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Abstract: Human activity recognition (HAR) using wearable sensors has benefited much less from
recent advances in Deep Learning than fields such as computer vision and natural language pro-
cessing. This is, to a large extent, due to the lack of large scale (as compared to computer vision)
repositories of labeled training data for sensor-based HAR tasks. Thus, for example, ImageNet has
images for around 100,000 categories (based on WordNet) with on average 1000 images per category
(therefore up to 100,000,000 samples). The Kinetics-700 video activity data set has 650,000 video
clips covering 700 different human activities (in total over 1800 h). By contrast, the total length of
all sensor-based HAR data sets in the popular UCI machine learning repository is less than 63 h,
with around 38 of those consisting of simple mode of locomotion activities like walking, standing or
cycling. In our research we aim to facilitate the use of online videos, which exist in ample quantities
for most activities and are much easier to label than sensor data, to simulate labeled wearable motion
sensor data. In previous work we already demonstrated some preliminary results in this direction,
focusing on very simple, activity specific simulation models and a single sensor modality (acceler-
ation norm). In this paper, we show how we can train a regression model on generic motions for
both accelerometer and gyro signals and then apply it to videos of the target activities to generate
synthetic Inertial Measurement Units (IMU) data (acceleration and gyro norms) that can be used
to train and/or improve HAR models. We demonstrate that systems trained on simulated data
generated by our regression model can come to within around 10% of the mean F1 score of a system
trained on real sensor data. Furthermore, we show that by either including a small amount of real
sensor data for model calibration or simply leveraging the fact that (in general) we can easily generate
much more simulated data from video than we can collect its real version, the advantage of the latter
can eventually be equalized.

Keywords: activity recognition; data augmentation; pose estimation; deep learning

1. Introduction and Related Work

Human activity recognition (HAR) using wearable sensors has been a successful
research field [1,2] for nearly two decades. There has been the expectation that as large
amounts of sensor data become available, HAR will be able to benefit from the advances
in Deep Learning techniques in the same way as fields, such as computer vision and
speech recognition [3,4]. However, while the application of deep learning methods to HAR
has produced undeniable advances [2], the progress has so far been far less significant
than computer vision or NLP. Thus for example in recent HAR competitions, most deep
learning entries are out-performed by classical machine learning methods, namely random
forests [5], while in computer vision, deep learning techniques have dominated since
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2012 [6] and beyond [7]. To a large degree this can be attributed to the difficulty of acquiring
labeled sensor data from complex realistic scenarios. Consider for example the UCI
machine learning repository, a popular machine learning repository. While it contains
many datasets for HAR using Inertial Measurement Units (IMUs), their combined volume
is less than 63 h, with around 38 of those consisting of simple mode of locomotion activities
like walking, standing or cycling. Probably the most popular benchmark datasets in
the wearable sensing HAR community are PAMAP2 [8,9] and Opportunity [10,11] with,
respectively, less than 8 h of labeled data and less than 14 even if we count all activity
granularities. By contrast a well known computer vision repository, ImageNet [12] has
images for around 100’000 categories (based on WordNet) with on average 1000 images
per category (making it up to 100’000’000 samples). A big HAR related video data set, the
Kinetics-700 [13] has 650,000 video clips covering 700 different human activities. With each
clip lasting 10 s this is over 1800 h!

There are two main reasons why there are much more image/video data than sensor-
based HAR data. First, while more and more people are wearing sensor enabled devices
(e.g., fitness trackers) and often uploading to respective platforms, this pales in comparison
to those just snapping a picture or making a quick video clip and uploading it to an online
repository. Thus, today there are billions of images and videos freely available online, but
much less sensor data, even less publicly available. Second, videos can be quickly and
easily labeled using crowdsourcing services such as Amazon Mechanical Turk (this is how
most ImageNet images were labeled), by leveraging captions, or known topics of image
collections. By contrast, labeling sensor data is much more difficult, as interpreting raw
sensor data can be challenging even for experts. As a consequence, using crowdsourcing
for labeling large amounts of sensor data is not a viable option.

The top level goal of our work is to develop a methodology to allow converting videos
of human activities into synthetic sensor inertial measurement unit (IMU) data and

thus potentially make all the video based HAR datasets usable for training
sensor-based HAR systems.

1.1. Paper Contributions

Recently the idea of using labeled videos to generate “synthetic” sensor data has
been proposed as a solution for the HAR training data problem. As one of the first
published approaches in this direction we have previously shown [14] initial results on
how regression models can be trained to simulate motion sensor data from videos of the
respective activities. In that preliminary work we relied on recordings that contained sensor
data and videos of the same activities that we later wanted to have the system generate the
sensor data for. In this paper, we describe the full development and evaluation of that
initial idea making the following contributions:

1. We have adapted the method to generalise outside the target exercises. Our model
can now be trained on other subjects performing a set of “generic” motions selected
to be representative of a broad domain. Using this generic regression model, we can
generate synthetic training data for a variety of different activities.

2. We have performed and described an in depth analysis of the physical background of
deriving different components of the IMU signal and have shown how to simulate
different sensor signals beyond acceleration norm.

3. We have performed an analysis of the influence of various signal processing tech-
niques on the quality of the simulated sensor signal.

4. We have proposed and implemented a new deep neural network based regression
model for the generation of simulated sensor data from videos. Compared to our
previous work, we now have one regression network per sensor position, which
helped reduce overfitting the training motions.

5. We have identified a set of generic motions suitable for training the regression model
for the broad domain of aerobics like physical exercises, recorded a dataset containing
appropriate video footage and sensor data and used it to train the above model.
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6. We have performed an evaluation on an activity recognition task from the above broad
domain of aerobic like exercises for which we have also recorded our own dataset.
We have both collected and used as source of simulated training data appropriate
online videos. Our analysis includes testing the influence of simulating different
sensor modalities and adding small amounts of real sensor data to the simulated one
to further improve accuracy. Compared to our previous preliminary work [14], we
achieve significantly better results, although the problem that we tackle (using generic
motions for training the regression model) is a harder one. Overall we show that

(a) Systems trained on simulated data generated by our regression model and
tested on real sensor data can achieve a recognition performance that is within
10% of the recognition performance achieved by a model trained on the corre-
sponding real sensor data.

(b) By increasing the amount of simulated data, we can match the performance of
a real signal based model trained on less data. Results so far indicate about a
factor of 2 to be needed. This is in line with the motivation behind this work,
which is the fact that a very large amount of videos are available for many
relevant activities online, which in turn means that we can get much more
training data if we can generate it from such videos (which we aim to enable).

(c) Adding even small amounts of real sensor data to fine tune the model gener-
ated on the basis of simulated data can improve the performance significantly.
In our experiments we found that real data from only 1 or 2 real users can al-
ready make the performance of a system trained on simulated data comparable
to one fully trained on real data.

Our method for using videos for training sensor-based activity recognition systems
follows the steps of Figure 1. First we record a dataset that contains a broad set of generic
motions typical for a given domain (e.g., physical exercise). This dataset contains both
an appropriate video recording and the corresponding data from on-body sensors. We
then train a regression model to map the videos onto the corresponding sensor data. The
development of this model is the main contribution of our work. Note that a regression
model needs to be generated only one time for a given broad domain. Once it is trained,
it can be repeatedly used to generate simulated sensor data for various arbitrary activity
recognition tasks from that respective domain. For each new recognition task a set of
labeled videos of the respective activities is first acquired (e.g., from YouTube). The videos
are then fed to the regression model (step 2) which converts it to simulated sensor data.
Obviously the labels for the sensor data are identical to the video labels. Thus we have
labeled training sensor data. We next use it to train a recognition model for the required
activities (step 3). Finally the trained model is used to recognize those activities from real
sensor data in the end application (step 4).

