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Abstract: The conventional eigensystem realization algorithm with data correlation (ERA/DC)
combines the impulse response or free response data of a structural system with the concept of
correlation function to identify the modal parameter of the structural system. Previous studies
have shown that the modal parameters of structural systems subjected to stationary white noise
excitation can be estimated by ERA/DC from the ambient response without excitation data. This
concept is extended in this paper for output-only modal identification for the structural system with
complex modes under ambient excitation as a nonstationary process in the form of a product model.
Numerical simulations and experimental verification are used to validate the effectiveness of the
proposed method for response-only modal estimation, and the stabilization diagram is used with
modal assurance criterion (MAC) to distinguish structural modes from fictitious modes.

Keywords: nonstationary ambient vibration; modal estimation; ERA/DC

1. Introduction

The modal estimation theory uses free response or impulse response data to identify
modal parameters, or uses excitation and response data simultaneously for parametric
estimation of structures. However, in many actual engineering structures, the structures
are often subjected to ambient excitation, which is difficult to be available. Therefore,
how to estimate the modal parameter of structural systems without excitation data for
structural control, damage detection, or analysis, and model updating is an important issue
in structural engineering.

The output-only modal identification can be implemented by multiple time-domain
or frequency-domain methods. In 1965, Ho and Kalman [1] proposed the minimum realiza-
tion algorithm, using the Markov parameter composed of the impulse response function
to obtain the minimum-order state-space representation. This method could describe the
system accurately but disregarded effective estimation of impulse response with noise. In
1974, Zeiger and McEwen [2] proposed the concept of Singular Value Decomposition (SVD)
in conjunction with the minimum realization algorithm. In 1986, Juang and Pappa [3]
developed the eigensystem realization algorithm (ERA) based on SVD and the minimum
realization algorithm. The ERA is mathematically reasonable, but improper optimum
dimension and size of the Hankel matrix will result in incorrect modal parameter esti-
mation [4]. In 1988, Juang et al. [5] proposed the improved method of ERA, that is, the
eigensystem realization algorithm using data correlation (ERA/DC), which reduces the ef-
fect of noise on modal estimation using the characteristics of a correlation matrix to increase
the accuracy of identification. In 1993, James et al. [6] assumed the ambient excitation
to be a white noise and calculated the autocorrelation and cross-correlation functions of
the response signal. They found that the mathematical version of the correlation function
was identical to that of free response and impulse response and the modal parameter of
the structure was obtained. Chiang and Lin [7] used the correlation between structural
system response signals corresponding to stationary white noise to redefine the Markov
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parameter and built the generalized Hankel matrix with SVD to obtain the system modal
parameter. In recent years, the ERA has been extensively used in output mode estima-
tion [8,9]; this method has been effective in identifying the modal parameter of large-scale
structures, such as offshore structural systems [10] and roof overflow powerhouses [11]. In
2011, Li et al. [12] studied the Hankel matrix of the ERA and found that a larger Hankel
matrix made the decomposition of noise much easier. The numerical calculations may be
erroneous if the difference between values of rows and columns is too large. Caicedo [13]
used a four-layer rectangular steel structure (benchmark structure) for the experiment
in which the ambient vibration was measured; six modes were identified successfully
by using the natural excitation technique in conjunction with eigensystem realization
algorithm (NExT-ERA), including a group of similar modes. It was indicated that the
number of sampling points of the correlation matrix would influence the identification
result directly. Liuchong and Caiyou et al. [14] measured the rail vibration signals induced
by impulse and actual train running and used the ERA for identification. The impulse and
ambient vibration results were close to the computer-aided analysis result. Siringoringo
and Fujino [15] used this method for output mode estimation of a suspension bridge. They
identified low-frequency closely spaced modes effectively, but the high-frequency closely
spaced modes could not be identified due to noise interference. Kordkheili et al. [16] used
the method for mode estimation for the flat plate with similar modes and the pulley with
repetition frequency mode.

