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Abstract: Multi-task learning (MTL) approaches are actively used for various natural language pro-
cessing (NLP) tasks. The Multi-Task Deep Neural Network (MT-DNN) has contributed significantly
to improving the performance of natural language understanding (NLU) tasks. However, one draw-
back is that confusion about the language representation of various tasks arises during the training
of the MT-DNN model. Inspired by the internal-transfer weighting of MTL in medical imaging, we
introduce a Sequential and Intensive Weighted Language Modeling (SIWLM) scheme. The SIWLM
consists of two stages: (1) Sequential weighted learning (SWL), which trains a model to learn entire
tasks sequentially and concentrically, and (2) Intensive weighted learning (IWL), which enables the
model to focus on the central task. We apply this scheme to the MT-DNN model and call this model
the MTDNN-SIWLM. Our model achieves higher performance than the existing reference algorithms
on six out of the eight GLUE benchmark tasks. Moreover, our model outperforms MT-DNN by 0.77
on average on the overall task. Finally, we conducted a thorough empirical investigation to determine
the optimal weight for each GLUE task.

Keywords: language modeling; natural language understanding; neural networks; multi-task learn-
ing; supervised learning

1. Introduction

The importance of natural language understanding (NLU) technology based on deep
learning is being emphasized. Rule-based NLU is the previous approach of NLU that
relied on human-generated features. Therefore, it could not know about the unknown
words and requires significant time to extract the features. Conversely, deep-learning-
based NLU automatically extracts features and learns language representations [1]. Many
previous studies have demonstrated improved performance in various NLU tasks using
deep learning. However, as various deep-learning-based NLU models have been proposed,
datasets and indicators that can objectively evaluate them are needed. Accordingly, the
General Language Understanding Evaluation (GLUE) benchmark [2], which offers diverse
genres of NLU datasets, was introduced. Based on experiments that applied several deep
learning architectures (e.g., BiLSTM and ELMo [3]), the GLUE dataset became the most
popular measure of multi-task language models.

In recent years, multi-task learning (MTL) models—which, having been developed
from single-task learning, learn a general representation from various tasks’ datasets and
prevent overfitting of a specific task—have received considerable attention. Representative
MTL models include the multi-task deep neural network (MT-DNN) [4] and bidirectional
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associative memory (BAM) [5]. In MT-DNN, various tasks are simultaneously learned by
passing through shared layers and each task-specific layer. In contrast, BAM applies a
knowledge-distillation method that uses single-task models to teach a multi-task model.
However, MTL models have some drawbacks in performing a central task. The model
may become confused because all tasks are simultaneously trained with the same weights.
Moreover, the model cannot learn the central task thoroughly during MTL.

We compensate for these limitations by proposing a Sequential and Intensive Weighted
Language Modeling (SIWLM) scheme, inspired by Yang et al. [6]. SIWLM consists of Se-
quential Weighted Learning (SWL) and Intensive Weighted Learning (IWL). In SIWLM,
central task and auxiliary tasks have an initial task weight and all tasks have individually
adjusted weights during training. These adjusted weights are multiplied by the loss func-
tions. In SWL, the focused task is changed sequentially every 20 iterations. Furthermore,
the weights of all tasks except for the focused task are multiplied by 0.1. Thus, the model
can intensively learn the focused task over a given 20 iterations. In IWL, during all itera-
tions, the central task becomes the focused task. That is, the weights of auxiliary tasks are
multiplied by 0.1. Consequently, the model can sufficiently learn the central task.

We propose the optimal weight for each task belonging to the GLUE datasets. By ap-
plying that weight, the MTDNN-SIWLM achieves equal or higher performance on all
GLUE datasets except CoLA and RTE than the baseline model, MT-DNN, and SMART [7].
Furthermore, we found that the optimal weight is affected more by the data size than
the type of the task. Therefore, we propose a generalized range of weights based on the
data size.

2. Related Work

Language models based on a pre-training and fine-tuning paradigm achieve high
performance on many NLU tasks [8–10], including GLUE tasks. Bidirectional Encoder Rep-
resentations from Transformers (BERT) [11], a bidirectional model that consists of attention
layers, in contrast to the existing recurrent neural network (RNN) based models, has made
great strides in Natural Language Processing (NLP). XLNet [12] is another pre-trained lan-
guage model, combining the advantages of auto-encoding and autoregressive pre-training
methods. Along with this paradigm, several other models were introduced that improved
the pre-training method of BERT or changed the model structure. StructureBERT [13]
extends BERT by including language structure learning to predict the order of tokens and
sentences during unsupervised learning. By adding this method, it can capture word and
sentence structure bidirectionally. RoBERTa [14] optimizes BERT by altering pre-training
strategies and using more data to improve downstream task performance. DeBERTa [15]
obtained the second-highest performance for the glue benchmark using a disentangled
attention mechanism and an enhanced mask decoder.

