
[20,21]; 

• Bidirectional communication between physical and virtual part, either with or 
without humans in the loop, defining a Passive DT or an Active DT, respectively [57]. 
The knowledge regarding the asset provided by the virtual part results in either 
human intervention of direct actuation in the real asset [21]; 

• A DT represents specific and selected aspects of the physical asset, i.e., the subjects 
of monitoring, simulating, and analyzing, so it does not represent an exact duplica-
tion of reality [57]; 

• Data or status visualization capabilities in order to support the monitoring and de-
cision-making processes by the actors that are in charge of the asset O&M phase [46]. 
As previously specified, one of the main characteristics of a DT is the direct connec-

tion between physical and virtual entity, with the concept of twinning as alignment and 
reciprocity between the two components [19]. Therefore, a fundamental aspect for the 
definition of a DT is the data collection process, i.e., data quantity, quality, and granular-
ity, on which depends the correct detection of changes of the real object over time, and 
thus the correspondence of the digital object to the real one and its continuous evolution 
through the building lifecycle [20–22]. A first fundamental step is the selection of sensor 
types that are most suitable for each specific application [23]. In addition, the spatial dis-
tribution of sensor network, i.e., the spatial distribution of sensors in the indoor spaces, is 
another theme that should be faced [24]. Furthermore, in order to allow a correct detec-
tion and collection of data, the IoT sensor system should be properly set and calibrated 
[25,26] to ensure the quality of data collected. In fact, the output of an analysis strongly 
depends on the data that are used as input for the system or algorithm; therefore, to ob-
tain satisfactory results, data quality is essential [22]. Nonetheless, existing studies tend 
to focus on different phases and aspects of the DT definition and creation, while IoT 
sensor system definition is a less investigated aspect, almost taken for granted [23]. 

As stated above, a fundamental preliminary step is a detailed analysis of sensor 
types in order to identify the most suitable ones for the research objectives. Such analysis 
is described in the following paragraph, in which existing studies regarding types of 
sensors for occupancy detection are analyzed, highlighting features, pros, and cons. In 
addition, a brief review of the concept of occupancy detection is provided. The investi-
gation supported the selection of the sensor type for the case study, as explained in the 
following methodology section. 

2.5. Occupancy Detection: Analysis of Occupancy Monitoring Systems 
Occupancy detection consists in the definition of occupancy levels and patterns of 

buildings during the operational phase. Occupancy patterns consist of occupancy values 
at room-level and user movements inside the building [65]. Monitoring occupancy pat-
terns and optimizing the use of spaces and cleaning activities, based on occupancy data, 
can increase user satisfaction and productivity at work. In fact, occupancy levels of 
buildings have a strong influence on cleanness and use of spaces that, in turn, are 
strongly related to well-being, satisfaction, and productivity of users [5,6]. Table 1 focuses 
on IoT monitoring sensor systems studies, highlighting main features, pros, and cons. 
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Table 1. Sensor systems and related features to monitor occupancy. 

Sensor Type Main Aspects Pros Cons 

Camera-based sensors 
[25,26] Average accuracy of 97% 

High accuracy 
Security and safety 

applications 

Users detection only within 
field-of-view 

Privacy issues and Hawthorne 
effect 

CO2 concentration 
change sensors 

[25,26,66] 
Average accuracy of 94% 

Often used in build-
ings 

No privacy issues 

Less reliable than other type of 
sensors 

Visual light and infra-
red (PIR) technologies 

[9,16,67,68] 

High accuracy of 97% (unoccu-
pied–occupied scenarios) 

Accuracy 93% (stationary and 
moving occupants) 

High accuracy 
No privacy issues 

Issues in detecting stationary 
occupants 

Users’ presence/absence detec-
tion only within the 

field-of-view 

Radio frequency identi-
fication (RFID) sensors 

[9,15,69] 

Accuracy of 88% (stationary oc-
cupants) 

Low accuracy 65% (moving oc-
cupants) 

No privacy issues 
Access-control sys-

tem applications 

Low accuracy compared with 
other sensor systems 

Wi-Fi connections 
[8,9,70–74] 

Average accuracy of 80% Available in most 
buildings 

Privacy issues in visualizing 
and analyzing users’ connec-

tions 

As shown in Table 1, camera-based sensors and PIR (Passive Infra-Red) sensors 
present the best accuracy levels, followed by CO2 sensors, but they are also affected by 
detecting and privacy issues [9], such as the Hawthorne effect for camera-based sensors. 
It mainly causes alterations of behavior when users are aware of being observed and, if 
ignored, can affect the reliability of collected data [26]. One strategy implies the combi-
nation of more types of sensors, some of which may already exist in the building, having 
been previously installed for other purposes [9]. Additionally, system implementation 
costs can be reduced by previously analyzing the building with Indicative POE analyses 
in order to identify the most critical areas to be further analyzed [27,32] by means of 
sensor systems and other techniques. 

The highlighted advantages and disadvantages of existing sensor types supported 
the selection of the type of sensors for the methodology and case study, as described in 
the following section. 

3. Research Project Stages 
This paper presents some stages of an ongoing research project. The aim of the re-

search project is to define a Building Management Systems (BMS) based on an occupan-
cy-oriented Digital Twin (DT), evolving from and enriching the Building Information 
Model (BIM) and integrating occupancy levels and additional relevant data from 
Post-Occupancy Evaluations (POEs). The expected results of the research project are: 
monitoring occupancy and defining building occupancy patterns, optimizing current 
O&M management, building space use and organization, cleaning activities, and, as 
possible future implementations, applying Smart Contract to cleaning and maintenance 
services and extending the IoT network with other kind of sensors for safety and quality 
control. The research project stages are presented in Figure 1. 
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Figure 1. Stages of the research project. 