The ERA/DC combines the impulse response or free response signal of a structural
system with the concept of correlation function to identify the modal parameter of a
structural system [7]. We can determine the modal parameter of the structural system
by ERA/DC from the environmental response signal directly, without excitation signal
measurement; the only applicable assumption is that the excitation is a stationary white
noise. This may not match the actual environmental condition. This concept is extended in
this paper to study how to perform modal parameter identification for the linear structural
system with complex mode under ambient excitation with a nonstationary process. We
will combine the ERA/DC with the correlation function of nonstationary ambient vibration
to develop a complete theory for the nonstationary in the form of a product model. It
is combined with appropriate channel-expansion technique to construct the generalized
Hankel matrix containing adequate dynamic information for mode estimation, to extend
the applicability of ERA/DC to nonstationary output-only structural modal estimation.

2. Research Method

The equation of motion of a n Degree Of Freedom (DOF) linear vibration system with
nonstationary excitation f (t) can be expressed as

M
..
x(t) + C

.
x(t) + Kx(t) = f (t) (1)

where M, C, and K are the mass, damping, and stiffness matrices of the vibration system,
respectively, f (t) = Γ(t)w(t) is a nonstationary white noise with the product model,
x(t) = Γ(t)u(t), u(t) is the stationary displacement response when the system is excited
by a stationary white noise w(t), Γ(t) is a deterministic envelope function. If Γ(t) is a
time-varying function with the secular change, meaning

.
Γ(t) ≈ 0 and

..
Γ(t) ≈ 0, then

Γ(t)
..
u(t) ≈ ..

x(t) and Γ(t)
.
u(t) ≈ .

x(t), where
.
u(t) and

..
u(t) are the response signals of

the system corresponding to stationary white noise w(t), the system response can be
expressed as a nonstationary model coincident with envelope function Γ(t) of nonstationary
excitation, and Equation (1) can be rewritten as:

MΓ(t)
..
u(t) + CΓ(t)

.
u(t) + KΓ(t)u(t) = Γ(t)w(t) (2)
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In practical application, the dynamic response data of structures are in discrete form,
so the continuous state equation is transformed to discrete state space:

xk+1 = Axk + B f
k

(3)

y
k
= Cxk (4)

where xk, y
k
, and f

k
are state, output, and input vectors, respectively. A, B, and C are the

system, input, and output matrices, respectively. k is the sampling point sequence. As
f

k
is a nonstationary white noise with zero mean, the Hankel matrix H(k) is formed of

the system output vector y
k
. The nonstationary correlation function matrix Tτ between

response data, in different time-delayed times, τ is defined as:

Tτ ≡ T(τ) = E
[
y

k+τ
yT

k

]
(5)

According to Equations (3) and (4), Tτ can be expressed as

Tτ = CAτ−1G +
τ

∑
i=1

CAi−1BΓ2
k E
[
wk+τ−iu

T
k

]
CT (6)

where G = E[xk+τyT
k
] is the covariance matrix. In E

[
wk+τ−iuT

k
]
, wk+τ−i is the stationary

white part of nonstationary white noise in the form of a product model, uk is the dis-
placement response when the system is excited by a stationary white noise. As wk+τ−i is
uncorrelated with uk, E

[
wk+τ−iuT

k
]
= 0. If the excitation can be expressed as the product

model of the nonstationary white noise, and the nonstationary response of the system can
be expressed as a nonstationary process coincident with the envelope function of excita-
tion, the nonstationary correlation function matrix Tτ can be treated as an approximately
stationary correlation function matrix. In the analysis process, if the stochastic process can
be reasonably assumed to be the whole process, the statistical value of correlation can be
derived from a single (delay is long enough) sample function, so for Tτ , the calculation can
be approximated as

Tτ ≈ 1
j

[
∑

j
k=1 y

k+τ
yT

k

]

=


CAk−1G CAk−2G . . . CAk−αG

CAkG CAk−1G . . . CAk−α+1G
...

...
. . .

...
CAk+α−2G CAk+α−3G . . . CAk−1G


αp×αp

=


C

CA
...