1.2. Related Work

Today in the wearable sensing community there is a broad consensus that obtaining
sufficient labeled training data is a key challenge facing the discipline. The use of online
information to generate such training data has recently been proposed as a promising
approach to address this challenge. While itself not solved and as yet not widely studied,
the problem of generation of sensor data from online information sources is closely related
to a number of established research fields. These include:

1. Simulation of IMU data directly from virtual environments (see Section 1.2.1).
2. Generation of 3D animations from 2D monocular videos (see Section 1.2.2).
3. Machine learning (ML) methods for generating signal variations such as Generative

Adversarial Networks (GANs) (see Section 1.2.3).
4. ML methods for predicting signal values in physical systems (see Section 1.2.4).
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Figure 1. The steps involved in applying our overall method. In step 1 we record video and sensor
data for a broad set of generic motions typical for a given domain. Using this data we train models
to map the videos onto the corresponding sensor data. Step 2 consists of acquiring for each new
recognition task a set of labeled videos of the respective activities from online repositories. The videos
are then fed to the regression models which generate their simulated sensor data. Since the labels for
the sensor data are identical to the video labels, we now have labeled training sensor data, which we
use to train a recognition model for the required activities (step 3). The final step is 4, where we use
the trained model to recognize those activities from real sensor data in the end application.

1.2.1. Simulating IMU Data Directly from 3D Trajectories in Virtual Environments

Many methods exist for simulating IMU data. For example, ref. [15–17] provide a
simulation environment where one can model human subjects with virtual sensor models
to allow experimentation and exploration in virtual space of scenarios in inertial sensing.
Depending on the application, specialised tools can be used. For example, there is ample
work in simulating foot IMU data for pedestrian dead reckoning [18]. In general many
tools exist in this field as simulation is useful for many projects [19,20], but one may also
use any existing physical simulator.

While many simulators exist, in general they fail to capture the diversity of human
motion and all the different ways different people can perform a given activity. Such
diversity can on the other hand be captured by extracting sensor data from videos of real
people executing the respective activities as proposed by our work.

1.2.2. Obtaining 3D Poses from Videos

Recently, pose estimation has become a very interesting and successful area of research,
with many applications. Obtaining 3D poses is possible with a calibrated system of more
than one camera [21]. Commercial systems that can extract poses using 2 cameras (among
other things) includes also kinect, which was used in other work [22] to obtain the 3D poses
and with it simulate IMU signals. Using a single camera is obviously more challenging.
Works in this area include [23–28]. Some works [24,27] predict the 2D joints and then fit
the 3D skeleton using different strategies, others [23,25,26] are trained to predict 3D joints
directly from the image. Even more interestingly, some methods predict both 2D and 3D
keypoints [28].
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While methods have achieved impressive results, the field is still evolving and the
task itself is far from easy due to occlusion, clothing, lighting, and the inherent ambiguity
in inferring 3D from 2D [29]. Thus, for the generation of IMU sensor data going directly
from 2D poses to IMU, values as proposed by this work is a promising alternative that
needs to be investigated.

1.2.3. Deep Learning Based Generation of Signal Variations

While more known in the computer vision community, GANs have shown great
promise also in mobile sensors where they have been used to augment datasets and even
improve models using semi-supervised learning [30,31]. Those works can generate new
sensor data for a specific dataset and label, relying on the data itself and not on the motions
of the subject. In other words, in a dataset where we are simulating a person walking,
they can generate more data for the sensors available in that dataset, but cannot simulate
what the data would be for sensors that were not deployed. This is very relevant as there
are many possible sensor placements and possible target activities, and thus being able to
simulate, based on the person’s poses, many different placements are necessary, especially
if one wants to use online video repositories to obtain sensor data for the target activities.
Another case where GANs provide sensor data is through domain adaptation [32], by
simulating the readings of one sensor, based on the reading of another one present. While
this can alleviate in part the cited restrictions, it requires the source sensor to contain
enough information to simulate the target one and is limited to a specific scenario. In
the context of poses, GANs have been used to augmented vision datasets by generating
subjects in novel poses [33] for better re-identification.

Despite the undisputed potential of the technology, so far there is no work on using
GANs to generate sensor data based on video input which is what this work does.

1.2.4. Deep Learning Methods for the Prediction of Physical Parameters

There has recently been increased interest in exploiting the neural networks capability
as universal function approximators for the prediction of the dynamics of physical systems,
in particular the solution of differential equations [34] replacing traditional methods such
as FEMs. Initially, the amount of training data required to accurately model complex
physical systems was a problem. As a solution, so called Physically Informed Neural
Networks [35] were proposed, which incorporate physical knowledge in the network either
as regularisation terms or by leveraging the neural networks automatic differentiation
capabilities to capture the information contained in the differential equations.

Obviously, the mapping of poses and pose changes to acceleration and angular velocity
values can be seen as a type of physical parameters prediction task where the concept
of PINNs can be beneficial. However, so far such an application of the PINN concept
approach has not been studied. It is something that we will investigate in future work.

1.2.5. Overall Positioning with Respect to State of the Art

With respect to simulating HAR sensor data, we have [15] doing it directly in simulated
environments. Other approaches rely on on-body markers [36,37] or systems with multiple
cameras such as kinect [22]. Our approach does not use any special markers, as we would
not have access to such markers in video sources such as YouTube. Instead, it relies directly
on the position of the body’s joints. Moreover, we do not assume we have more than a single
monocular camera, as that is the case for most datasets and video sources. Compared
to works using forward kinematics, our approach does not directly perform physical
simulation, as it is only feasible if the 3D poses of the subject are estimated. Obtaining those
3D poses is possible with a calibrated system of more than one camera [21] or even using
a single one [23–28]. Thus, one could extract those poses and then use the cited methods
to obtain the sensor values, but their quality depends on the quality of poses that can be
obtained from a monocular camera. Recent work that follows this approach is [38], which
uses off the shelf methods to predict 3D human poses for monocular images and then
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forward kinematics to simulate sensor data. They have demonstrated the feasibility of the
approach in generating acceleration data without a static camera, but their pipeline works
best when predicting modes of locomotion and not complex activities that do not happen
in a 2D plane [38]. This is likely due to accumulated distortions in the predicted 3D poses.
Extracting those poses from a monocular camera is no easy task due to occlusion, clothing,
lighting, and the inherent ambiguity in inferring 3D from 2D [29]. Our approach is different
as we predict sensor data directly from the 2D poses using a deep neural network without
forward kinematics or a complex pipeline that includes several deep neural networks. We
situate our work in the area of applying advances in vision to the HAR field. More recently
vision has been shown to be successful for both labeling and knowledge transfer in mobile
sensor-based HAR [39], indicating that there are many benefits in using video information
too for HAR and many cases where it can aid in data acquisition.

2. Problem Description and Design Considerations

A video (at least when taken from the right perspective) clearly contains elaborate
motion information. On the other hand, signals produced by the sensors that we are
considering (IMUs and their components: accelerometers and gyroscope) are in effect
a representation of motion. The generation of IMU signals from known 6DOF (x,y,z
coordinates plus the yaw, roll pitch angles) trajectories is a well understood and solved task.
Thus in simplified terms we consider the mapping from one representation of relevant
motion (video) to another (IMU sensors). The difficulty that we need to address stems from
three considerations:

1. Fundamental incompleteness of 2D video information. Monocular video (which
is what we need to work with to be able to harvest online video sources) does not
contain complete 6-DOF information about objects (in our case human body parts)
that it shows. Instead for each object a single video frame provides 2D coordinates
in its own frame of reference which are essentially the x- and y-coordinates in pixels.
When looking at such a frame humans can translate such 2D image coordinates into
information about physical coordinates (which in some cases may include all 6 DOFs)
through semantic analysis of the picture and putting the results of such semantic
analysis in the context of their understanding of the world. Thus when seeing a man
waving his arms, we can estimate the physical coordinates of various body parts
with respect to each other just from our knowledge of human physiology (degrees of
freedom of joints, typical motions typical size and proportions of human body etc.).
Clearly not knowing the exact dimensions of the specific person, this can only be an
approximation.

2. Inherent inaccuracies in 2D video information. Even when physical coordinates of
relevant body parts can in principle be inferred from the semantic information, the
achievable accuracy can vary greatly depending on the camera angle and position.
Thus, for example, given frontal view of the user (as for example in Figure 2 the x-y
position of the wrist, which is point 4 in Figure 3) in respect to the hip (point 8) can be
estimated with reasonable accuracy. On the other hand, the angle of rotation of the
wrist around the lower arm axis is much more difficult to estimate accurately. This is
because in a typical video, the wrist itself can be just a few pixels wide.