The first two stages, “definition of BIM guidelines” and “BIM model creation”, have 
been previously analyzed in a publication by Di Giuda et al. [75]. “Preliminary analyses”, 
“system installation”, and “test campaigns” are presented in this paper, as they are crit-
ical to provide the foundations upon which the occupancy-oriented DT should be based. 

The “occupancy-oriented DT” set of activities is currently under development. In 
future steps of the research, collected data will be analyzed to identify occupancy pat-
terns of the building spaces, and evaluate current management of spaces in terms of 
people permanence and cleaning frequency. In addition, benchmarks to evaluate opti-
mization strategies will be defined together with the subjects in charge of O&M in the 
case study building, a fundamental step to evaluate advantages and results of the 
methodology [76]. The defined occupancy-oriented DT will be the base for the subse-
quent phase, i.e., “FM scenario definition and optimization”, that will allow the optimi-
zation of cleaning activities and contracts that are currently based on the building floor 
areas, and to reach a better organization and planning of space usage. 

Figure 1 also provides “possible future implementations” of the research project. 
The integration of other kinds of sensors, such as “sensors for safety (man down) and 
quality control” will allow the monitoring and optimization of different aspects of the 
building management, resulting in a complete report of building conditions and indoor 
environmental quality. In addition, a possible future implementation of the system will 
be the definition of “smart contracts for facility management and cleaning activities” that 
would be based on the actual need of cleaning defined in previous stages. Smart Contract 
based on Blockchain technologies and on the occupancy-oriented DT data will provide 
relevant advantages, i.e., increased network security, reliable data storage, traceability 
[77], and the possible automation of payments for cleaning activities [78,79]. 

4. Method 
This section provides the methodology applied for the “preliminary analyses” and 

“test campaigns” stages, analyzed in detail in this article. The “system installation” task 
was performed by an external consulting company that provided and installed the IoT 
sensor network, and the platform SophyAI for visualization, storage, and download of 
collected data. 
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4.1. IoT Network of Camera-Based Sensors 
The “sensors analysis and selection” phase relies on the proposed literature review. 

As previously stated, most analyzed recent applications aimed at optimizing energy 
performances and consumptions rather than building operation and use [9,12,16]. 
Nonetheless, existing studies allowed objectively comparing several available sensor 
types, supporting the selection of the most suitable type for occupancy monitoring. 

Camera-based sensors were selected considering their high accuracy and the possi-
bility to perform other kind of analyses, such as security and safety monitoring, thus al-
lowing for further implementations of new features in the system, increasing the scala-
bility of the system itself. 

The limitations of camera-based sensors that have been presented in the literature 
review section, and how they have been overcome, are described as follows: 
• Detection only within field-of-view of the sensors: the BIM model was used to en-

sure the best positioning and orientation of sensors and to maximize the area cov-
ered by the sensors’ field-of-view; 

• Privacy issues and Hawthorne effect: the system was set to anonymously monitor 
users and not to store any images. The user is recognized as a human by the deep 
learning algorithm embedded in the camera-based sensors and translated into an 
anonymous agent that cannot be linked to a specific user identity. Consequently, the 
movements of the user can be anonymously monitored in real time and visualized in 
the online platform SophyAI, without storing any real image or video recording. 
The sensors can detect occupancy; in particular, they can visualize real time move-

ments of users that are instantaneously transformed into anonymous virtual agents. 
The detection of anonymous real-time movements of users is limited to common 

spaces, i.e., circulation areas and corridors, and they can be visualized in the online 
platform SophyAI, but are not stored in the database (DB), to protect the users’ privacy. 
On the contrary, sensors count and store the number of agents that are entering or leav-
ing rooms, which are the main objects of monitoring. 

Two values are recorded by the sensors for each monitored room: 
• O: Occupancy values at room-level, i.e., the number of people (p) occupying a room 

in a certain period of time; 
• T: Period of time in which one or more virtual agents occupy a room 

(minutes/hours). 

4.2. Visualization and Analysis Platform 
A critical theme for real-time monitoring is the possibility of plotting sensors data 

for visualization, verification, and analyses [23]. Data visualization is a primary subject to 
support decision-making processes and to help people who are in charge of O&M in 
reaching management goals, since they may not possess the technical ability to effec-
tively use the indexes and information directly extracted by the sensor system [58]. 

As shown in Figure 2, the described monitoring system is intertwined with the 
online platform SophyAI. The platform can: 
• Visualize real-time occupancy count, i.e., the instantaneous value of O of each space; 
• Visualize real-time movements of anonymous virtual agents in a 2D visualization of 

spaces; 
• Store in a DB data regarding the occupancy count of each space (O) and of each day 

of the week; 
• Store in a DB data regarding the room occupancy time (T) during each day of the 

week. 
Data stored in the online platform DB can then be downloaded as CSV files that 

contain the values of O and T for all days of a specified period of time, which could be a 
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week, a month, or a year. In addition, data can be processed in graphs and diagrams and 
visualized through the online platform. 

 
Figure 2. Data and information flow. 

The online platform displays a 2D visualization of the spaces. Each monitored area 
is contained in a 2D boundary, which defines the contours of the area itself. The check 
between the area displayed in the 2D visualization and the 3D view of the same area de-
tected by cameras is a key aspect to correct the optical distortion between the 3D view of 
the camera and the 2D view of the online platform. The check between 2D boundary and 
3D view was performed as a part of the study during the system test and calibration, as 
described in following paragraphs. 