In contrast to these approaches, MTL is a learning method that aims to improve
the overall performance of several tasks by simultaneously training related tasks on one
model [16–18]. MTL has two distinct advantages. First, a task with a relatively large
amount of labeled data can assist with the learning of another task that lacks labeled data.
Second, it can prevent models from overfitting to a specific task [19]. MT-DNN is an MTL
model based on the pre-trained BERT, and it demonstrated impressive performance in
general domain NLP tasks. ERNIE 2.0 [20], which uses continual pretraining and MTL
methods, obtained state-of-the-art result for the GLUE benchmark. However, MTL can
confuse a model and interfere with the learning of the central task [21]. For addressing this
problem, HMTL [22] proposed a hierarchical MTL model that trained a low-complexity task
first, followed by high-complexity tasks. Wu et al. [23] proposed a method of quantifying
similarities between datasets, and they conduct MTL using part of the GLUE dataset.

In the medical computer vision domain, a successful method has been suggested to
solve model confusion in MTL. Yang et al. [6], using four auxiliary tasks to improve lung
cancer prediction, introduced the Periodic Focusing Learning Policy (PFLP) and Internal-
Transfer Weighting (ITW). However, the format of data used in this paper differs from NLP.
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In NLP, there are different input data formats and labels for each task. Furthermore, in
the medical image MTL, one image has various annotations. Inspired by this approach,
we present an SIWLM scheme that can be applied to an MTL model in NLP. With this
scheme, our model can concentrate on all tasks sequentially while focusing on the central
task. Figure 1 depicts an overview of MTDNN-SIWLM. Each component is covered in
more detail in the next section.
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(SIWLM) scheme to MTL.

3. Methodology
3.1. Multi-Task Learning (MTL)

MT-DNN, which we used as the baseline model, is an MTL model that learns repre-
sentation from several tasks simultaneously. MT-DNN consists of the shared layers and
task-specific layers.

The shared layers follow the architecture of the Transformer encoder [24]. Similar to
the form of the Transformer input, the input is a sequence of tokens resenting one or two
sentences. For the model recognizing the individual sentences, the special token [SEP] is
inserted at the end of each sequence. Furthermore, the first token is always [CLS] and its
contextual embedding is used in the task-specific layers. We feed the input tokens into the
Lexicon encoder and the Transformer encoder successively. In the lexicon encoder, word,
segment, and positional embedding vectors are generated from the input tokens and are
added as input embedding vectors. Subsequently, we pass the input embedding vectors
into the Transformer encoder to extract contextual embedding vectors. MT-DNN learns
sufficient language representation by performing MTL on the pre-trained language models,
such as BERT and RoBERTa.

The contextual embedding vectors from the shared layers are passed into the task-
specific layers using different loss functions based on their task type. Classification tasks,
such as CoLA, SST-2, MNLI, MRPC, QQP, RTE, and QNLI, use the cross-entropy loss even
though their input formats are different. In contrast, STS-B, which is the regression task,
uses the mean squared error.
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3.2. Sequential and Intensive Weighted Language Modeling (SIWLM)

We denote the task that we target for improved performance as a central task and the
remainder as auxiliary tasks. Furthermore, a task focused on in each iteration is termed a
focusing task.

SIWLM is learning scheme that adjusts the weights to be multiplied by the loss
functions. In this scheme, all tasks have fixed initial weights, and each task is weight-
adjusted from the initial weight during training. SIWLM consists of two stages: Sequential
Weighted Learning (SWL) and Intensive Weighted Learning (IWL). In the SWL stage, all
tasks used for the MTL have opportunities to be dominantly trained. In the IWL stage, only
the central task that aims to obtain higher performance through MTL is intensively learned.

Algorithm 1 describes the process of SIWLM in more detail. Each mini-batch consists
of one type of dataset, and the model is aware of the type of each batch during training.
Model training has two stages: SWL for odd epochs and IWL for even epochs.