3. Sensor specific physical effects. Sensor signals are influenced by factors which do
not directly manifest themselves in an image. Best example of this is gravity. While
the direction of “down” can mostly be inferred from semantic analysis of an image,
it is not always enough. Consider the example of the wrist rotation above in the
context of a wrist worn acceleration sensor. If the lower arm is parallel to the ground
then the rotation determines how the gravity vector is projected onto the sensor axis
perpendicular to the lower arm. Thus, the rotation has a very significant influence
on the value of the acceleration signals on those two axes. On the other hand, as
described above, wrist rotation tends to produce a “weak signal” in an image so that
it can only be roughly estimated. Another example is high frequency “ringing” of the
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acceleration signals, when for example the user stamps his feet on the ground. This
results from high frequency vibration of the device caused by the strong impact of the
foot on a hard surface and is a very characteristic feature in the acceleration signals,
but mostly invisible on the video signal as the amplitude of the vibration is too small
and affects the device only (not body parts as a whole) which may be invisible (e.g.,
hidden under clothing).

4. Frame of reference and scaling. IMUs typically use the “world” coordinate system
which relies on magnetic sensors to determine geographic north and derives the
direction of the gravity vector as down. The signals are given in standard units (e.g.,
m
s2 for acceleration). In principle gravity can be derived through semantic analysis of
an image, which is however not necessarily trivial and not always reliable. Obviously
in most images "north" is not given. All motions are given in pixels per frame with the
relationship between pixels and physical units depending on the camera position and
settings. Overall the translation between the image frame of reference and pixel units
and the sensor frame of reference and physical units is a non trivial challenge, even
more in videos obtained from online repositories where cameras are not calibrated.

Lateral Steps
 + Pulls

Slow Rocking 
Butt Kickers

Arm Swings
+ Lateral Steps

High Knee 
+ Pulls

4 Torso Twists 
+ Knees

Jog in Place Squats

Front Kicks
Cross Toe 
Touches

Boxer Shuffle

Figure 2. Short depiction of the motions present in the 10 exercises of the Drill dataset, in which
participants performed the exercises of [40]. The first examples are of one of our subjects, while the
last are from the original YouTube video each subject tries to replicate. In this dataset, each exercise is
repeated once for 30 s.
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Figure 3. Joints used for each of the 4 regression models. Those models also receive the scaled
hip speed and the change in scale. Orange boxes represent where sensors were placed during
the exercises, while their surrounding white boxes describe the joints relevant for each of their
regression models.

In summary the generation of IMU sensor data from videos cannot be accomplished
with an exact physical model. This is a fundamental difference to the well understood
and largely solved problem of generating IMU values from 6DOF trajectories. Instead
a heuristic approach is needed that minimizes the unavoidable errors with respect to
the needs of a given domain. Here a key question is whether we narrowly optimize the
system to a specific domain or follow a more general domain agnostic approach. Other
core design concerns are how much, at which stage in the process and in what form can
physical models be included and what they can accomplish and which part of the task
will be delegated to what type of data driven ML approaches. The most obvious choice is
between (1) using existing ML methods for estimating 3D poses from 2D videos [23–27]
and then using bio mechanical models [15] to generate the sensor data and (2) training
an end-to-end ML model that goes directly from 2D video to sensor data. For the ML
approach (this work), questions include how to accomplish the conversion between image
frame of reference and pixel coordinates, how to handle the sensor frame of reference and
its physical units and whether to explicitly filter, scale and normalize the signal.

3. Method

In this section we will explain in detail our method starting with how it is trained,
which is shown in Figure 4. The first training step consists of extracting the poses from
video and translating them into appropriate parameters:

1. The application of standard tools (specifically Open Pose [21,41]) to identify humans
in videos and extraction of their 2D poses. The poses are defined in terms of joint
coordinates in pixels.

2. Optional: low pass filtering.
3. A sliding window based translation of the raw 2D pixel coordinates into appropriately

filtered and scaled values in the body centered (hip as origin) frame of reference. This
window considers 1.5 s in the past and 1.5 in the future, with a total length of 3 s.

4. Generating sliding windows of the pre-processed pose data with window size W and
step S.
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Figure 4. Procedure for training our regression models, which translates sequences of poses to the
sensor values they generate. Using a dataset that includes both video and sensor data, we train for
each position and sensor channel a regression model that uses the relevant joints and other features
to predict the sensor values for that channel and place.

The system is trained on a dedicated dataset that contains synchronized sensor and
video data for a set of motions typical for a broad domain. The sensor data collected
is used as ground truth for training the regression model. Thus, any pre-processing of
the sensor data performed before it is used to compute the loss will be reflected in the
synthetic sensor data that the model will learn to generate. This means that the aim of the
pre-processing must be to remove from the sensor signal any information that will hamper
learning by “confusing” the model (noise, frequencies too high to be contained in the video
data), while retaining as much useful information as possible. Examples of pre-processing
strategies that we investigated were low pass filtering with different cut off frequencies
and scaling. After pre-processing we aggregate the ground truth sensor data into sliding
windows with window size W and step S to correspond to the partitioning of the pose
parameters. The sliding windows are the input to the regression model. After some
experimentation we have settled on a model based on residual deep convolution neural
networks that uses dilated convolutions, similar to a Temporal Convolutional Network
(TCN) [42]. We train a separate model for each sensor position and channel. Once trained,
the system is presented with a video of the activity and produces a corresponding sequence
of simulated sensor signals.

In the remainder of this Section we will explain in detail the training steps of our
method. In Section 3.1 we go into depth about how we obtain poses for each video as well
as explain the procedures and rationales behind our sensor and pose pre-processing. The
motivation and configuration of our deep learning model is explained in Section 3.2, while
the dataset that was used to train it, is described in Section 3.3.

3.1. Obtaining 2D Poses

We used the OpenPose library [21,41] to extract 2D poses of subjects in each frame. The
poses are given in terms of rigid body segments connected by respective joints as shown in
Figure 3. We accept all joints detected by OpenPose with at least 0.0002 confidence. We
track each subject in a video using their Mid Hip coordinates. For each subject, missing
joints are filled using linear interpolation. This is done for two reasons: First, not all joints
are detected in all frames. Second, videos vary in fps, so we reach 50 poses per second after
linear interpolation. This is used for all video sources as the target YouTube videos we
used vary in fps from 24 to 60, but the training ones we recorded had 50 fps.

3.1.1. Pose Translation and Processing

For every video frame the pose extraction system produces the pixel coordinates of
the individual joints (and/or the angles between the respective rigid body segments). The
values depend not only on the motion of the user, but also on the camera perspective. The
same posture at the top left corner of an image will produce different coordinate values
than at the bottom right. For a given motion the position difference between two frames
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expressed in pixels will be different when executed close to the camera than when executed
far from the camera (and will also vary depending on the angle and of course the resolution
of the video). On the other hand the sensor values that we want to generate are expressed
in absolute physical units and are related only to the user action (and of course sensor
placement on the body). In summary we need to address (1) the translation of the poses
into coordinates that are independent of the position of the user in the image and (2) a
scaling making the magnitude of pose changes between frames invariant with respect
to the size of the user’s body in the image. Given the power of modern deep learning
based computer vision systems one could in principle attempt to have the system learn
the corresponding transformation from data. However, this would require a very large
amount of data on top of the data needed to learn the dependence of the motions observed
in the video and the sensor signals as such. As a consequence our method contains an
explicit pre-processing step before feeding the data into the regression model.