4.3. Preliminary Analyses Based on Post-Occupancy Evaluations and Building Information 
Modelling 

This phase applies Indicative POEs to preliminary analyze the building by means of 
general and low-invasive analyses, using the BIM model: 
• Analysis of the geometry of spaces: identification of number of levels of the building 

and number and geometry of rooms. The geometry of spaces influences the number 
and position of cameras that are needed to monitor the whole space. In addition, the 
height of spaces represents the maximum height at which the sensor can be installed, 
and in turn influences the field-of-view of the sensor; 

• Analysis of the functions of spaces: identification of the function of spaces, e.g., 
bathroom, office, equipment room, etc. The function of spaces influences the defini-
tion of the area to be monitored. For example, an equipment room with no variable 
occupancy, since only technicians can enter the rooms for planned maintenance, 
does not represent a critical area for occupancy monitoring. As a result, the critical 
areas whose variable occupancy needs to be monitored are identified. The installa-
tion of sensors is limited to the identified critical areas, thus reducing implementa-
tion costs of the overall system; 

• Analysis of electrical and data and communication systems: analysis of presence, 
distribution, and equipment of electrical equipment. A non-homogeneous distribu-
tion of the electrical and data wiring can in fact represent a limitation for sensors 
installation; 
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• Simulation of sensors location and orientation: virtual objects representing the sen-
sors are placed into the BIM model, and each virtual sensor is linked to a 
field-of-view to simulate the area covered and seen by the sensor itself. The height of 
installation of the sensor also influences the field-of-view. The simulation of several 
configurations allows the optimization of number, position, and orientation of sen-
sors, maximizing the area covered by sensors. 
The use of the BIM model as a source of information and simulation tool to perform 

the Indicative POE ensures the minimization of user privacy invasiveness. In addition, 
the sensor system plan is optimized by comparing different configurations. 

4.4. Test Campaign Methodology for Data Quality Evaluation 
The preliminary analyses allow for an efficient planning and installation of sensors, 

selecting critical areas to be monitored, and optimizing spatial distribution, orientations, 
and fields-of-view of sensors. Nonetheless, after the first phases of data collection, some 
errors and faults, described in the following paragraph, may occur, and the system needs 
to be calibrated to ensure data quality. An incorrect calibration would lead to incorrect 
data collection and to an erroneous modelling of the occupancy patterns of the spaces, 
with repercussions on the whole BMS. 

The iterative process to perform the “test campaigns” (Figure 1) is presented in de-
tail in Figure 3 and described in the following paragraphs. 

 
Figure 3. Data collection, test campaign, and adjustments application iterative process. 

Once the system is installed as planned with the support of preliminary analyses, 
data are collected for a representative period of time that should be identified for each 
case study. Then collected data are downloaded in CSV format from the online platform 
DB. Collected data are analyzed in order to identify the possible data errors and related 
system faults, as described in Table 2. If no faults that could compromise the following 
analyses are detected, the system is properly functioning and calibrated. Otherwise, test 
campaigns are performed to verify the errors detected in the collected data. 

The real time test campaign involves two operators. One operator (operator A) 
monitors through the online platform the position and movements of the other operator 
(operator B) inside the building. The two operators are constantly connected via ear-
phones to communicate and coordinate with each other. In particular, operator A guides 
operator B towards the areas where errors were previously detected in the collected data. 
Moving inside the building and entering/exiting the rooms, operator B tests the detection 
of user movements and the room occupancy count (O) by the system. At the same time, 
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operator A monitors the response of the system by checking the real-time displayed user 
movements and instantaneous values of O of the rooms through the online platform. 
Consequently, the operators search for detection errors and system faults in order to 
identify the causes, as described in Table 2. System faults can be classified as missing 
data, outliers, stuck values, and noise. Each fault can be identified in collected data or 
during test campaigns according to specific values of O. In addition, noise can be de-
tected only during real-time test campaigns, by comparing the movements of operator B 
and his anonymous digital counterpart displayed on the online platform. Some examples 
of the causes of the errors and faults are camera malfunctioning in the case of missing 
data and extreme lighting contrast in the monitored area, which impedes a correct de-
tection and causes noisy data. 

Table 2. System faults [22] and related data errors. Data errors are divided into errors observed in collected data and er-
rors detected during real-time test campaigns. 

System Fault Data Error in Collected Data Data Error during Real-Time Test Campaign 
Missing data: data are not collected O = 0 p O = 0 p 

Outliers: one or more consecutive 
anomalous values 

O < 0 p 
Values of O unacceptable for 
room dimensions, e.g., O = 50 
p in a 10-square-meter office  

O < 0 

Stuck values: those values occur 
when a sensor fails in detecting and 

a previously-detected value re-
mains fixed 

O > 0 outside the working 
hours 

No correspondence between detected O and 
actual occupancy values, e.g., O > 0 in an empty 

room 

Noise: it represents corrupted val-
ues 

Not detectable in collected 
data 

No correspondence between the virtual agent 
movements detected by the system and dis-
played in the platform, and the actual move-

ments of operator B 

Once the causes of data errors and faults are identified, some adjustments are pro-
posed and applied to the system. Then the system must be verified again, in an iterative 
process, until no errors are detected and consequently the required data quality level is 
reached. This iterative process is also useful to check overtime the effectiveness of im-
provement solutions or to check the system after geometry changes in the building, e.g., 
in the case of refurbishments. 

Regarding the possible adjustments to solve the errors and the related causes, some 
general rules were identified to define a hierarchy of possible solutions. 