CAα−1

Ak[ A−1G A−2G . . . A−αG
]
≡ Pα AkQα

(7)
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where Pα and Qα correspond to the Pα and Qα of traditional ERA/DC. To reduce the effect
of noise and to obtain a relatively accurate mode identification result, the data correlation
matrix R(k) is used to build the generalized Hankel matrix U(k):

U(k) =


Tk Tk−1 . . . Tk−α+1

Tk+1 Tk . . . Tk−α+2
...

...
. . .

...
Tk+α−1 Tk+α−2 . . . Tk


αpa×αpb

=


R(k) R(k + 1) . . . R(k + b − 1)

R(k + 1) R(k + 2) . . . R(k + b)
...

...
. . .

...
R(k + a − 1) R(k + a) . . . R(k + a + b − 2)



=


Pα

Pα A
...

Pα Aα−1

Ak[ Qα AQα . . . Ab−1Qα

]
≡ Pa AkQb

(8)

where Pa is defined as the generalized observation matrix, Qb is the generalized control
matrix, p is the channel number of the measurement response signal. a and a are the
extended channel number of Hankel matrix R(k) and generalized Hankel matrix U(k),
respectively. To make the number of identified mode not less than the number of mode
to be identified, the sum of a and a shall be larger than or equal to the mode number to
be identified; β and b determine how many correlation matrices R(k) of different time
differences are to be analyzed in the generalized correlation Hankel matrix. After the new
data correlation matrix is defined, the theoretical structure of ERA/DC is used to obtain
the state matrix:

A = Sn
− 1

2 Vn
TU(1)WnSn

− 1
2 (9)

In Equation (9), the system matrix A contains the characteristics of the system, so
eigenvalue decomposition is performed for A, n eigenvalues (z1, z2, . . . , zn) and the
corresponding eigenvectors (ψ1, ψ2, . . . , ψn) can be obtained, and the characteristic matrix
can be expressed as

Z =


z1 0 0 0
0 z2 0 0

0 0
. . . 0

0 0 0 zn

 (10)

ψ = [ψ1, ψ2, . . . , ψn] (11)

The modal coordinate transformation relation is

A = ψZψ−1 (12)

Equation (12) is substituted in Equation (6) to obtain

Tτ = CmZτ−1Gm (13)

where Cm = Cψ is the modal output matrix.
As the discrete data are used for calculation in the process, the obtained eigenvalue

shall be transformed from discrete system eigenvalue into the eigenvalue of the continuous
system, and the transformation relation is expressed as follows:

λi =
ln zi
∆t

= λi
R + iλi

I (14)
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where λi
R is the real part of eigenvalue, λi

I is the imaginary part of eigenvalue, ∆t is
the sampling time; the natural frequency ωi and damping ratio ξi can be derived from
eigenvalue λi:

λi = −ξiωi ± iωi

√
1 − ξ2 (15)

ωi =

√
(λi

R)
2
+ (λi

I)
2 (16)

ξi =
−λi

R√
(λi

R)
2
+ (λi

I)
2

(17)

According to a prior reference [7], the ERA/DC has been able to redefine the Markov
parameter according to the data correlation between the ambient responses of structures
subjected to stationary white noise. The generalized Hankel matrix is built and combined
with SVD and then the system modal parameter can be obtained, whereas the traditional
ERA/DC is only applicable to the system impulse response. This concept is extended in this
study and it is mathematically proven that if the ambient excitation on the system can be
properly expressed as the nonstationary process in the form of a product model with a slow-
varying envelope function, the data correlation analysis between nonstationary excitation
and the corresponding response can be approximated as stationary correlation calculation.
Afterward, with appropriate extended channel technology, a generalized Hankel matrix
containing adequate dynamic information is built for mode estimation to extend the
applicability of ERA/DC to nonstationary output-only structural modal estimation.

3. Results and Discussion

In a dynamic test for the structure with external excitation, the modal parameter can
be estimated according to the measured data of excitation and response of the structural
system. However, it is sometimes difficult to perform a dynamic test for a large structure in
practice. It is unlikely to measure the complete modal information of the actual structure.
Therefore, to confirm the effectiveness of the developed algorithm theory, numerical
simulation and tests are usually used to validate the feasibility of the proposed method.