As a scaling factor to achieve motion amplitudes independent of the distance from the
camera we use body dimensions in the picture. In other words we express the magnitude of
motions in “units” of body size as seen in the image. To this end we selected the euclidean
distance between Neck and MidHip (joints 8 and 1 in Figure 3) as a scaling factor for
the motions expressed in pixels. Since the distance between the camera and the user can
change we recompute the scaling factor for every frame. Let’s call the euclidean distance at
time t the distt. In order to avoid scaling outliers, we are going to use a sliding window of
size 3 s, 1.5 back and 1.5 forward, and compute the median. This value we call the scalet
which is

scalet = median(distt−75, . . . , distt+75) (1)

and the function to scale any value vt is

scale(vt, scalet) = −1.0 +
vt

scalet
∗ 2.0 (2)

We represent the joint position in a frame of reference centered in the MidHip joint,
that is, joint 8 in Figure 3. This means that for each joint other than the MidHip we compute
its new x coordinate at time t (NewJointt

x) and y coordinate at time t (NewJointt
y) using

NewJointt
x = scale(Jointt

x −MidHipt
x, scalet)

NewJointt
y = scale(Jointt

y −MidHipt
y, scalet)

(3)

This provides us with a coordinate system that is independent of the location of the
person in the image. Note, that a single scale is used for both x and y, as the aim is to
match real space and not to do standard machine learning scaling. In other words, the
scale translates pixel distances to joint relative ones, so it should be the same for both axes
in order to not deform the poses.

For the MidHip joint we do not perform this procedure, as all joints are now relative
to it. In order to capture the overall movements of the human in the picture plane (which
can have influence on the acceleration values), we also include the scaled x and y speed of
the MidHip, which means adding to our input

HipSpeedt
x = scale(MidHipt+1

x −MidHipt
x, scalet)

HipSpeedt
y = scale(MidHipt+1

y −MidHipt
y, scalet)

(4)

Using joint positions relative to MidHip also obscures motion of the body towards
and away from the camera and its influence on the sensor signals. Fortunately, we can
retrieve this information by giving the model access to two extra values related to the scalet
representing the relative speed of scale change

speedt =
scalet+1 − scalet

scalet
(5)
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and the first derivative of this scale speed. To distinguish between the camera moving and
the motion of the user in the environment, we can consider the optical flow within the
picture as a whole (which we do not do yet as in our sample data the camera was static).
As we explained, changes in scale can be a proxy for absolute movement as the subject is
coming closer to/moving away from the camera regardless of specific initial coordinates.

3.1.2. Additional Signal Processing and Selection

Signal processing beyond the translation and scaling of the features described above
can be considered in two categories. The first is further improvement of the quality of the
pose information extracted from video. Here, smoothing of the scaling using the median
to remove small shifts in joint position and removing outliers in cases where the network
predicts a distorted pose in some of the frames have proven to be most effective. Note that
these steps are applied to the video signal only. With respect to the sensor signal, the only
prepossessing we have found to be consistently effective was linear interpolation of the
sensor data to 50 Hz to match the video frame rate.

The second is the removal from the signal of components that are unlikely to be
reliably translated from video to sensor signals (see also Section 2). In essence the idea is to
entirely remove certain types of information from our classification process, opting to have
less, but more reliable information. Examples are: computing the norm of 3D sensor signal.
gravity removal (“linear acceleration”) and low pass filtering. The latter was motivated
by the insight (see Section 2 point 3) that phenomena such as high frequency “ringing” of
the signal caused by sudden, strong impacts that are fundamentally invisible in the video
data. This means that the simulated sensor data generated from videos will not contain
such “ringing”.

These steps need to be applied to both the sensor signals and the video signals and
done during: the training of the regression model, the generation of the synthetic training
data, and the classification of real sensor data with the model generated using the simulated
data. Obviously, in cases where the information is not present in the video signal at all, it is
sufficient to remove it from the sensor.

3.2. Regression Models

As regression model we selected a residual deep convolutional neural network that
uses dilated convolutions, similar to TCN [42]. It has been shown to be successful in many
sequence modeling tasks, outperforming even long short-term memory models [42]. Our
architecture (Figure 5) relies on dilated convolutions and residual connections present in
the TCN blocks. Residual connections help train deeper networks by adding the output of
convolutions to an identity function [43], while dilated convolutions increase the receptive
field by orders of magnitude without increasing the computational cost. By employing the
same padding in all convolutions, we maintain the temporal size of the inputs, allowing us
to go deeper even when using small temporal windows and map the sequence of poses
to the sequence of sensors signals. In order to prevent overfitting, we apply dropout in
all TCN blocks except the first and reduce the number of parameters by decreasing the
number of filters in the 4th TCN block by applying convolutions with filter size 1. We train
one regression model per sensor position and feature. Each model was trained using the
mean squared error loss and the Adam optimizer [44] with 0.001 learning rate and 0.9 and
0.999 for β1 and β2, respectively. The model was trained for 500 epochs with early stopping
using a patience of 25 to avoid overfitting.
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Input: (win_size, n_feats, 2)

TCN Block (5,32,1,1,0,0)

TCN Block (5,32,2,2,0.2,0.2)

TCN Block (5,32,4,4,0.2,0.2)

Output: (win_size, 1)

Regression Network
for a single sensor

position

TCN Block (1,16,1,1,0.2,0.2)

Dense 1

Reshape (win_size, 1, 16*n_feats)

TCN Block (5,16,1,1,0.1,0.1)

k_size Conv n_filters dil_rate Dense size Dropout rate Reshape (shape)

relu

k_s Conv n_filters dl1

Dropout drp1

Input: (w, v, f)

Add

Output:(w, v, n_filters)

TCN Block (k_s, n_filters, dl1, dl2, drp1, drp2)

1 Conv n_filters 1

relu

k_s Conv n_filters dl2

Dropout drp2

Figure 5. Architecture for the neural network used for regression of a single sensor.

It is important to discuss the motivation for our training regimen. A key question for
the training is which information from the video to include in training which sensor.

1. Providing information about the motion of body parts that we know, from physical
consideration, to be irrelevant for the signal of a given sensor at a given location will
“confuse” the model. Eventually, given enough data, good models will likely learn to
distinguish relevant from irrelevant information. However, getting rid of confusing
information is known to significantly reduce the amount of required training data
and speed up training.

2. Providing information about body parts that, from a bio-mechanical point of view
do not influence each other, on the other hand can be counterproductive and lead to
overfitting the specific training motion sequences and combinations. As an example,
consider the motion of the left and right wrist. With the exception of some very
extreme motions (e.g., extremely strong shaking of one wrist making the whole body
shake), the motion of one wrist has no influence on the other. However, in many
motion sequences there are sometimes strong correlations between the motion of both
wrists. The best example is walking when people often swing their arms in sync.
When training the system to recognize walking, we want the system to learn such
correlations. However, when training a regression that should map motions in an
image onto sensor data for arbitrary activities based on physical constraints only this
would be undesirable overfitting of artefacts of the specific training sequence.

3. Finally there is the question if a joint model should be trained for all sensor signals,
if separate models should be trained for all signals from one on-body location or
if we should train a separate model for each signal at each location. Training one
model for all locations and signals is not advisable due to the need of avoiding
overfitting a specific training set because of spurious correlations between signals
from different locations. In principle, training a model to generate all the signals from
a given body location should allow it to capture the physical dependencies between
those signals and should thus improve the quality of the results. However, in our
experiments we have found individual models trained for each sensor modality at
each location to perform best. This may be due to insufficient training data. It may
also be necessary to introduce onto the model mechanisms for explicitly encoding
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physical boundary conditions as proposed, e.g., by the concept of Physically Informed
Neural Networks [45].

For each target sensor signal we trained one regression model per possible sensor
placement using only the joints relevant for it. We placed sensors on the wrists and calves,
as shown in Figure 3, which also shows which joints are used for each position. For each
one of those inputs we built a regression model as depicted in Figure 5. Regression is done
using a window of size 16 frames (around a third of a second) and step 1. This increases
training data and was also selected to avoid overfitting specific movements. The regression
output is 16 numbers representing the IMU values for one channel at those times. The
input for each regression model using nj joints is a tensor (16, nj + 2, 2), that is, the 2D
coordinates of the joints involved and also the 2 extra values related to the scale changes
and hip speeds mentioned earlier. For the joints involved for each position, see Figure 3.