Generally, the most preferable solution would be not acting on the hardware of the 
system: in the case of a recently added physical obstacle that prevents the camera-based 
sensor from detecting, the most preferable solution would be moving the object before 
moving the sensor. In addition, before acting on the hardware part of the system (e.g., 
adding or replacing cameras), the camera settings could be checked, and the software 
system would be improved. An example of camera setting adjustment is the modification 
of contrast and luminance settings of the camera in the case of extreme lighting contrast 
in the monitored area. In addition, modifying the software is faster, less invasive, and 
cheaper than working on the hardware. Specifically, the deep learning algorithms of the 
embedded artificial intelligence system of the cameras for image recognition could be 
improved and optimized with the support of the external consulting company Laser 
Navigation srl. Consequently, the adjustments are hierarchized based on those general 
rules using the following symbols: from the most preferable solution, identified with (++), 
to the least preferable one, identified with (--). 

 



Appl. Sci. 2021, 11, 3108 12 of 28 
 

5. Case Study 
The building chosen as case study hosts the Department of Architecture, Built En-

vironment and Construction Engineering (DABC) of Politecnico di Milano, and is located 
in Milan (Italy). It is a four-story building, hosting administrative offices, research spaces, 
and university staff offices, for a total of 4300 square meters of gross floor area. Rooms 
have variable dimensions depending on their use. The building has a symmetrical layout, 
with a common space in the center and two side corridors. The offices and workspaces 
are located on either sides of the corridors. Each floor houses at least one bathroom. Be-
fore the current study, the building has never been monitored. Therefore, neither data 
regarding the actual occupancy patterns, nor information about actual cleaning and 
maintenance activities are currently analyzed and optimized. Furthermore, no space op-
timization has been performed in relation to the use of available rooms and the actual 
occupancy indexes at room-level in the building. This case study building acts as proto-
type for a future application of the proposed method to other university’s buildings. 

The case study section is divided in two subsections: the first one describes the ap-
plication and results of preliminary analyses on the building that supported the planning 
and installation of the IoT sensor system; the second subsection describes the two test 
campaigns with specific focus on the detected system faults and related proposed ad-
justments. 

5.1. Preliminary Analyses: Sensors Spatial Distribution and Orientation 
A preliminary study of the building (“Indicative POE supported by BIM model” 

phase as in Figure 1) was performed to identify critical areas to be monitored and to op-
timize number, position, and orientation of sensors, which in turn allowed the reduction 
of implementation costs and proper planning of the IoT sensor system. 

As described in the methodology section, the preliminary analyses included the 
following activities that are analyzed in detail in the following paragraphs: 
• Analysis of the functions of spaces; 
• Analysis of the geometry of spaces; 
• Simulation of sensors location and orientation; 
• Analysis of electrical and data and communication systems. 

5.1.1. Analysis of the Functions of Spaces 
The analysis of the building through the BIM model allowed the identification of 

number and type of rooms of the building, as shown in Table 3. The BIM model had been 
previously defined and modeled, as described in Di Giuda et al. [75], who also performed 
a complete survey to update the as-built documents and to ensure the correspondence 
between the BIM model and the building. Equipment rooms, storage closets, and ar-
chives were excluded, since the only users are cleaning services employees or technicians 
in charge of maintenance activities. The analyses highlighted that sensors installed in 
common spaces, i.e., corridors, would be sufficient to monitor room occupancy, i.e., the 
count of users entering and leaving rooms. Anonymous real-time agent movements are 
detected only in corridors and can be visualized in the online platform, but are not stored 
in the DB, to ensure and protect the privacy of users. On the contrary, as regards rooms, 
the count of number of users (O) and time of occupancy (T) is recorded, as shown in Ta-
ble 3. The occupancy of critical rooms is monitored to optimize their use, cleanness, and 
maintenance, while corridors are considered only as circulation areas. As shown in Table 
3, 70 rooms out of 87 were selected as critical areas to be monitored. 



Appl. Sci. 2021, 11, 3108 13 of 28 
 

Table 3. Type and quantity of rooms and necessity to be monitored. 

Building Level Space Type Quantity 
Monitored/Not 

Monitored 

Underground Level 

Laboratory/Office 5 Monitored 
Bathroom 2 Monitored 
Classroom 1 Monitored 

Equipment Space 3 Not monitored 
Storage Room 10 Not monitored 

Ground Level 

Laboratory/Office 22 Monitored 
Bathroom 3 Monitored 

Meeting Room 1 Monitored 
Equipment Space 1 Not monitored 

First Level 

Laboratory/Office 21 Monitored 
Bathroom 3 Monitored 

Storage Room 1 Not monitored 
Terrace 1 Not monitored 

Second Level 

Laboratory/Office 10 Monitored 
Bathroom 1 Monitored 

Meeting Room 1 Monitored 
Equipment Space 1 Not monitored 

5.1.2. Analysis of the Geometry of Spaces and Simulation of Sensors Location and Ori-
entation 

During the preliminary phases regarding the system planning, the BIM model of the 
building was used to optimize locations and orientations of the camera-based sensors. 
The geometry analysis highlighted that the building corridors are long, low ceiling, and 
narrow (length: 32 m; height: 2.40–2.70 m; width: 1.60 m). Three simulations of the in-
terrelated position of the sensors in a corridor have been performed to define the best 
configuration. Virtual objects representing the sensors were added to the BIM model in 
different locations according to the three possible configurations. Each virtual sensor was 
then linked to a field-of-view that allowed to virtually check through the model the area 
covered by each sensor. The BIM-based simulation analyzed three possible configura-
tions, as shown in Figure 4: 
• The first solution considered two standard cameras at the two opposite sides of the 

corridor. Each corridor would be entirely monitored by two sensors at the same time, 
but in the central area, the detection could be less precise due to the distance from 
the sensors. In addition, cameras would have difficulty in monitoring areas near the 
end of the corridor, i.e., the area close to each sensor. Users passing through a door 
near the end of the corridor would be extremely distorted in the view of the nearby 
camera, making recognition difficult. 

