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Abstract: Many investigations use a linearization method, and others use a structural properties
method to determine the controllability and observability of robots. In this study, we propose a
transformed structural properties method to determine the controllability and observability of robots,
which is the combination of the linearization and the structural properties methods. The proposed
method uses a transformation in the robot model to obtain a linear robot model with the gravity
terms and uses the linearization of the gravity terms to obtain the linear robot model; this linear
robot model is used to determine controllability and observability. The described combination
evades the structural conditions requirement and decreases the approximation error. The proposed
method is better than previous methods because the proposed method can obtain more precise
controllability and observability results. The modified structural properties method is compared
with the linearization method to determine the controllability and observability of three robots.

Keywords: controllability; observability; transformation; linearization; robots

1. Introduction

The concept of controllability denotes the ability to move a robot around in its entire
configuration space using only certain admissible manipulations. The exact definition
varies slightly within the framework or the kind of applied robots. Controllability and
observability are dual aspects of the same problem.

Many authors have proposed interesting controllers or observers such as [1–9]; how-
ever, in most of the studies, the robot models are assumed to be controllable or observable
without any proof. A method to determine the controllability of a robot model is important
because a robot model that is assured to be controllable can guarantee the existence of a
controller to reach one of the objectives such as regulation, tracking, disturbance rejection,
etc. A method to determine the observability of a robot model is important because a robot
model that is assured to be observable can guarantee the existence of an observer to reach
one of the objectives such as states estimation, disturbance estimation, etc. Hence, it would
be interesting to study when the controllability and observability of robots is not assumed.

There are some studies about controllability and observability. In [10–13], the au-
thors are focused on the local, linear, global, and exact controllability and observability.
In [14–16], the authors discuss the controllability and observability of linear time-varying
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systems. In [17–20], the authors use algorithms to determine controllability and observ-
ability. In [21–23], the authors use the geometric method to determine controllability and
observability. In [24–26], the authors consider the fact that robot models are changed
from being linearly uncontrollable to linearly controllable when the equilibrium point is
moved from the origin to a different one. In [27–29], the authors propose feedback for the
linearization of robot models to determine controllability. In [30–32], the authors present a
controllability analysis proving that some robots are not controllable. In [33–35], the au-
thors extract properties of the mechanical parameters to demonstrate that some robots are
controllable and observable. In [36–38], the authors design elastic, flexible, or micro-robots,
which, since their design, are controllable. In [39,40], authors find a transformation to
determine which states have the greatest contribution in controllability and observability.

From the aforementioned studies, some authors use a linearization method [24–32],
and the other use a structural properties method [33–40] to determine the controllability and
observability of robots. The linearization method is an approximation of the robot model
around the origin, and the structural properties method is a different representation of the
nonlinear model based on transformations. The linearization method has the problem that
could produce erroneous results because of the approximation nature, and the structural
properties method has the problem that the robot model requires to satisfy structural
conditions. It would be interesting to propose a method to determine the controllability
and observability of robots that evade the problems presented in the mentioned methods.

In this study, we propose a transformed structural properties method to determine
the controllability and observability of robots that is the combination of the linearization
method [24–32] and the structural properties method [33–40]. The proposed method uses a
transformation in the robot model to obtain a linear robot model with the gravity terms
and uses the linearization of the gravity terms to obtain a linear robot model; this linear
robot model is used to determine controllability and observability. The combination of
the linearization and structural properties methods contributes to evade the problems
of both methods by evading the structural conditions requirement and decreasing the
approximation error.

The proposed transformed structural properties method is better than previous meth-
ods because the proposed method could satisfy the following gravity terms condition
used to obtain more precise controllability and observability results: if the gravity terms
of the robot model contain constant or cosine functions, then the linearization is evaded,
and a linear robot model is obtained; this linear robot model is used to determine the
controllability and observability.

Finally, the transformed structural properties method is compared with the lineariza-
tion method to determine the controllability and observability of the scara, two links, and
cylindrical robots. The scara, two links, and cylindrical robots are selected because they
satisfy the gravity terms condition and could be applied in pick and place, screwed, printed
circuit boards, packaging, labeling, etc.

This paper is organized as follows. In Section 2, the linearization and the transformed
structural properties methods are detailed. In Section 3, the linearization and the trans-
formed structural properties methods are applied to determine the controllability and
observability of the scara robot. In Section 4, the linearization and the transformed struc-
tural properties methods are applied to determine the controllability and observability of
the two links robot. In Section 5, the linearization and the transformed structural properties
methods are applied to determine the controllability and observability of the cylindrical
robot. In Section 6, the conclusion and the forthcoming work are detailed.
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2. Two Methods to Determine the Controllability and Observability of Robots

A method to determine the controllability of a robot model is important because a
robot model which is assured to be controllable can guarantee the existence of a controller
to reach one of the objectives such as regulation, tracking, disturbance rejection, etc. A
method to determine the observability of a robot model is important because a robot model
which is assured to be observable can guarantee the existence of an observer to reach one
of the objectives such as states estimation, disturbance estimation, etc.

The main concern of this section is to present two methods to determine the controlla-
bility and observability of robots. First, the linearization method, which is known in the
literature, will be presented. Second, the transformed structural properties method, which
is the main contribution of this study, will be presented.

2.1. Linearization Method to Determine the Controllability and Observability of Robots

The robot model considered is detailed. The robot model is important because it is
the starting point in determining the controllability and observability of robots with this
method.