3.3. Datasets for Training the Regression

Our aim is to train a model that can generate simulated sensor data not just for a
single specific set of activities but for a broader domain. Thus having our regression
model, application developers should be able to use our model to generate the required
training data from online videos for any activity set they are interested in (as long as it is
within the broad general domain). The idea is thus to train the regression model on a set
of motions that are representative “basic components” of the activities of the respective
broader domain. The core question is how to define the “broader domain” and how to
identify the corresponding “basic components”. For this work we have selected aerobic-like
physical training. It is a very broad domain with a great variety of different exercises for
which online videos are extremely popular. In terms of applications the ability to monitor
the exercises is something that current fitness trackers lack, despite the popularity of such
exercises and the associated potentially large user base. In technical terms the domain
has the advantage that the corresponding videos tend to provide a stable, easy to process
frontal perspective with the relevant parts being clearly visible most of the time (as the
whole purpose of the videos is to show the viewers how to move). The activities tend
to be characterized by distinct motion of the limbs and posture changes which means
that recognition systems should be reasonably robust with respect to sensor data noise
and inaccuracy.

With respect to the “basic components” of the motions we first started by showing the
participants example videos of the domain and asking them to perform random motions
related to those videos. This approach has not produced good results, however, as people
tended to repeat the same, not necessarily representative motions. We then turned to high
school video material explaining the degrees of freedom of human joints and the types
of motions that different muscles can actuate. We combined parts of 7 such videos into
an 11 minute compilation [46] and had 8 subjects re-enact the motions from the videos
while wearing sensors on the locations for which we wanted to train our regression model
(wrists and lower legs). We filmed each user on a different day and our camera placement
and angle changed slightly across recordings. Examples of the recordings are shown in
Figure 6. For sensor synchronization we begin the recording by holding all IMUs stacked
on top of each other and moving them together up and down in front of the camera. After
the synchronization gesture is performed at least 3 times, we start recording the generic
motions. During a user session, subjects were instructed to try to follow in real time the
motions present in our compilation video, which is playing in a monitor nearby. In order
to increase the variability of motions, we told them that it was more important to move
than to perform the motions correctly. For example, when quick motions happen in the
videos, it is better to move quickly, even if one cannot follow the specific quick motion.
Only one of the subjects performed those seed motions more than once. His second session
was selected for validation, while all others were selected for training the regression.
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Figure 6. Example of a subject performing some of the movements present in our generic motions
dataset used for training the regression model. The video followed can be found in [46].

4. Evaluation

The evaluation procedure was designed based on the understanding that our aim
is not to generate signals that are as close as possible to the signals that real sensors
would generate when performing the respective motions. Instead we want to facilitate
the generation of training data that will allow activity recognition systems to achieve
performance that is as close as possible to the performance achievable with training data
recorded with real sensors. These goals are related, but not identical. Generating sensor
data that is very similar or even identical is certainly a sufficient condition for getting
recognition results that are close to what is achievable with real sensor-based training data.
However, it is not a necessary condition. Thus, if the system can replicate enough distinct
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features of the signal to separate the classes in a particular application then the fact that it
may miss or fail to reproduce other signal features is of no significance. This is illustrated
in Figure 7. The signals shown in the figure are the actual signals we used.
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Figure 7. Real signals (red) versus simulated (blue) in the regression training set (generic motions)
for the norm of signals.

As a consequence we focus on the evaluation of the performance of activity recognition
trained using simulated sensor data generated by our system from respective videos
and provide limited analysis of the quality of the generated sensor signal as such (see
Section 5.1). The remainder of this section describes the dataset and approach used for the
evaluation. The results are presented and discussed in the next section.
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4.1. Data Collection for Activity Recognition Based Evaluation

We have selected the broad domain of aerobic like physical exercises for our evaluation
since it is an interesting and relevant application area while at the same time being well
suited for our approach (see Section 2). Specifically, we selected a set of 10 activities we
refer to as the “Drill dataset” and that we have already used in our preliminary work
described in [14]. Those are part of a light cardio workout taken from a popular YouTube
fitness channel [40]. The recorded exercises can be seen in Figure 2. Altogether we have
collected 12 YouTube videos of people doing those exercises. The full list of videos used can
be seen in Table 1. In the videos individual exercises are performed sequentially and overall
they contain about 24 min of usable footage of the 10 activities. In addition to the YouTube
material we have recorded data with volunteers at our lab. To this end we have equipped
them with IMUs (XSENSE) fixed to their lower legs and wrists (see Figure 3 for the sensor
placement) and asked them to imitate the exercises in the video. We have recorded the
subjects on video with a camera perspective similar to the online videos to ensure that we
have not only real sensor data but can also generate simulated data for the subjects using
our regression model. Overall we had 28 subjects performing the 10 exercises. Of those we
have 17 users who performed a single session only, which are considered the training set.
The test set consists of the 11 users who performed more than one session (5 performing
2 sessions, 4 doing 3 and 2 performing 4 for a total of 30 sessions). This gives us a diverse
training set, a large number of testing sessions and the ability to test on the most difficult
scenario: the training and testing sets being different users. For an overview of the datasets
used and the length and number of users in each one, see Table 2.

Table 1. YouTube videos used to generate artificial sensor data. Each video has a single subject performing one or more
activities and thus we have 14.28 min of the target activities in total. All accessed at 6 July 2020.

Video URL Activity (ies) Seconds Used fps

https://www.youtube.com/watch?v=7X2Yx29DdBY Cross Toe Touches 113 30
https://www.youtube.com/watch?v=8gLdmb9Ivkw&LateralSteps+Pulls 32 30
https://www.youtube.com/watch?v=9-jBOcGeQcg 4 Torso Twists + Knees 16 30
https://www.youtube.com/watch?v=afghBre8NlI Squats 83 30
https://www.youtube.com/watch?v=enz5TSRMmyM High Knee + Pulls 13 25
https://www.youtube.com/watch?v=g-S1c-Scu3E Lateral Steps + Pulls 33 30
https://www.youtube.com/watch?v=Kn621fAVEEI Boxer Shuffle 9 30
https://www.youtube.com/watch?v=MG8DJpN-35g 4 Torso Twists + Knees 48 30
https://www.youtube.com/watch?v=mGvzVjuY8SY Squats 100 30
https://www.youtube.com/watch?v=oMW59TKZvaI Slow Rocking Butt Kickers 10 24
https://www.youtube.com/watch?v=ZiJdpPJbqYg Front Kicks 4 30
https://www.youtube.com/watch?v=R0mMyV5OtcM All of the Drill Activities 303.81 60

Table 2. Details about the datasets used. Every drill session lasts 5 min, while each of the generic
motions last 11. For our generic motions, we use one session of each subject for training the regression
and the second session of one for validation. For the Drill dataset, we use users with a single session
as the training classification set and those with more than one as the test set. No user is shared
between any of the datasets.

Dataset Video Sensor Data Subjects fps Total min

Collected generic motions yes yes 8 50 99
YouTube videos yes no 12 24 to 60 14

Drill Dataset Training yes yes 17 50 85
Drill Dataset Test no yes 11 - 140

4.2. Evaluation Procedure

The evaluation procedure compares various ways of training the system using sim-
ulated sensor data generated by our method with the baseline of a system trained using

https://www.youtube.com/watch?v=7X2Yx29DdBY
https://www.youtube.com/watch?v=8gLdmb9Ivkw & Lateral Steps + Pulls 
https://www.youtube.com/watch?v=9-jBOcGeQcg
https://www.youtube.com/watch?v=afghBre8NlI
https://www.youtube.com/watch?v=enz5TSRMmyM
https://www.youtube.com/watch?v=g-S1c-Scu3E
https://www.youtube.com/watch?v=Kn621fAVEEI
https://www.youtube.com/watch?v=MG8DJpN-35g
https://www.youtube.com/watch?v=mGvzVjuY8SY
https://www.youtube.com/watch?v=oMW59TKZvaI
https://www.youtube.com/watch?v=ZiJdpPJbqYg
https://www.youtube.com/watch?v=R0mMyV5OtcM
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real sensor data. For the baseline we use the sensor data from the volunteers in our Drill
data with the 17 users who have recorded one session only being used for training and
the remaining 11 users with their total of 30 sessions as testing set. For the generation of
training data from videos using our regression model we have the 12 YouTube Videos and
the videos of the volunteers of our Drill experiments. This way we test our regression
model on activities which it has not seen before. In summary we consider three different
sources of training data:

1. The real IMU data from our training users in the Drill dataset. This is the “gold
standard”. Systems trained with this data should perform best.