3.1. Six-DOF Chain Model of a Cantilever Beam

A six-DOF linear chain model system of a cantilever beam is shown in Figure 1. The
mass matrix M, stiffness matrix K, and damping matrix C of the system are expressed
as follows:

M =



2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 4

kg, K =



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 3 −2
0 0 0 0 −2 5

N/m,

C = 0.1M + 0.001K N·sec
m

The damping matrix C of the system is proportional damping (i.e., the linear combina-
tion of mass matrix M and stiffness matrix K). It should be mentioned that the proportional
damping matrices are suitable for modeling the behavior of most structural systems, in
which the damping mechanism is distributed rather uniformly throughout the structures.
The six DOF are excited by nonstationary white noise using the Newmark method and
the initial state is stationary. To obtain the displacement response of the time domain, the
time-domain sampling interval is 0.01 s, the number of sampling points is 131,072.
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Figure 1. Six-DOF chain model of a cantilever beam.

The nonstationary white noise discussed in this paper will be imported into the
nonstationary process in the form of a product model: fk(t) = Γk(t)wk(t), where Γk is a de-
terministic envelope function, wk is a stationary white noise. The nonstationary white noise
used in this paper, as shown in Figure 2, is composed of a stationary white noise with power
spectrum density 0.02N2/(rad/s) and envelope function Γk(t) = 4

(
e−0.002t + e−0.004t), as

shown in Figures 3 and 4.
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Figure 4. Sample function of nonstationary excitation.

In the course of system identification and to avoid omission of modal identification,
a higher order is used for identification. There will be a fictitious mode in the process.
Therefore, we can employ the values of modal assurance criterion (MAC) to check the
agreement between the identified and the theoretical mode shapes, and use the stabilization
diagram to filter the fictitious mode and to decide the order for calculation.

Figure 5 is the stabilization diagram of the six-DOF chain model system. It is roughly
observed that the frequencies 5, 13, 20, 27, 31, and 33 rad/s can be identified steadily when
the order number is 6. The six modes of corresponding frequencies are identified as system
modes, and the identification order number α is 6.
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Figure 5. Stabilization diagram of six-DOF chain model of a cantilever beam.

The displacement response of each DOF is shown in Figure 6. Table 1 shows the result
of modal parameter identification using ERA/DC. As seen, the frequency errors are less
than 1%, and the maximum error of damping ratio is 5.92%. Figure 7 shows the identified
mode shapes, which are approximately coincident with theoretical mode shapes, and the
MAC values are larger than 0.99, meaning the method is effective on identification.
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Figure 6. Nonstationary response signal of six-DOF chain model of a cantilever beam.

Table 1. Modal parameter identification result of six-DOF chain model of a cantilever beam.

Mode
Natural Frequency (rad/s) Damping Ratio (%)

MAC
Exact ERA/DC Error (%) Exact ERA/DC Error (%)

1 5.03 5.04 0.04 1.25 1.19 4.66 1.00
2 13.45 13.43 0.14 1.04 1.08 3.63 1.00
3 19.80 19.73 0.32 1.24 1.21 2.95 1.00
4 26.69 26.53 0.58 1.52 1.50 1.44 1.00
5 31.66 31.47 0.60 1.74 1.84 5.92 0.99
6 33.73 33.44 0.86 1.83 1.88 2.45 0.99
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3.2. Six-DOF Chain Model with Heavy Damping

To further validate the reliability of this method, this paper uses the Group 2 numerical
model which is also a six-DOF chain model, as shown in Figure 8. It is characterized by
a set of heavy damping and similar modes. The mass matrix M, stiffness matrix K, and
damping matrix C of the system are expressed as follows:

M =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

kg K =



1200 −600 0 0 0 0
−600 1200 −600 0 0 0

0 −600 1200 −600 0 0
0 0 −600 1200 −600 0
0 0 0 −600 1200 −600
0 0 0 0 −600 1200

N/m

C = 0.05M + 0.01K
N·sec

m
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0.70, and the rest are approximately coincident with exact mode shapes. 