Algorithm 1 Sequential and intensive weighted learning.
Input: Dataset Dn, task type Tn, initial weight iwn when n is a dataset id (1≤ n ≤ N, N is

the number of datasets)
1: Initialize shared layers as BERT pretrained model
2: for T in T1, T2, ..., TN do
3: Append a specific layer for T
4: end for
5: Merge D1, D2, ..., DN into D
6: Divide D into mini-batches B={b1, b2, ..., bk} (k is the number of mini-batches and each

mini-batch consists of only one dataset)
7: for epoch in 1, 2, ..., N do
8: if epoch is odd then . SWL
9: i← 0

10: Set the central task to a focusing task
11: for b in B do
12: n← dataset id of b
13: if i is 20 then
14: Change the focusing task
15: i← 0
16: end if
17: awn ← 1 (awn denotes an adjusted weight)
18: if b is not the focusing task then
19: awn ← iwn ∗ 0.1
20: end if
21: Compute loss
22: loss← loss ∗ awn
23: Update model
24: i← i + 1
25: end for
26: else . IWL
27: for b in B do
28: n← dataset id of b
29: awn ← 1
30: if b is not the central task then
31: awn ← iwn ∗ 0.1
32: end if
33: Compute loss
34: loss← loss ∗ awn
35: Update model
36: end for
37: end if
38: end for
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In the SWL stage, one task to be trained with high weight is selected as a focusing task
every 20 iterations. Because all tasks are sequentially selected as the focusing task, all tasks
are assigned equal opportunities to be learned in-depth. We concentrate on the focusing
task by computing adjusted weights, multiplying 0.1 to initial task weights except for the
focusing task. Moreover, to update the model to reflect the weights of tasks, the computed
loss values are multiplied by the adjusted weights. This approach is iterated over all
iterations, enabling the model to learn all tasks.

After the SWL stage, we use IWL to concentrate on the central task. In the IWL stage,
the weight of the auxiliary tasks is multiplied by 0.1, which is the purpose of performance
improvement in the central task. In contrast to in the SWL stage, the adjusted task weights
are maintained throughout all iterations without any change. The task weight used in IWL
is also multiplied by the loss to adjust the impact of each task on learning representation.
In this stage, because the central task has a high weight during all iterations, the central
task can be learned intensively.

Figure 2 illustrates an example of applying SIWLM to eight tasks in GLUE. This exam-
ple demonstrates how SIWLM is applied when RTE is a central task and the initial weights
for each task are set to [6:1:1:1:1:1:1:1]. In the SWL stage, all learning tasks used for learning
are sequentially selected as focusing tasks every 20 iterations. During the first 20 iterations,
RTE is selected as the focusing task, and the weight of each task except RTE is multiplied
by 0.1. During the next 20 iterations, SST-2 is selected as the focusing task and the weight
of each task except SST-2 is multiplied by 0.1. The training proceeds for 20 iterations with
a weight of [0.6:1:0.1:0.1:0.1:0.1:0.1:0.1]. This method is repeated for all iterations in the
form of a loop, as depicted in Figure 2. In the IWL stage, learning is focused only on the
central task, RTE. Learning is conducted for all iterations by multiplying the remaining
task weights, excluding the RTE weight, by 0.1.

Figure 2. Example of weight-adjustment process applied to loss weighted sum. In this example, RTE
is the central task and is underlined in the figure. The focusing tasks in the SWL stage are indicated
by the bold red font. For each epoch, the SWL and IWL stages are applied alternately. In the SWL
stage, the focusing task is changed every 20 iterations and the initial weight of each task except the
focusing task is multiplied by 0.1. In contrast, in the IWL stage, the central task is fixed as a focusing
task and the initial weights of all auxiliary tasks are multiplied by 0.1.



Appl. Sci. 2021, 11, 3095 6 of 11

3.3. Fine-Tuning

We fine-tune the trained model for each GLUE dataset after training it using MTL
with the SIWLM scheme. We use the SMoothness-inducing Adversarial Regularization
and BRegman pRoximal poinT opTimization (SMART) learning method proposed by
Jiang et al. [7] for fine-tuning. SMART improves generalization with smoothness-inducing
regularization, which does not change the model’s output if it injects a small perturbation.
The researchers also propose a Bregman proximal point optimization that updates only in
little neighborhoods of the previous iteration. Accordingly, SMART prevents aggressive
training during the fine-tuning process. Finally, these ingredients prevent the model from
overfitting even after fine-tuning. We evaluated our SIWLM performance, as depicted
in Section 5, with a SMART model that applies the SMART fine-tuning method to the
MT-DNN model.