• The second solution considered two standard camera-based sensors located at 1/3 
and 2/3 of the corridor. This solution allows for a better monitoring of the end areas 
of corridors, but limits the simultaneous monitoring by both sensors to the central 
area only. 

• The third solution implied the use of a single 360-degree camera at the center of the 
corridor. Those kind of sensors are more expensive than standard cameras, but the 
total cost would be comparable, since this solution would consider only one sensor 
instead of two. This solution results in the corridor being entirely monitored by a 
single camera. 
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Figure 4. 2D visualization of the three simulations of sensors positioning in a typical corridor through the BIM model. 

The chosen solution was the second one, since in many cases there are doors near the 
end of corridors, thus excluding the first solution. In addition, due to the reduced width 
of the corridors, one single camera could struggle in identifying two people walking 
lined up. Therefore, the third solution, which involved only one camera, was also less 
preferable than the second one. 

The chosen sensors are High Quality Bullet Pro Camera PoE, with the following 
features: they provide HD quality images; the Power over Ethernet (PoE) allows to sup-
ply power and network connection to the camera with a single cable; a Wide Dynamic 
Range (WDR) allows to compensate problems due to exposure to light; the view angle of 
the camera reaches a maximum of 110 degrees. The system is installed in a dedicated 
Virtual Local Area Network (VLAN), and a static IP is provided for each element of the 
system. As stated in the Introduction, the sensor system was provided by a third-party 
organization, Laser Navigation Srl, who operated in full compliance with EU General 
Data Protection Regulation (GDPR). In fact, the deep learning algorithm does not record 
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images, but only metadata regarding the anonymous movements and count of users are 
processed by the system, inhibiting the recognition of the observed subjects. 

The 20 sensors were installed directly in the ceiling, i.e., at height 2.40/2.70 m de-
pending on the level of the building, ensuring the maximum coverage area. Figure 5 
shows the plan of the IoT sensors system in the case study building. 

 
Figure 5. Ultimate spatial distribution of camera-based sensors inside the case study building. 

The BIM model also allowed for an optimization of the field-of-view of the sensors, 
as shown in Figure 6. The virtual camera field-of-view simulation supported the defini-
tion of the best orientation, i.e., the best tilt angle of each camera on x- and y-axis. This 
ensured that all the offices and bathrooms defined as critical, whose occupancy needed to 
be monitored, were correctly detected by the sensors. 
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Figure 6. Comparison between the simulation of the virtual sensor field-of-view in the BIM model 
(left) and the actual field-of-view of the installed sensor (right). 

5.1.3. Analysis of Electrical and Data and Communication Systems 
The last preliminary analysis performed with the BIM model was the check of the 

electrical and data system equipment and wiring distribution already available in the 
building. The analysis showed that since cameras would be installed in corridors, all the 
necessary wiring was already available. Therefore, no implementation was needed to 
install the system. 

5.2. Test Campaigns 
Once the preliminary analyses had been performed, the system had been installed. 

First data collection was performed, and collected data were analyzed to identify issues 
and faults. Data were collected during a three-month period, i.e., the representative pe-
riod, as it is the minimum period of time to encounter all possible activities conducted by 
the users of the department. A qualitative analysis was conducted on the collected da-
taset to identify rough errors. 

Figure 7 shows a graph of collected data about a bathroom during one day. Stuck 
values are identified since 4 p.m., because the occupancy raises but never decreases. It is a 
stuck value because the bathroom can host only one person at a time; therefore, a con-
tinuous occupancy of four people represents without any doubt a blunder in the detec-
tion. The solution to this specific problem is provided in Table 4. 

After faults of the system were detected, a first test campaign was performed to 
understand the causes and propose improvements for the system. Detected data were 
tested in real time by two operators, as described in the method, to identify the causes of 
system faults. An example of the visualization of real time data in the online platform is 
shown in Figure 8. 
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Figure 7. Graph of collected data regarding occupancy overtime in a bathroom (O-T). 

 
Figure 8. Visualization of real time data in the online platform during test campaign. 

This first test campaign was followed by a second test campaign, to properly cali-
brate the system and ensure detected data quality, as shown in Figure 9. The two test 
campaigns were carried out during different periods of the year. This represented a key 
aspect for the recognition of lighting contrast issues. The first test campaign was per-
formed in June 2020, with data collection for a three-month period from November 2019 
to January 2020. The first test campaign was performed after the end of the first Italian 
shutdown period due to COVID-19 pandemic (early March–early June 2020). The second 
test campaign was performed in November 2020, with data collected for another 



Appl. Sci. 2021, 11, 3108 18 of 28 
 

three-month period from July to October 2020, excluding August, during which the 
building is usually under-occupied due to summer holidays. After the shutdown period 
March–June 2020, administrative and research activities have been resumed. Therefore, 
all the data collected for system test and calibration can be considered reliable. 

 
Figure 9. Preliminary analyses and two test campaigns process. 

6. Results and Discussion 
Table 4 provides a resume of errors, related evaluation criteria, fault identification 

and classification, causes of the faults, and proposed solutions, hierarchized and listed 
from the most preferable one (++) to the least preferable one (--) of the two test cam-
paigns. 