Table 2. Modal parameter identification result of six-DOF chain model with heavy damping. 

Mode 
Natural Frequency (rad/s) Damping Ratio (%) 

MAC 
Exact ERA/DC Error (%) Exact ERA/DC Error (%) 

1 8.72 8.72 0.00 4.65 5.67 22.03 1.00 
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Figure 8. Six-DOF chain model with heavy damping.
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The damping matrix C of this system also uses proportional damping, and the re-
sponses of six degrees of freedom are individually excited by nonstationary white noise
using the Newmark method. The initial state is stationary to obtain the displacement
response of the time domain for numerical simulation. The time-domain sampling interval
is 0.01 s, the number of sampling points is 131,072.

Figure 9 is the stabilization diagram of the system, roughly showing five frequencies
of about 8, 19, 27, 31, and 43 rad/s. It is observed that the identification state of the mode
of 31 rad/s is relatively unstable before order 10, so the identification order α is 12. The
modal parameter identification can be performed effectively in this order, and the results
are shown in Table 2 and Figure 10.
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Table 2. Modal parameter identification result of six-DOF chain model with heavy damping.

Mode
Natural Frequency (rad/s) Damping Ratio (%)

MAC
Exact ERA/DC Error (%) Exact ERA/DC Error (%)

1 8.72 8.72 0.00 4.65 5.67 22.03 1.00
2 19.89 19.82 0.37 10.07 9.59 4.81 0.99
3 27.63 27.39 0.87 13.91 13.39 3.69 0.98
4 31.74 32.35 1.94 15.95 15.10 5.31 0.94
5 43.13 42.41 1.67 21.62 19.82 8.35 0.69
6 43.55 49.92 14.60 21.83 19.15 12.31 0.85

Table 2 shows the result of modal parameter identification using ERA/DC for a six-
DOF chain model with heavy damping. The sixth mode has a higher error in identification
of natural frequency, which is 14.6%, the others are lower than 2%, and the damping ratio
errors are less than 30%. Figure 10 shows the corresponding exact and identified mode
shapes of this structure; the fourth measurement DOF in the fifth mode shows phase
contrary sign. The computed MAC value of the fifth mode is lower than 0.70, and the rest
are approximately coincident with exact mode shapes.
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3.3. Seven-DOF Car Model

To demonstrate this method applicable to complex structure systems, a car model
with two groups of closely spaced modes is considered, as shown in Figure 11. The system
is a seven-DOF system, including car body bounce, pitch, and roll. Each of the four wheels
represents a DOF and has the dynamic behavior of bounce; related parameters are shown
in Table 3. The mass matrix M, stiffness matrix K, and damping matrix C of the system are
expressed as follows.
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Table 3. Parameter look-up table of seven-DOF car model.

Symbol Value Unit Designation

m 1365 kg Car body mass

Ix 498 kgm2 Roll inertia moment

Iy 1831 kgm2 Pitch inertia moment

m1 46.8 kg Right front wheel mass

m2 46.8 kg Left front wheel mass

m3 41.4 kg Right rear wheel mass

m4 41.4 kg Left rear wheel mass

k1 22, 428 N/m Right front wheel suspension rigidity

k2 22, 428 N/m Left front wheel suspension rigidity

k3 27, 022 N/m Right rear wheel suspension rigidity

k4 27, 022 N/m Left rear wheel suspension rigidity

k11 232, 342 N/m Right front wheel rigidity

k12 232, 342 N/m Left front wheel rigidity

k13 292, 982 N/m Right rear wheel rigidity

k14 292, 982 N/m Left rear wheel rigidity

L1 0.7165 m 1/2 wheel base

L2 0.7165 m 1/2 wheel base

L3 1.1135 m Distance from center of gravity to fore axle

L4 1.5415 m Distance from center of gravity to rear axle

M = diag



m 0 0 0 0 0 0
0 Iy 0 0 0 0 0
0 0 Ix 0 0 0 0
0 0 0 m1 0 0 0
0 0 0 0 m2 0 0
0 0 0 0 0 m3 0