2. Simulated IMU data generated from the videos of our training users in the Drill
dataset. Here the system trained on data generated from video is trained on exactly
the same users and activity instances as the baseline system ensuring the “fairest” and
most consistent comparison.

3. IMU data generated from the 12 YouTube videos.

When investigating how well the generated sensor data works for the training of new
activity recognition applications we consider four more specific questions:

1. What is the effect of different pre-processing techniques described in Section 3.1 on
the performance difference between a system trained on the real sensor data and
one trained on data generated from video using our approach? In this context it
is important to also consider the effect of the respective techniques on the absolute
performance of the baseline system. Thus, we do not want to consider techniques
that may reduce the difference between simulated and real sensor data based systems
at the price of making both systems significantly worse.

2. How well does our approach perform for different types of sensor signals (see
Section 2) ? Again we need to consider not only how the different sensor choices
affect the difference between simulated and real sensor data but also how they impact
the absolute performance.

3. Can we compensate for potentially inferior quality of the training data generated
from videos by providing a larger amount of training data? Given that our approach
gives the user access to huge amounts of data contained in online videos (much more
than can realistically be collected as labeled data with on-body sensors), it is not
necessary to match the performance of real sensor data in tests on the same sized
training sets (as done with respect to points 1 and 2 above). Instead we need to
investigate what happens when we provide the system, using simulated sensor data,
with more training examples than the real sensor data based system.

4. Can the quality of training based on simulated sensor data generated from videos be
improved by combining it with a small amount of real sensor data? The question is if
small amounts of real sensor data, that can be easily collected, can “fine-tune” HAR
systems trained on large amounts of simulated data to improve their performance.

4.3. Recognition Approach

Since the aim of this work is not to optimize the recognition of a specific set of activities
but to evaluate the usefulness of simulated sensor data generated from video for wearable
HAR systems in general, we use a standard architecture that has proven to be well suited for
a variety of activity recognition tasks. The full network architecture can be seen in Figure 8,
and, just like the regression model, is based on [42]. The input to the recognition system is
2.56 s (128 frames) long windows. This window size is sufficient to capture the motions
of each exercise, which is repeated many times in a span of 30 s. Since all convolutions
in this architecture use same padding, the output class predictions are on frame, not on
window level. This allows the network to predict with finer granularity and better deal
with cases where two activities are happening inside the same window (transition between
activities). For the final prediction we apply majority voting to each window. We trained
the network using the categorical cross-entropy loss function and the Adam optimizer [44]
with 0.001 learning rate and 0.9 and 0.999 for β1 and β2, respectively. Each model is trained
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for 500 epochs with early stopping using a patience of 25 to avoid overfitting. If any real
(not simulated) sensor data is included in a test, a stratified 10% random selection of it
is used as the validation set. If no real data is included, the validation set consists of the
same selection strategy but applied to all the simulated data. This guarantees the quality
of the validation set, while avoiding unfair advantage to configurations that combine
simulated and real data. If we simply selected a stratified 10% of all data for validation,
tests that combine data (simulated and real) could benefit from having more real points in
the training set.

relu
relu

Input: (cl_w_size, n_snsr, n_ch)

TCN Block (5,32,1,1,0.0,0.0)

TCN Block (5,32,2,2,0.2,0.2)

TCN Block (5,32,4,4,0.2,0.2)

Dense n_classes

Output: (cl_w_size, n_classes)

softmax

Classification Network

TCN Block (5,32,1,1,0.1,0.1)

TCN Block (5,32,1,1,0.1,0.1)

Dropout 0.5

Dense 64

Reshape (128, n_snsr * 32)

Figure 8. Architecture for the neural network used for classification. For a definition of the blocks
see Figure 5. The size of the window for classification was 128, representing 2.56 s and the number of
classes in our target dataset is 10.

5. Results
5.1. Signal Level Evaluation

Since the aim of our work is not to generate signals that mimic real sensor ones as
exactly as possible, but to facilitate training of activity recognition systems that will later
be applied to real signals, the key performance indicator is not some sort of numerical
dissimilarity measure but the ability to replicate relevant, characteristic signal features that
can be used for class discrimination. As the latter is difficult to quantify on signal level,
we focus on the quantitative evaluation on the classification tasks with the results being
presented in Sections 5.3 and 5.2.2. Nonetheless it is informative to have a qualitative look
at the signals that our system generates for various sensors and how they compare to the
real sensor signals generated in the same situation. To this end we consider situations
where we have video and sensor data for the same activity. We then plot over each other
the actual sensor signal (red in all figures) and the corresponding simulated sensor signal
generated by our system (blue in all figures). We begin by looking at signals generated
for the dataset that we used for training the regression. This is in a way the easiest task
as we do not have to deal with the question of how representative the training dataset
that we assembled for our regression model is. In Figure 7 we first consider examples of
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signals for the accelerometer and gyroscope norm
√

x2 + y2 + z2. This avoids problems
associated with the difficulty of estimating small rotations around the limb axis which have
influence in particular on the projection of the gravity vector onto the individual sensor
axis. The signals are shown for a period of time of around 10min. For each signal we show
the unprocessed signal and a version filtered with 8 Hz (the impact of the filtering will be
discussed later). General observations from Figure 7 are:

1. Overall the simulated signal has the same trends and large scale features as the
original signal.

2. Many of the smaller features such as distinct peaks are also matched by the simu-
lated signal. However, some are missed or have a much smaller amplitude in the
simulated signal.

3. The main difference between the simulated and the real signal is in the amplitude. In
most cases the simulated amplitude is smaller, but not by a constant factor that could
be overcome with simple scaling. The underestimation is particularly pronounced for
high frequency peaks. This can be explained by a number of factors. First of all high
frequency components (“details”) tend to be in general more difficult to reproduce
and given the limited size of our training set, some limitations in this area are not
surprising. Second, in particular for the acceleration sensors, some of the peaks are
due to physical effects which are not present or very difficult to capture in the video
(e.g., high frequency “ringing” after sudden impact, see Section 2).

4. Especially in the acceleration signals there is a “baseline shift”-like effect (especially
visible in the third row of Figure 7). At times the system seems to completely ignore
parts that are below a baseline situated just below 10 (corresponding to around 1 g).
This can be attributed to downward motions where the earth gravity is subtracted
from the acceleration. Thus a free falling object (accelerating downwards with 1 g)
experiences no acceleration force (is weightless). This means that the acceleration
norm is smaller than 1 g (actually 0 in free fall), at least as experienced by the real
sensor. For all other motions on the other hand, the value of the acceleration is always
equal to or above, at least in the norm, 1 g. Given the limited size of the training set
for the regression model and the fact that we did not include any semantic analysis to
detect the “down” direction it is not surprising that our model struggles to capture
this phenomenon. One way of dealing with the problem is to use linear acceleration
which can be derived by IMUs, which is discussed below.

To get a better understanding how the system handles detailed signal features Figures 9
and 10 show zoomed views of 2 signal segments that were selected to cover the “good” as
well as the “bad” cases. Figure 9 shows for each signal a comparison of the acceleration and
gyro norms. To explore in more detail the issue raised in point 4 above Figure 10 shows not
just the acceleration norm, but also the norm of the linear acceleration which excludes the
gravity contribution. The main observations are:

1. The left part of Figure 9 shows an example of a “good” simulation. It can be seen that
the simulated gyro signal nearly perfectly tracks the real gyro, even through fairly
subtle features. Except for the amplitude issues the same holds for the accelerometer
signal. Note that while the signal segment contains subtle and fast components, it
does not have very high frequency “singular” peaks, which is a key reason why the
system works so well here.

2. On the right side of Figure 9 a case of much poorer performance is shown. This is
largely due to the presence of many singular high frequency, high amplitude peaks
which especially the acceleration signal fails to track correctly.