Table 4. Identified issues and effects on the data collecting system during the test campaigns. Table legend: (a): data col-
lection phase; (b): real-time test campaign phase; O: occupancy values at room-level, number of people occupying the 
room (p); T: period of time in which users occupy a room (minutes/hours); adjustments hierarchy scale ranging from (++) 
most preferable system adjustment to (--) least preferable system adjustment. 

Detected Issue, Evaluation Crite-
ria, and Fault Classification 

Cause Identification and Effects on the 
System 

Proposed Hierarchized Adjust-
ments 

Data are not detected and collect-
ed. 

The system detects: (a)–(b): “Data = 
null”. 

This fault is classified as Missing 
data (a)–(b). 

Camera-based sensors not working 
Verification of sensor integrity, 

functioning, and connection 

Incorrect boundary definition: areas that are 
not covered by boundaries; thus, they are 

not monitored 

Perform a real time test to iden-
tify and verify the optimal 

boundary definition to minimize 
optical distortion between the 3D 

view of the camera and the 2D 
floor map visualization 

Obstructions or obstacles in corridors that 
impede users’ vision, like printers, waste 
bins for separate collection of paper, and 

presence of platforms for people with disa-
bilities 

(++) Remove the obstacle, if pos-
sible 

(+) Improve the deep learning 
algorithms for image recognition 

(--) Add a new camera and 
re-verify the system 

Behaviors of users that deceive the detection 
system: blind zone caused by unexpected 

doors left open 

(++) Verify the possibility to 
avoid keeping the door open 

with a communication to the us-
ers 

(--) Add a new camera in a dif-
ferent position and re-verify the 

system 
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Blind zone of the sensor: when two people 
are walking in corridors towards a sensor, 
the person further away from the camera 

generally is not detected 

(++) Possibility to ignore the re-
lated error, which does not affect 
the next phase of statistical data 
analysis for the definition of the 

occupancy pattern 
(--) Add a new camera allowing a 

multiple detection of the same 
area and re-verify the system 

Fast increase/decrease of occu-
pancy values. 

The system detects: 
(a)–(b): Negative or too high values 

of O. 
This fault is classified as Outliers 

(a)–(b). 

Behaviors of users that deceive the detection 
system: difficulty in counting users when 

they are standing in front of the door open-
ing the room or talking right in front of the 

entry of a room 

(++) Add an automatic routine to 
the algorithm that records the 

occupancy data after a minimum 
user presence 

(+) Add an automatic routine to 
the algorithm that brings the 
count back to 0 when the dis-

played count is negative. 
(--) Enrich the system with the 

possibility of manually resetting 
rooms occupancy values in the 

presence of a wrong count (only 
in Administrator mode). 

Unexpected length of the period of 
time the room is occupied (for 

bathrooms). 
(An example is shown in Figure 7) 

The system detects: 
(a): T > 15 min 

(b): Irregular real-time user detec-
tion 

This fault is classified as Stuck 
values (a) and Noise (b). 

Too high distance of the camera from the 
to-be-detected area: irregular detection of 

users with a continuous detec-
tion/disappearance of a moving user, re-

sulting in wrong collected data, as if there 
were multiple users closely entering the 

room one after the other 

(++) Improve the deep learning 
algorithms for image recognition 

(--) Add new cameras and 
re-verify the system 

Elevated lighting contrast between different 
areas of corridors: irregular detection of us-

ers with a continuous detec-
tion/disappearance of a moving user, re-

sulting in wrong collected data, as if there 
were multiple users closely entering the 

room one after the other 

(++) Review the camera settings 
regarding lighting and contrast 

(--) Add a new camera in the 
brighter zone and re-verify the 

system 

Unexpected moment of the day in 
which the room is continuously 

occupied (for offices) 
The system detects: 

(a): O > 0 outside working hours 
(b): Irregular real-time user detec-

tion 
This fault is classified as Stuck 

values (a) and Noise (b). 

Too high distance of the camera from the 
to-be-detected area: irregular detection of 

users with a continuous detec-
tion/disappearance of a moving user, re-
sulting in wrong collected data as if there 
were multiple users closely entering the 

room one after the other. Due to the higher 
value of O than the real number of people in 

the room, when people leave, O does not 
return to zero, with remaining values of O > 

0 even after the end of the working day 

(++) Improve the deep learning 
algorithms for image recognition 

(--) Add new cameras and 
re-verify the system 
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Elevated lighting contrast between different 
areas of corridors: irregular detection of us-

ers with a continuous detec-
tion/disappearance of a moving user, re-
sulting in wrong collected data as if there 
were multiple users closely entering the 

room one after the other. Due to the higher 
value of O than the real number of people in 

the room, when people leave, O does not 
return to zero, with remaining values of O > 

0 even after the end of the working day 

(++) Review the camera settings 
regarding lighting and contrast 

(--) Add a new camera in the 
brighter zone and re-verify the 

system 

Difficulty detecting two people entering in a 
room close together and/or quickly. This 

causes wrong collected data as if there were 
multiple users closely entering the room one 
after the other. Due to the higher value of O 
than the real number of people in the room, 
when people leave, O does not return to ze-
ro, with remaining values of O > 0 even after 

the end of the working day 

(++) Possibility to ignore the re-
lated error, which does not affect 
the next phase of statistical data 
analysis for the definition of the 

occupancy pattern 
(--) Add a new camera allowing a 

multiple detection of the same 
area and re-verify the system 

Difficulty detecting cleaning employees due 
to the presence of the cleaning trolley, which 

impedes a complete view of the operator. 
Therefore, often the cleaning employee is 

detected entering the room (O = +1) but not 
leaving, so the value O remains unchanged 