4. Experiments
4.1. Datasets and Metrics

The primary purpose of our experiment is to determine whether the SIWLM scheme
can improve the MTL model, such as MT-DNN and SMART. Accordingly, we used
the GLUE benchmark commonly used by MTL models as a dataset for the experiment.
The number of training examples used in the experiment are listed in Table 1.

Table 1. Number of training examples.

Dataset The Number of Training Examples

MNLI 393 k
QQP 364 k
QNLI 108 k
SST-2 67 k
CoLA 8.5 k
STS-B 7 k
MRPC 3.7 k
RTE 2.5 k

4.1.1. Single-Sentence Classification

CoLA The Corpus of Linguistic Acceptability [25] is proposed to determine the gram-
matical acceptability of English sentences from published linguistics literature. Each
sentence is annotated with 0 or 1, respectively, representing acceptable or unacceptable.

SST-2 The Stanford Sentiment Treebank [26] is a corpus for a sentiment classification
of movie reviews. Each review sentence has a human annotation: positive is 1, and negative
is 0.

4.1.2. Pairwise Text Similarity

STS-B The Semantic Textual Similarity Benchmark [27] is a corpus of sentence pairs
driven from news headlines, image captions, and user forums. The task of STS-B is to
predict the semantic similarity score between two sentences. Each pair is annotated with a
similarity score from 1 to 5.

4.1.3. Pairwise Text Classification

MNLI The Multi-Genre Natural Language Inference Corpus [28] is a corpus of sen-
tence pairs with textual entailment annotations. A pair of sentences is comprised of a
premise sentence and a hypothesis sentence. The task is to determine whether the premise
entails the hypothesis, contradicts the hypothesis, or neither. Accordingly, it has three
labels: entailment, contradiction, and neutral.

RTE The Recognizing Textual Entailment is a textual entailment dataset, which is a
combination of RTE1 [29], RTE2 [30], RTE3 [31], and RTE5 [32]. GLUE’s authors modified
some datasets annotated with three kinds of labels to two: entailment and not_entailment.
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QQP The Quora Question Pairs [2] is a dataset of question pairs drawn from social
question-answering domain. This task’s goal is to predict whether question pairs are
semantically equivalent or not. This dataset consists of two labels: 0 is negative, implying
that the questions in a pair are not semantically equivalent, and 1 is positive

MRPC The Microsoft Research Paraphrase Corpus [33] is a corpus of sentence pairs
comprised of sentences automatically extended from online news. As in QQP, the task is
to determine whether the sentences in the pair are semantically equivalent or not. Each
sentence is annotated 0 or 1, where 0 is negative, implying that the sentences in a pair are
not semantically equivalent, and 1 is positive.

4.1.4. Pairwise Ranking

QNLI The Question-answering NLI [34] is a corpus of question–context sentence pairs
that modify the Stanford QA dataset which consists of question–paragraph pairs. The task
with QNLI is to predict whether a context contains the answer to a given question. Each
pair is annotated as entailment or not_entailment.

4.2. Experiment Setting
4.2.1. Competing Models

We reproduce the performance of three MTL models and BERT for comparison with
our model. The competing models are as follows:

• BERT: A model with an additional task -specific layer added to the uncased BERT-base
model. We fine-tune the pretrained model with each GLUE dataset.

• BAM: A model that performs MTL using knowledge distillation and exhibits high
performance in the GLUE benchmark.

• MT-DNN: An MTL model that uses a pretrained BERT as an encoder and learns each
task in parallel.

• SMART: A model that outperforms MT-DNN in many NLP tasks by applying a new
fine-tuning technique to MT-DNN.

• MTDNN-SIWLM: An MT-DNN model that uses our SIWLM scheme.

4.2.2. Implementation Details

We used three V100 GPUs, while SMART used eight V100 GPUs. We compared our
model with SMART in the same environment by reproducing performance using SMART
with BERT-base. We used the same hyperparameter reported in Liu et al. [4] for MTL: a
learning rate of 5 × 10−5, a batch size of 32, and the Adamax optimizer. The number of
epochs is set to 5. Furthermore, for the fine-tuning stage, we followed the hyperparameter
range suggested by Jiang et al. [7]: a learning rate ∈ {1× 10−5 2× 10−5, 3× 10−5, 5× 10−5},
a batch size ∈ {16, 32, 64} and the Adam optimizer. The maximum number of epochs is set
to 5. Consequently, when comparing the SMART model with our model, the possibility
that factors other than the SIWLM scheme affect the performance is minimized. The source
code is available at https://github.com/sonsuhyune/SIWLM (accessed on 30 March 2021).