3. With respect to the linear acceleration Figure 9 shows two things. First we see on the
right side that using the norm linear acceleration instead of the norm raw acceleration
signal indeed does solve the problem of the system refusing to model signal values
below the baseline of 1 g. On the other hand, as shown in the left part of the figure,
using linear acceleration may lead to signal characteristics changing and acquiring
additional high frequency peaks which can be difficult to model.
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To probe further we have plotted signals from individual acceleration axes as both raw
acceleration and linear acceleration in Figure 11 including a zoomed in version in Figure 12.
The single axis acceleration signal is richer in features than both the linear acceleration
on the same axis and the norm signals discussed above. This in itself is well known and
not surprising. What is surprising is how well the simulated signals replicate the real
ones given the issues described in Section 2 (e.g., the difficulty of estimating the projection
of gravity into individual axis). This applies to both the overall, broad structure of the
signal (Figure 11) and, in many cases to the detailed structure. An example is illustrated in
Figure 12 on the left where some very subtle features have been matched nearly perfectly.
Clearly, other examples exist, as shown on the right of the Figure where there is much more
difference between the features of the simulated and the real signal.
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Figure 9. Real signals (red) versus simulated (blue) in the regression training set (generic motions)
for acceleration and gyro norm. All cases trained without neither filtering nor standard scaling.
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Figure 10. Real signals (red) versus simulated (blue) in the regression training set (generic motions)
for acceleration norm, linear and not. All cases trained without neither filtering nor standard scaling.

5.2. Effects of Pre-Processing

From the above discussion it is apparent that the two main concerns are modelling
high frequency components such as acceleration “ringing” caused by sudden forceful
impacts and exact matching of the signal magnitude. This suggests the use of low pass
filtering and scaling as obvious pre-processing approaches. Both are parts of our pipeline
(Section 3.1). Note that we are talking about standard scaling when learning the regression;
that is, with the mean and standard deviation computed on our dataset of generic motions
being performed by other users. As the mean may be different in this dataset, we simply
undo the standard scaling, which is fully reversible, when obtaining simulated signals.

Other pre-processing parameters within our pipeline are the sliding window sizes
for training the regression. We experimented with window sizes of 50 and 16 values,
representing 1 s and 0.32 s, respectively. In our early experiments training the regression
models, it became clear that the smaller value was better, providing a smaller regression
loss and better overall classification. Thus, for brevity, we report all results with the
smaller window size. Regarding window step, we keep it at 1 to increase the amount of
training data.
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Figure 11. Examples of the signals generated by our system in the target dataset (fitness exercises).
Specifically we show the acceleration parallel to the lower arm (left) and the linear acceleration along
the same axis (acceleration without the gravity component that Inertial Measurement Units (IMUs)
can derive with the help of gyro and magnetic field sensors).
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Figure 12. Real signals (red) versus simulated (blue) in the regression training set (generic motions)
for acceleration and linear acceleration both in the limb’s axis. All cases trained without neither
filtering nor standard scaling.

5.2.1. Signal Level Effects of Filtering and Scaling

In Figure 13 we illustrate the effect of frequency filtering and scaling on the perfor-
mance of our regression model. We consider low pass filtering with 12 Hz and 8 Hz (given
the original rate of 50 Hz from the video signals). The low pass filtering itself was done
using a butterworth low pass filter of the 6th order and standard scaling was done by
removing the mean of the sensor channel in the training set and dividing by its standard
deviation. Example comparisons of a signal with no filtering and no scaling on one hand
and with 8 Hz filtering and scaling on the other are also shown in Figure 7 (left and right
column respectively).

Key observations are:

1. Overall there is no dramatic effect. In all cases the simulated signal follows the
structure of the real signal with reasonable accuracy while displaying the same types
of problems.

2. Without scaling (left column on Figure 13) there are some pronounced amplitude
outliers in the high frequency peaks amplitudes (between sample 1000 and 2000) that
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are not influenced by the frequency filtering. These disappear in the scaled versions
(right column); however, at the cost of significant underestimation of the amplitude
in the same area and overestimation around 3000.

3. In Figure 13 frequency filtering has little effect, except for reducing the underestima-
tion of the components below 1 g around sample 3000 in the no scaling case (which
overall seems to be the best).
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Figure 13. Examples signals generated by our method (blue) and their real counterparts (red) in the
target dataset (fitness exercises) under different filter and scaling strategies.

In summary while both filtering and scaling do have benefits in some situations,
qualitative signal examination does not indicate it to be decisive or obvious. To get a
more quantitative idea, Figure 14 shows the Mean Squared Error for computed over all
our samples for acceleration and gyroscope for different filter values. For acceleration the
error is indeed smaller for 8 Hz (but not by much). For the gyroscope signal there is no
significant difference.



Appl. Sci. 2021, 11, 3094 23 of 31

5.2.2. Classification Level Effects of Filtering and Scaling

As a final evaluation step we did an analysis regarding the impact of filtering and
scaling on the classification performance. To this end we need to consider not only how the
pre-processing impacts the comparison between the classification within simulated sensor
data, but also how it impacts the performance of the absolute recognition rates of the real
sensor data based models. It makes little sense to apply pre-processing methods that make
the results of the simulated signals based model equal to that of a real signals based one
but at the cost of making both much worse. In Figure 15 we thus consider the effect of 8 Hz
filtering and scaling in different combinations on the recognition for different placements
(wrist and ankle) of the sensor for the real and the simulated data. The training was done
on all the data designated for training and the testing on all testing data as described in
Section 4.2. We can see that the recognition rates on the real data show little sensitivity to
the filtering and scaling. The performance on the simulated data is also fairly invariant for
the wrist sensor placement while for the ankle placement frequency filtering does indeed
make a significant difference. However, it must also be noted that for the ankle placement
the recognition rate with the simulated data is very poor to start with (around 40%).
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norm (right).
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5.3. Evaluation of Classification Performance Using the Simulated Signals

The discussion in the previous section has shown that, mostly on a qualitative level,
our method generates signals that replicate a significant portion of the respective real
sensor output within our application domain. We now proceed to quantitatively evaluate
how well such simulated sensor signals are suited for training activity recognition that will
later be applied to real sensor signals. The evaluation procedure has already been described
in Section 4.2. Essentially we have recorded a dataset where for each activity and user we
have both a video signal and sensor data. In addition, we have collected some YouTube
videos for the same/similar activities. We then train classifiers using the real sensor data,
simulated sensor data from the videos that we have recorded, simulated sensor data from
the YouTube videos and various combinations thereof. The classifier trained on real sensor
data is the one to which we compare the performance of the different combinations to
evaluate the usefulness of our approach. Given the discussion in the previous section, we
focus on using raw data without filtering and scaling with some examples of the impact of 8
Hz filtering. The results are shown in Figures 16–18. In each figure, we plot the recognition
rate of each classifier vs. the number of users in the training set. The only exception is the
case of sensor data generated from YouTube videos where we had different users perform
different exercises from the set which means that the notion of “number of users” for the
whole dataset makes no sense (see Table 1). Instead, we have generated training data from
the entire 14 min of the YouTube data that we harvested and plotted it for comparison as a
constant in the graphs.

1. Baseline. The recognition rates on the real data reach up to 90% which, given the fact
that our aim was not to optimize a recognition system for a specific application, is an
acceptable baseline to evaluate the performance of the simulated sensor data.

2. Overall performance on simulated sensor data. Systems trained on the simulated
data reach up to 80% recognition rate, which is 10% below the results (see e.g.,
Figure 16 left where the acceleration norm based recognition is among the best per-
forming variants overall). In general as the number of users is small the results for
real and simulated data are very similar to the performance of the real data. The
performance on the real sensor data improves faster with the amount of training
data. This is to be expected as with a very small number of users (equal a small
amount of training data) the recognition rate tends to be poor and limiting factor for
the performance is the lack of diversity in the data and not the data quality. As the
amount of data increases, the quality becomes the limiting factor, which is better for
the real sensor data.

3. Performance on YouTube data. The performance of the system based on sensor data
simulated from YouTube videos is in most cases slightly below the performance of
the baseline on a single or two users. Given that the total amount of YouTube data
(around 14 min) is in the order of magnitude of the length of the data from a single
user this is not surprising.