(++) Optimization and training of 
the recognition algorithm to 

identify the cleaning trolley by 
excluding the cleaning service 

employee in the occupancy count 
(--) Add a new camera allowing a 

multiple detection of the same 
area and re-verify the system 

The first test campaign highlighted the following issues: 
• Difficulty of the system in detecting two people entering in a room close together 

and/or quickly; 
• Issues in the detection of two people walking in a corridor towards a sensor, since 

the person further away from the camera is not detected. The error occurs in all ar-
eas not covered by the fields of view of two cameras at the same time; 

• Irregular detection of users with a continuous detection/disappearance of a moving 
user due to the high distance between the camera and the to-be-detected area. This 
issue was in fact detected mainly in areas far from the sensors. 
The identified issues are mainly due to the geometry of corridors, which are low 

ceiling, long, and narrow. Due to the limited height of the corridor, the cameras struggle 
in detecting people walking in groups or lined up (Figure 10). The issues led to an in-
correct user detection affecting the displayed data in the online platform. However, while 
the possibility of having people walking lined up or in groups in corridors is relatively 
high, the probability of two or more people entering a room simultaneously is low, due to 
the standard dimensions of the doors, that allow the entrance of one person at a time. For 
this reason, it is possible to ignore these issues. To overcome the issue related to irregular 
detection of users due to the distance of areas from the camera, improvement in the deep 
learning algorithms for image recognition were implemented. 
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Figure 10. Location and orientation of camera-based sensors in corridor. 

Considering the online platform, a major issue was related to the values indicating 
the presence of people in the rooms showing a negative value or a high positive value. 
This means that, according to the collected data, many people were entering or leaving 
the room in a very short time. Automatic routines to solve and mitigate incorrect data 
have been implemented to the software: 
• Automatism that brings the count back to 0 when the displayed count is negative; 
• Possibility to manually reset rooms that present a wrong count; 
• Automatic routine that records the occupancy data after a minimum user presence 

(i.e., 5 min) for office spaces only. 
The improvement of the automatic routine solves the related problem of users’ be-

havior that deceive the detection system, such as standing in front of the door when 
opening the office or talking right in front of the entry of a room. 

After the modifications and improvements applied, data have been collected for a 
period of three months from July to October 2020, excluding August for lower building 
occupancy due to summer holidays, to verify the effectiveness of the strategies adopted. 

The qualitative analysis of the second dataset highlighted a general improvement in 
detection capabilities of the system, since technical issues were not identified anymore, 
but some faults occurred anyway. Therefore, a second real-time test campaign was car-
ried out in November 2020, resulting in the following sensor-related issues: 
• Difficulty in detecting users at the end of the corridors due to the presence of win-

dows. The intense natural light generates a high luminous contrast between the 
central part of the corridor and the terminal part. The light contrast of the two zones 
generates an unstable detection of users. The detecting issue related to lighting con-
trasts of different zones of the building was only discovered in the second test 
campaign and not during the previous test. Considering the location of the building 
(Milan, 45°28′46.8″ N 9°13′48.0″ E), the sun is low in the sky during the winter season. 
This can generate detection issues related to lighting contrast, which cannot be de-
tected during others seasons of the year, which explains the newly emerged detec-
tion issue, since the first test campaign had been performed in May. Therefore, 
conducting several tests during different periods of the day and year is strongly 
recommended for camera-based sensor systems. A preferable solution to overcome 
the lighting contrast issue is modifying the settings of the camera to correct the 
lighting contrast. 

• Failure in detecting the users’ entrance due to other kind of obstructions such as 
open doors. Specifically, the doors opening towards the corridor can obstruct the 
view of the adjacent room entrance, preventing the system from registering users 
entering the room (Figure 11). The issue can only be managed by adding new cam-
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eras to cover the unexpected blind spots. The issue was unexpected, since doors are 
usually kept closed when offices are occupied. 

• Issues in the recognition of cleaning service company employees. The system strug-
gled in detecting the workers due to the presence of the cleaning trolley, which im-
peded a complete view of the operator. The cleaning trolley provoked an incorrect 
counting of entries, exits, and occupancy of the rooms. To overcome the issue, the 
recognition algorithm can be optimized and trained to correctly recognize the 
cleaning service operator, by recognizing the cleaning trolley. 

 
Figure 11. Unexpected blind zone generated by unusual occupants’ behavior. 

Figure 12 presents the percentages of error types detected during the two test cam-
paigns. During the first test campaign, 30 out of 70 monitored rooms presented detection 
faults, while during the second test campaign, 38 rooms presented detection issues. The 
reason of the higher number of faults during the second test campaign is mainly due to 
the lighting issues that emerged only during the second test campaign. 

During the first test campaign, 70% of errors were related to technical issues: 17% of 
errors due to not-working cameras, and 53% of errors due to difficulty detecting users in 
areas too far from the camera-based sensors. As shown in Figure 12, these types of tech-
nical issues were completely fixed by adjusting the system settings. Once all cameras 
were properly working and correctly set, those issues did not occur in subsequent anal-
yses. 

Another type of issue detected in the first test campaign was related to unexpected 
user behavior, resulting in 30% of errors. These errors could be adjusted with some im-
provements in the system. However, a 3% of errors due to unexpected user behavior 
occurred also during the second test campaign. Despite the error percentage being sig-
nificantly lower in the second test campaign, this type of error could not be completely 
avoided because of the unpredictable nature and high variability of user behavior. 