We set the initial task weights as {1:1:1:1:1:1:1:1, 3:1:1:1:1:1:1:1, 6:1:1:1:1:1:1:1, 9:1:1:1:1:1:
1:1, 12:1:1: 1:1:1:1:1, 15:1:1:1:1:1:1:1}. The first values in the task weights are for a central
task. The first value of the weight is set to a maximum of 15 because all tasks except RTE
exhibited the highest performance before having a weight of 15. The results are reported in
Table 2.

https://github.com/sonsuhyune/SIWLM
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Table 2. Validation performance of MTDNN-SIWLM are reported; highest results are in bold font.

Task Weight MNLI-m/mm
Acc

QQP
Acc/F1

QNLI
Acc

SST-2
Acc

CoLA
Acc/Mcc

STS-B
P/S Corr MRPC Acc/F1 RTE Acc

1 84.65/84.30 90.61/87.36 91.01 92.54 80.92/52.65 88.01/87.97 87.00/90.20 76.17
3 84.52/84.35 90.76/87.56 91.23 92.54 81.20/53.39 88.05/88.16 86.76/90.14 75.81
6 84.34/84.60 90.80/87.61 91.14 92.88 81.11/53.18 87.83/87.90 86.76/90.21 77.25
9 84.51/84.55 90.73/87.49 91.36 92.66 80.72/52.06 88.02/88.20 87.99/90.90 77.61
12 84.37/84.46 90.79/87.61 91.06 92.77 81.30/53.64 87.91/87.99 87.99/91.04 77.25
15 84.52/84.54 90.59/87.70 91.15 92.20 80.92/52.69 87.83/87.98 87.01/90.31 77.98

5. Results and Analysis

We conduct experiments on all datasets with weights of the central task ∈ {1, 3, 6,
9, 12, 15}, which are specified in the experiment setting. The validation performance of
MTDNN-SIWLM is depicted in Table 2. Each row of the table represents the weight of the
central task, and the weights of the auxiliary tasks are all set to 1. In the case of MNLI, the
validation and test datasets had matched or mismatched versions, and the weight settings
for the highest performance in each version differed, at 1 and 6. We use accuracy/F1
and Pearson/Spearman for the evaluation metrics of QQP and STS-B, respectively. STS-B
performed best in different weights for each metric.

MNLI, QQP, QNLI, and SST-2 with large data sizes generally exhibit higher perfor-
mance when the weight of the central task is less than 6. For CoLA, STS-B, MRPC, and RTE,
which have a small data size, it was found that when a weight of 9 or more was applied,
the performance was enhanced more in most cases. Consequently, applying equal weights
when performing MTL on a small dataset may increase performance improvement.

Figure 3a illustrates the accuracy variance of each dataset according to the task weight
change. The x-axis indicates the weight of the central task, as used in Table 2. The y-axis
indicates the difference between the minimum accuracy and the accuracy for each weight
setting in one dataset. We use the same evaluation index for all datasets by expressing ac-
curacy in this graph. Moreover, STS-B, which does not use the accuracy metric, is excluded
from the graph.

Furthermore, in Figure 3b, only pairwise text classification tasks (MNLI-m, QQP,
MRPC and RTE) are represented to exclude performance differences caused by the dif-
ferences in the task type. The value indicated by each axis is the same as in Figure 3a.
As depicted in Figure 3b, for RTE and MRPC with small data sizes, the accuracy variance
according to the task weight is relatively large. In contrast, MNLI-m and QQP with large
data sizes have low accuracy variance. The smaller the data size, the more performance
change is affected by the task weight.

Figure 3. Accuracy variance according to the task weight change. (a) amount of change in accuracy
for each dataset except STS-B; (b) amount of change in accuracy for four datasets belonging to the
Pairwise Text Classification. Accuracy difference = (accuracy at each weight −minimum accuracy).
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We fine-tune the model with the highest performance in Table 2. We achieve the
highest performing model by averaging the performance of MNLI-m and MNLI-mm. For
two metrics among QQP, STS-B, and MRPC, we attain the highest performance model
by averaging performance. We demonstrate that our model is superior to other MTL-
based models by comparing the validation performance the validation performance to
three representative MTL models and the BERT model. As shown in Table 3, models
using MTL outperform BERT. BAM exhibits the highest performance for MNLI and RTE.
MTDNN presents the highest performance for STS-B, and SMART for MNLI and CoLA.
Our model—using the SIWLM scheme—exhibits the highest performance for QQP, QNLI,
SST-2, and MRPC.