0 0 0 0 0 m4



K =



k1 + k2 + k3 + k4 −L1k1 + L2k2 − L1k3 + L2k4 −L3k1 − L3k2 + L4k3 + L4k4 −k1 −k2 −k3 −k4
−L1k1 + L2k2 − L1k3 + L2k4 L2

1k1 + L2
2k2 + L2

1k3 + L2
2k4 L1L3k1 − L2L3k2 − L1L4k3 + L2L4k4 L1k1 −L2k2 L1k3 −L2k4

−L3k1 − L3k2 + L4k3 + L4k4 L1L3k1 − L2L3k2 − L1L4k3 + L2L4k4 L2
3k1 + L2

3k2 + L2
4k3 + L2

4k4 L3k1 L3k2 −L4k3 −L4k4
−k1 L1k1 L3k1 k1 + k11 0 0 0
−k2 −L2k2 L3k2 0 k2 + k12 0 0
−k3 L1k3 −L4k3 0 0 k3 + k13 0
−k4 −L2k4 −L4k4 0 0 0 k4 + k14


C = 0.1M + 0.001KN · sec /m

In this system, as the external force on the actual car body is close to stationary white
noise, the DOF of the car body is excited by stationary white. The DOF of four wheels is
excited by nonstationary white noise, the time domain sampling interval is 0.01 s, and the
number of sampling points is 131,072.

Figure 12 is the stabilization diagram of the seven-DOF car model, roughly showing
five frequencies of about 5, 7, 19, 70, and 83 rad/s. The modes are effectively identified;
two groups of closely spaced modes are at 70 and 83 rad/s, which cannot be effectively
identified at lower α (number of columns of Hankel matrix) and α should be increased
properly. In this identification, the order α is 35, and the identification results are shown in
Table 4 and Figure 13.

Table 4 shows the result of modal parameter identification for the seven-DOF car
model by ERA/DC. The frequency errors are less than 5%, and the damping ratio error is
less than 30%. Figure 13 shows the mode shape identification result. The first mode is pitch
mode, the second mode is car body bounce mode, the third mode is roll mode, the fourth
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and fifth modes are front-wheel bounce mode, the sixth and seventh modes are rear-wheel
bounce mode, and the identification result is approximately coincident with theory.
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Table 4. Modal parameter identification result of seven-DOF car model.

Mode
Natural Frequency (rad/s) Damping Ratio (%)

MAC
Exact ERA/DC Error (%) Exact ERA/DC Error (%)

1 5.03 5.01 0.36 1.25 1.19 4.13 0.99
2 7.82 7.78 0.44 1.03 1.06 2.77 1.00
3 18.47 18.43 0.22 1.19 1.42 19.07 1.00
4 73.79 70.56 4.38 3.76 4.51 19.99 0.81
5 73.87 74.03 0.22 3.76 4.44 18.08 0.85
6 87.93 83.78 4.72 4.45 3.12 29.94 0.80
7 88.07 85.73 2.66 4.46 3.72 16.52 0.94

3.4. Twenty-DOF Chain Model with Many Groups of Closely Spaced Modes

To further examine the effectiveness of the present method for a structural system with
more DOFs, we conduct output-only modal estimation using a 20-DOF chain model rigidly
fixed at both ends containing the mechanical properties of each 1kg mass and all 600 N/m
spring constants. The damping matrix is assumed to be proportional to a combination of the
mass and the stiffness matrices as given by C = 0.05M + 0.001K N s/m. This structure is
subjected to a vibration practically recorded at Sun-Moon Lake on September 21, 1999 when
the Chi-Chi Earthquake with a moment magnitude of 7.6 occurred in central Taiwan. The
sampling interval and period of this seismic record are ∆t = 0.005 sec and T = 59.995 sec,
respectively. A sample of the seismic record, which serves as the excitation input acting on
the sixth mass of the model, is shown in Figure 14. Figure 15 is the stabilization diagram
of the system, roughly showing the first 12 natural frequencies of the identified structural
modes. The system considered has many groups of closely spaced modes, as listed in
Table 5. The results of identification are also summarized in Table 5, which shows that the
errors in natural frequencies are less than 5% and the errors in damping are larger. From
Table 5, 12 out of the 20 vibration modes are identified more accurately with MAC ≥ 0.9 as
the threshold. Because the structural response generally has lower sensitivity to damping
ratios and mode shapes than to the natural frequencies, the errors of identified damping
ratios and mode shapes are somewhat larger. Since the contribution of the high-order
vibration modes to the structural response is somewhat less than that of the low-order
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vibration modes, the high-order vibration modes are not identified as accurately as the
low-order vibration modes in general.
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Table 5. Modal parameter identification result of a 20-DOF system subjected to nonstationary white
noise input.