Regarding the second test campaign, elevated lighting contrasts between different 
areas of corridors caused 68% of errors. This kind of error was never detected during the 
first test campaign because of the different period of the year when the test was per-
formed, a key aspect for proper calibration of a camera-based sensors system. 
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Figure 12. Charts of errors detected during first and second test campaigns. 

The remaining 30% of errors of the second test campaign were related to difficulties 
detecting the cleaning employee (18%) and to obstructions and obstacles that impeded 
the detection (11%). Cleaning employee detection issues were classified as a technical 
error in the first campaign. After the resolution of technical issues, the error persisted, 
and the actual cause was identified, highlighting the importance of a multi-stage testing 
of the system. Detection issues related to obstacles and obstructions appeared because 
some pieces of furniture were moved or spaces were reorganized. The frequent check of 
the correct functioning of the system overtime is fundamental to verify newly appeared 
issues and consequently adjust and improve the system. 

A comparison of these results with other systems could be helpful to provide an 
assessment of the proposed system. As previously underlined, the setting and calibration 
of monitoring system has frequently been neglected in existing literature, and the accu-
racy of IoT systems applied to DTs is often taken for granted. Available data regard, as 
shown in Table 1, the accuracy of specific sensors’ typologies, but do not address the 
accuracy of systems, which depends on several variables, e.g., building features and use, 
number of sensors, etc. The test campaigns here presented have been used to explore and 
improve the efficiency of the entire systems of DT. 

For this reasons, these results obtained from the case-study building cannot be 
compared to other systems, based on different typologies of sensors. The provided case 
study application is useful to define guidelines to calibrate IoT camera-based sensors 
system. 
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7. Conclusions and Further Developments 
This work presents the development of first steps of an ongoing research project to 

define a Building Management System (BMS) for facility management, especially re-
garding the occupancy and cleaning activities in office buildings that would be based on 
an occupancy-oriented Digital Twin (DT). The proposed BMS would ensure better space 
management, organization, and cleaning, since the system would detect actual occu-
pancy levels and related needs for cleaning activities. The advantages result in optimiza-
tions of cost and space use, as well as customized cleaning activities and contracts. 

In particular, this study presented the IoT system calibration phases, i.e., the pre-
liminary analyses to optimize the planning of the IoT camera-based sensors system, and 
the test campaigns, in order to ensure the system efficiency and accuracy to monitor oc-
cupancy. A key aspect of the definition of a DT has been in fact identified in the data 
connection between physical asset and virtual counterpart, the main components of a DT. 
In addition, the data quality is a critical aspect to ensure the quality of the results of the 
analyses, simulations, and predictions performed on the virtual model. 

The case study section highlighted that the preliminary analyses, i.e., Indicative 
Post-Occupancy Evaluations (POE) supported by the use of the BIM model, were im-
portant to plan the IoT system, in particular as regards number, locations, and orientation 
of the sensors. The analyses allowed the identification of offices and bathrooms as main 
spaces to be monitored. In addition, the observed configuration of building spaces al-
lowed planning the sensors installation only in corridors, from which it is possible to 
detect entries and exits from the different rooms. The BIM model allowed for simulations 
of sensors location and fields-of-view. 

As regards the two test campaigns results, some system faults and related causes 
were identified and solved. The issues generated by user behavior were the least pre-
dictable, trivial, and at the same time the most difficult and expensive to solve, requiring 
the installation of new cameras. The variability of human behavior inside a building is 
very high; the calibration of the system must cover a sufficient period of time to bring out 
all problems related to human behaviors. Considering the complexity of the monitoring 
system and the high dynamicity of the variables involved (e.g., fast-changing spatial 
conditions and user behavior), a multi-stage test and calibration campaign was funda-
mental for the correct setting of a camera-based sensor system. 

Another interesting aspect resulting from the test campaigns was the influence that 
the period of the year had on the test itself, due to changing lighting conditions. 

Other relevant aspects are the geometric features of the to-be-monitored spaces. For 
example, the limited width and height of the corridors led to some difficulties in detect-
ing more users moving together. However, those issues did not have critical effects on 
the collected data. The boundary conditions of the system should be carefully checked, as 
they could have negative consequences on collected data and on data analyses. 

The use of an online platform was useful to real-time check and evaluate data during 
the test campaigns, as well as to remote controlling the monitoring system. 

Once the system is tested and assessed, further developments of the research will 
regard the proper monitoring of the building. As of now, qualitative analyses have been 
performed on collected dataset to identify rough errors, and by means of the two test 
campaigns, the causes of the faults have been identified and solved. During the next 
phases of the research project, quantitative analyses will be conducted on collected da-
tasets, which will be the basis for the definition of the occupancy-oriented DT. DT anal-
yses and simulations, and resulting optimization scenarios, will be proposed and ana-
lyzed to identify real advantages and limitations of the proposed methodology. The 
proposed method, once completely tested and refined on the case study building, could 
be extended to large building stock, supporting the decision-making process of building 
owners and building managers. 
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Potential applications of the system would entail the integration of other kind of 
sensors to monitor Indoor Air Quality (IAQ), carbon dioxide, temperature, humidity, and 
Volatile Organic Compounds (VOC) levels, resulting in a more complete evaluation of 
the building conditions and Indoor Environmental Quality (IEQ). Sensors could play an 
important role for safety management purposes. The combined use of the system with 
Smart Contract and Blockchain technology could ensure increased network security, re-
liable data storage, traceability of data, and the possible automation of payments for 
cleaning activities. Cleaning contracts could in fact be customized based on the actual use 
of spaces, detected by the proposed system. 
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