Table 3. Validation performance of reproduced models and MTDNN-SIWLM. The best result is in bold font and the
second-best result is underlined. For STS-B, we attain the performance by averaging the Pearson and Spearman correlations.

MNLI-m/mm Acc QQP Acc QNLI Acc SST-2 Acc CoLA Mcc STS-B Avg MRPC Acc RTE Acc

BERT [11] 84.1 90.8 91.2 93.0 52.8 83.7 86.5 67.1
BAM [5] 84.9 91.0 91.4 92.8 56.3 86.9 88.5 82.7

MT-DNN [4] 84.0 89.5 91.4 92.1 53.1 89.6 89.7 78.7
SMART [7] 84.9 91.4 91.8 91.6 58.5 85.7 87.2 79.7

MTDNN-SIWLM 84.8 91.5 92.0 93.2 57.0 86.7 90.4 79.0

We compare the performance of our model to MT-DNN and SMART, our baseline
models. As depicted in Table 4, the best result for each task is in bold font, and the second-
best result is underlined. MTDNN-SIWLM outperforms MT-DNN and SMART in six tasks
(MNLI, QQP, QNLI, SST-2, MRPC, and RTE) than MT-DNN and SMART. Moreover, it has
the second-best performance in CoLA and STS-B. MTDNN-SIWLM achieves accuracies
of 84.8% and 84.0% in MNLI-m and MNLI-mm, outperforming SMART by 0.1% and
0.8%. QQP and SST-2, respectively, present improvements of 0.1% for F1 score and 0.7% for
accuracy compared with SMART. STS-B exhibits improved performance for both evaluation
indexes, with increases of 1.25% and 1.3% for Pearson and Spearman, respectively. MRPC
and RTE, with small data sizes, demonstrate accuracy improvements of 4.1% and 5.6%.

Table 4. Fine-tuned results for eight tasks of GLUE. The best result is in bold font and the second-best result is underlined.
For two metrics, we attain the highest performance model by averaging two performances. These GLUE test set results
were measured using the GLUE evaluation server on 19 January 2021.

MNLI-m/mm
Acc QQP Acc/F1 QNLI Acc SST-2

Acc CoLA Mcc STS-B
P/S Corr

MRPC
Acc/F1 RTE Acc

MT-DNN [4] 84.2/83.0 71.4/89.1 90.9 93.1 50.1 87.4/86.8 86.4/89.8 75.5
SMART [7] 84.7/83.2 89.5/71.6 91.7 92.5 55.2 82.6/81.0 86.6/89.8 72.7

MTDNN-SIWLM 84.8/84.0 89.4/71.7 91.7 93.8 53.1 83.8/82.3 90.7/87.6 77.1

6. Conclusions

In this study, we introduce an SIWLM scheme consisting of SWL and IWL to solve
a model confusion problem in MTL in NLP. With this scheme, the model can thoroughly
learn all tasks while still strengthening its understanding of the central task. In comparing
our model with the MT-DNN and SMART models, our model demonstrated the highest
performance for the GLUE benchmark tasks excluding CoLA and STS-B. This result con-
firms that the SIWLM scheme contributes to the performance improvement of the MTL
model. Furthermore, based on experiments using various weights, when the data size is
large, the performance improves more when the weight of the central task is less than 6.
Conversely, when the data size is small, the performance is improved even more when a
weight of 9 or more is applied. Moreover, we find that the performance variance is large in
the small data size task, whereas the weight application method is more effective under
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such a condition. The proposed SIWLM-based learning scheme can be applied to other
MTL models to improve learning efficiency and prediction accuracy, especially for tasks
with small datasets.

While our approach outperforms the MT-DNN model in most GLUE datasets, there are
still several possible directions for improving our model. We searched optimal weights for
each task through several experiments. However, our optimization method is expensive,
and we must find optimal weights when new tasks are added. Therefore, we seek to
investigate a scheme that enables a general weight regardless of tasks. Future studies
can apply our SIWLM scheme to MTL architectures in various fields [35–37] to improve
their performance. Furthermore, additional training on other NLU datasets such as Super-
GLUE [38] may help reinforce our model.
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