4. Compensating deficiencies of simulated data through training set size. There is
strong indication that deficiencies of the simulated sensor data can be compensated
by the amount of such data. Thus in most cases (see discussion of different sensor
combinations later on) systems based on simulated sensor data can match the per-
formance of the real sensor data based system trained on about half as much data.
Again looking at the acceleration norm from all sensors case in Figure 16 left top we
see that the Mean F1 score for simulated data with 12 users is about the same as the
score for 6 users with real data. Furthermore, while we see a slower growth of the F1
score with the number of users in the training set for the case of simulated data than
for real data, in most cases growth exists.

5. Effects of model fine tuning using real sensor data. Another way to improve the
performance of the simulated sensor data based systems is to use small amounts of
real sensor data to fine-tune it. The idea is that collecting a small amount of real data
is nearly always possible, it is the bulk of a large training data set that is difficult
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to collect and that we want to get from existing videos. The results of this strategy
are illustrated in Figure 17. We compare the baseline to the performance of a system
trained on simulated data to which 1 (blue points) or 2 (yellow points) users with real
data have been added. We can see that the simulated data is now much closer to the
real one. In the top left graph showing the acceleration norm results it is virtually
identical up to 10 users when the real data starts to overtake the simulated one. The
effect is even more significant for the gyro norm based recognition (see Figure 17 right
top) where the purely simulated signals based model trailed the real signals based
ones by 30% and more (see Figure 16 left bottom) and are now not worse than about
10% worse (and up to 6 users nearly identical).

6. Effects of adding simulated data from YouTube to small amounts of real data. An-
other situation where a combination of real and simulated signals may be useful
is when we have only a small amount of sensor-based training data with no easy
possibility of collecting more. We then try to “top up” our training set with some
simulated data from video. The effect of such a strategy is illustrated by the green
points (real IMU data with YouTube) in Figure 17 where we combine the real sensor
data with the YouTube data increasing the number of real data over the x axis. We
can see that for small user numbers the strategy indeed helps.

7. Performance of different sensors and sensor combinations. Most of the discussion
so far has been done with respect to the acceleration norm (Figures 16 and 17) applied
to both wrists and both ankles together which has been the most effective modality
with respect to the recognition performance both in the real sensor signal and with re-
spect to how well the simulated signal can approximate it. Given the type of activities
that we use as our test set this is not surprising. The activities are characterized by
periodic, mostly strong motions of various limbs. In most cases the relative temporal
pattern and relative intensity of the motions is a characteristic feature. At the same
time, the acceleration norm (in particular when looking at the relative intensity and
temporal patterns) is fairly robust against variations and noise. This also means that
imperfections caused by the simulation of the signal from the video data using our
regression model can be well tolerated.
Further sensor modalities and their combinations that we investigated are:

(a) Acceleration norm vs. Gyro norm vs. combination. In Figure 16 we have in addi-
tion to the acceleration norm the linear acceleration norm, the gyroscope norm,
and the combination of gyroscope and acceleration norms (in all cases for all
the 4 sensor placements). The first thing we see is that the linear acceleration
leads to a poorer overall performance while having little impact on the relative
performance of the simulated data. The former is not surprising since the
gravity component (meaning vertical orientation) is a very important piece
of information. The latter is contrary to what we might have expected since
our model was not tuned to capture gravity effects (as discussed in Section 2).
Apparently it was still able to capture a sufficient amount of orientation related
information. Second, we see that the gyro signal has significantly worse rela-
tive performance for the simulated signal. Given the limitations on recognizing
rotations around certain axes (in particular the limb axis) from the video signal
discussed in Section 2 this was to be expected. The very poor performance of
the simulated gyro signal also drags down the combined acceleration/gyro
norm performance shown in the bottom right part of Figure 16.

(b) Acceleration and linear acceleration on the limb’s axis. Further looking at the
impact of linear acceleration Figure 18 shows the results for raw acceleration
and linear acceleration along the limb axis. The idea is that the acceleration
along the axis is independent of the rotation around the axis, which, as already
explained is hard to exactly capture from video. It can be seen that both have
slightly lower performance than the acceleration norm (which is not surprising
given that the acceleration norm is a good discriminator for our set of activities
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as described above). Within expected statistical bounds the difference between
the simulated and the real sensor signal is about the same for both the raw and
the linear acceleration.

(c) Different sensor placements. In Section 5.2.2 we have already considered the use
of sensors from only a wrist or only the ankle (with respect to acceleration
norm) as shown in Figure 15. The performance for the real sensor data on
both the wrist and the ankle and the simulated sensor data on the wrist was
with around 10–20% less than for the combination which is not a surprising
result (both legs and arms are relevant for our test activities). What may be
surprising at first is the fact that the performance for the ankle using simulated
data is half that of the real data (30–40%). The explanation is that foot motions
involve a lot of hard ground impacts that lead to “ringing” that has already
often been mentioned as something that the simulated data cannot replicate
(which is why 8 Hz filtering helps a lot here). In addition vertical orientation
plays a bigger role than for the wrists and there are many motions “to the
front” (towards the camera) which are more difficult to resolve due to the
viewing angle.

8. Effects of 8 Hz Filtering. The effect of various pre-processing strategies has already
been discussed in Section 5.2 establishing that while filtering and to some degree scal-
ing did seem to be beneficial in some cases, overall the effect was not overwhelming
given that these effects may be strongly application specific. This is why we have
decided to do most of the analysis in this section on the unfiltered, not scaled signal.
However, for comparison Figure 19 includes the same evaluation done in Figure 16
with 8 Hz filtering. We can see that, while for the gyro norm (which was the poorest
one to start with) the filtering does indeed improve the relative performance of the
simulated signal based model, it has little effect otherwise.
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Figure 16. Results when using the accelerometer and gyro norm and the combination thereof.
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Figure 17. Results when using the gyroscope and accelerometer norms and adding simulated data to
the real one.
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Figure 18. Results when using the linear acceleration in the limb axis.
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Figure 19. Results when using the gyroscope and accelerometer norms and also 8 Hz filtering.

6. Conclusions and Future Work

The main result of our work is the demonstration of the basic feasibility of using
deep network regression models to generate simulated IMU signals directly from video
extracted postures. This includes the detailed analysis of the influence of different design
decisions on the performance and also includes discussion of the problems that need to
be addressed to improve the results. In the long term, this work should contribute to the
creation of training datasets that are comparable in size to what exists in computer vision
today and thus facilitate a more profound impact of deep learning techniques on wearable
sensors based HAR.

Clearly the work described here is just a first step towards this vision. Based on the
results described and discussed in the previous section we consider the following to be the
most promising next steps that we will investigate:

1. Extending the training data set for our regression model, in terms of the number of
users, the variety of motions and the number of sensor placements. This includes also
handling different camera positions and more complex poses. For example, lying on
a mat or swimming.

2. Collecting a large set of online videos for a more diverse set of activities, and further
testing and fine-tuning our model on them.

3. Extending the regression model to handle all types of sensor signals (e.g., acceleration
and gyro on each axis) better. This includes considering relations between sensor
signals e.g., the orientation of the wrist IMU in the frame of reference of the hip or
back mounted IMU which is often used as relevant information in wearable activity
recognition systems.

4. Implicit modeling of gravity by exploring image segmentation based detection of
“down” direction and including the angle towards the down vector in the features
that we feed our regression model. This will be particularly important as we start
looking at more and more complex sensor signals as mentioned above.

5. Exploring training the regression using the concept of Physically Informed Networks [45]
that incorporate physical constraints as regularization terms. The idea is to build a
regression model that for example simultaneously trains the ax, ay and az com-
ponent of the acceleration and the corresponding norm |a| and embedding the
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|a| =
√

ax2 + ay2 + az2 in the regularization term. Relationships between the ac-
celerometer and the gyroscope sensor signal at the same location and temporal
conditions could also be considered. These are all especially relevant for generating
more complex sensor signals as described in the previous points.

6. We could also explore applying our method to (more) easily identifiable locations
where sensors should be placed on the body for a specific set of activities. Before
recording sensor data, videos of those activities can be collected and sensor values
simulated for different on-body locations, which then can help select the best locations
to place them when recording training data.
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