Mode
Natural Frequency (rad/s) Damping Ratio (%)

MAC
Exact ERA/DC Error (%) Exact ERA/DC Error (%)

1 3.66 3.72 1.68 1.55 1.61 3.89 1.00
2 7.30 7.39 1.21 1.05 1.31 24.76 1.00
3 10.90 10.97 0.62 1.00 1.04 3.58 1.00
4 14.44 14.43 0.10 1.07 0.93 12.84 1.00
5 17.90 17.68 1.21 1.17 1.93 64.68 0.99
6 21.26 21.42 0.79 1.30 1.01 22.29 1.00
7 24.49 24.30 0.78 1.43 1.36 4.54 0.98
8 27.60 27.08 1.87 1.56 1.43 8.60 0.97
9 30.54 30.36 0.60 1.69 0.85 49.70 0.91

10 33.32 32.94 1.13 1.82 1.51 16.63 0.94
11 35.91 36.00 0.25 1.93 1.53 20.80 0.96
12 38.30 37.93 0.97 2.05 2.00 2.38 0.91
13 40.48 40.05 1.06 2.15 1.19 44.60 0.76
14 42.43 42.39 0.09 2.24 2.52 12.64 0.79
15 44.14 44.53 0.89 2.32 0.81 65.12 0.60
16 45.60 45.55 0.12 2.39 2.07 13.53 0.75
17 46.81 46.83 0.04 2.45 1.30 46.97 0.38
18 47.76 48.20 0.92 2.49 1.70 31.63 0.27
19 48.44 48.77 0.68 2.53 19.97 690.86 0.02
20 48.85 48.78 0.15 2.54 1.60 37.07 0.49

3.5. Experimental Validation of Free Beam

To validate the effectiveness of the method proposed in this paper, an actual beam
structure of free boundary is used for the experiment as shown in Figure 16. The Brüel
& Kjær RT Pro Photon 7.0 data acquisition system, PCB 208C01 force sensor, and PCB
352B10 piezoelectric accelerometer are used for measuring response signal. The simulated
nonstationary excitation is imported into the Modal Shop K20070E01 vibration exciter
through Teledyne LeCroy T3AFG40 signal generator and the vibration exciter excites
the free beam structure. Finally, the excitation signal and response signal are obtained
by force sensor and accelerometer, as shown in Figures 17 and 18. Currently, a roving
accelerometer testing based on output-only modal estimation is implemented to extract
the practical modal properties of the beam structure; nine measurement positions on the
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realistic aluminum alloy beam were marked and the shaker excitation impacts acted as the
middle (fifth) location of the beam.
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The length, width, and height of the beam structure used for this paper are 300 mm,
20 mm, and 15 mm, respectively, the mass is 245.7 g, and the material is 6061-T6 aluminum
alloy. According to the theory of engineering vibration, the natural frequencies of the
first three groups of modes are about 865.42 Hz, 2385.61 Hz, and 4676.75 Hz, as listed in
Table 6. The data are used as a reference for experimental modal analysis (EMA). The
natural frequencies of modes and mode shapes match the analytic solution, meaning
the experimental results are reliable. For the EMA procedure, the Brüel & Kjær RT Pro
Photon 7.0 data acquisition system is employed to respectively extract the excitation data
induced from a 086C01 PCB impulse hammer impacting on the structure as well as the
response data obtained from a 352B10 PCB piezoelectric accelerometer, and the frequency
response function of each measurement degree of freedom can be obtained through roving
accelerometer testing to perform modal estimation.

Table 6. Modal parameter identification result of free beam experiment.

Mode
Natural Frequency (Hz) Damping Ratio (%)

MAC
Exact EMA ERA/DC Error (%) EMA ERA/DC Error (%)

1 865.42 860.00 827.12 3.82 0.01 0.01 44.26 0.98
2 2385.61 2340.00 2313.39 1.14 0.04 0.06 48.52 0.77
3 4676.75 4480.00 4489.58 −0.21 0.05 0.04 11.65 0.88

This paper uses the modal parameter obtained by EMA as a reference frame and uses
the ambient response to compare the identification results of ERA/DC, as shown in Table 6
and Figure 19. It is observed that the frequency errors are less than 4%, and the maximum
error of damping ratio is 48.52%. Figure 19 shows the identified mode shapes which are
approximately coincident with theoretical mode shapes, and the modal assurance criteria
(MAC) are larger than 0.77. This means that the method is effective on identification in
practical application.
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4. Discussion

The system order α is selected, which refers to the stabilization diagram in this study.
The number of frequencies in the signal is evaluated by spectrum and whether the order is
sufficient for identification is judged according to the stabilization diagram, but only the
frequency can be used as a reference. The accurate damping ratio or mode shape cannot be
identified by the order. Reference [6] indicates that parameter α (number of columns of
Hankel matrix) and β (number of rows of Hankel matrix) shall be intercompared, and the
difference shall not be too large. Therefore, the parameter β must be adjusted appropriately
when selecting α.

The ERA/DC is likely to be influenced by noise on the identification of high-order
vibration mode, and closely spaced modes are unlikely to be identified [12]. The closely
spaced modes of the model selected in this study exist in relatively high-order vibration
modes. The numerical simulation process is free of additional noise factors in this study,
and the damping ratio of high-order closely spaced vibration modes still has a relatively
high identification error, so it is not completely ascribed to noise.

5. Conclusions

The concept of ERA/DC is extended to nonstationary ambient response in this study.
If the ambient excitation on the system can be appropriately expressed as the nonstationary
process in the form of a product model with a slowly-varying envelope function and
stationary white noise, the system response can be expressed as a nonstationary process
coincident with the envelope function of external force. The data correlation between non-
stationary excitation and corresponding response can be theoretically shown approximate
to stationary data correlation. Afterward, the appropriate extended channel technology is
used to build the generalized Hankel matrix containing adequate dynamic information
for mode estimation, to extend the applicability of ERA/DC to nonstationary output-only
structural modal estimation. The findings of this paper can be concluded as follows.

(1) This paper deduces that the correlation matrix of excitation and response signals
can be made into the form identical with stationary white noise under nonstationary one
in the form of a product model. With this characteristic, the ambient response can be
directly used for ERA/DC by using channel-expansion technique. It is not necessary to
transform ambient response into free-response through additional data processing before
modal identification, preventing unnecessary distortion in vibration data to lead errors in
parametric estimation of structural system.

(2) The ambient excitation considered in this paper can be treated as a nonstationary
process, which is the chosen nonstationary white noise in the form of a product model
of a simple mathematical form and convenient for processing. According to numerical
simulation, the structural mode can be identified effectively in most cases. Also, if the
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ambient excitation meets the characteristic of periodic vibration, the method proposed in
this paper can be used for identifying modal parameter.

(3) The ERA/DC is performed directly using ambient response data only for modal
parameter identification through the method proposed in this paper, the natural frequency
identification result is good. In terms of the identified mode shape, as the response data
remains complete, the MAC value approaches 1 meaning the agreement with the actual
mode shape is good. In terms of damping ratio, the error changes significantly, adequate
response points and time-delayed sampling is required to augment system matrix order
and to increase the damping ratio identification accuracy.

(4) As the nonstationary response only is directly used for modal estiamtion, the
identification result may contain structural modes, excitation modes, and fictitious modes.
The fictitious mode is eliminated by using the concept of stabilization diagram, and the
agreement between the identified mode shapes and actual structural mode shapes is
checked by using modal assurance criterion.
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