For the robots with n degrees of freedom, considering the contact force and constraints,
the robot model is:

F(z1, z2) = τ, y = Dz,

F(z1, z2) =

[
z2

W(z1)
•
z2 + V(z1, z2)z2 + X(z1)

]
,

F(z1, z2) =
[

F1 F2 · · · F2n
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
, τ =

[
0 u

]T

(1)

I ∈ <n×n is the identity matrix, z1 ∈ <n×1 is the joint angle or link displacement of
the robot, z2 ∈ <n×1 is the velocity of the robot, z ∈ <2n×1 is the state, W(z1) ∈ <n×n is a
matrix with the inertia terms, which is symmetric and positive definite, V(z1, z2) ∈ <n×n is
a matrix with the centripetal and Coriolis terms, X(z1) ∈ <n×1 is a vector with the gravity
terms, u ∈ <n×1 is the input, F(z1, z2) ∈ <2n×1 is a nonlinear function vector containing
all the robot terms, D ∈ <2n×n, and y ∈ <n×1 is the output.

Now, the linearization method of [24–32] is presented. The linear robot model is
important because it is required in determining the controllability and observability of
robots. The linearization method is an approximation of the robot model around the origin.

The robot model (1) is linearized around the origin by the linearization method to
obtain the following linear robot model:

•
z = Az + Bu,

A = ∂F(z1,z2)
∂z

∣∣∣
z=0,u=0

, B = ∂F(z1,z2)
∂u

∣∣∣
z=0,u=0

,

A =


∂F1
∂z11

∂F1
∂z12

· · · ∂F1
∂znn

∂F2
∂z11

∂F2
∂z12

· · · ∂F2
∂z33

...
...

...
...

∂F2n
∂z11

∂F2n
∂z12

· · · ∂F2n
∂znn


z=0,u=0

,

B =


∂F1
∂u1

∂F1
∂u2

· · · ∂F1
∂un

∂F2
∂u1

∂F2
∂u2

· · · ∂F2
∂un

...
...

...
...

∂F2n
∂u1

∂F2n
∂u2

· · · ∂F2n
∂un


z=0,u=0

,

(2)
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A ∈ <2n×2n, B ∈ <2n×n Since the linear robot model has been obtained in (2), now
the known methods for linear systems [31,32] are used to determine the controllability and
observability of robots.

Using the linear robot model (2) of the linearization method, the controllability matrix
is:

C =
[

B AB A2B · · · A2n−1B
]
, (3)

If the rank of the controllability matrix C is equal to 2n, the robot model of the
linearization method is controllable around the origin.

Using the linear robot model (2) of the linearization method, the observability matrix
is:

O =
[

D DA DA2 · · · DA2n−1 ]T , (4)

If the rank of the observability matrix O is equal to 2n, the robot model of the lineariza-
tion method is observable around the origin.

2.2. Transformed Structural Properties Method to Determine the Controllability and Observability
of Robots

The linear robot model with gravity terms considered is detailed. The linear robot
model with gravity terms is important because it is the starting point in determining the
controllability and observability of robots with this method.

By using the fact that the inverse of the robot inertia matrix W(z1) ∈ <n×n is well
defined, (1) is represented as the following linear robot model with gravity terms:

•
z = A1z + B1u + G(z1), y = Dz,

A1 =

[
0 I
0 −W−1(z1)V(z1, z2)

]
,

B1 =

[
0

W−1(z1)

]
,

G(z1) =

[
0

−W−1(z1)X(z1)

]
,

G(z1) =
[

G1 G2 · · · G2n
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
,

(5)

I ∈ <n×n is the identity matrix, z1 ∈ <n×1 is the joint angle or link displacement of
the robot, z2 ∈ <n×1 is the velocityof the robot, z ∈ <2n×1 is the state, W(z1) ∈ <n×n is a
matrix with the inertia terms, which is symmetric and positive definite, V(z1, z2) ∈ <n×n is
a matrix with the centripetal and Coriolis terms, X(z1) ∈ <n×1 is a vector with the gravity
terms, u ∈ <n×1 is the input, G(z1) ∈ <2n×1 is a nonlinear function vector containing
only the gravity terms of F(z1, z2) ∈ <2n×1, and y ∈ <n×1 is the output. A1 ∈ <2n×2n,
B1 ∈ <2n×n, D ∈ <2n×n.

Now the transformed structural method of this study is presented to determine the
controllability and observability of robots, which is the combination of the linearization
method of [24–32] and the structural properties method of [33–40]. The linearization
method is an approximation of the robot model around the origin, and the structural prop-
erties method is a different representation of the nonlinear model based on transformations.
The combination of the linearization and structural properties methods contributes to
evade the problems of both methods by evading the structural conditions requirement and
decreasing the approximation error.
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The robot model (1) was transformed to obtain a linear robot model with the gravity
terms (5), and the gravity terms are linearized around the origin by the linearization method
to obtain the following linear robot model:

•
z = Az + Bu, y = Dz,

A = A1 + A2, B = B1 + B2,

A1 =

[
0 I
0 −W−1(z1)V(z1, z2)

]
,

B1 =

[
0

W−1(z1)

]
,

A2 = ∂G(z1)
∂z

∣∣∣
z=0,u=0

, B2 = ∂G(z1)
∂u

∣∣∣
z=0,u=0

,

A2 =


∂G1
∂z11

∂G1
∂z12

· · · ∂G1
∂znn

∂G2
∂z11

∂G2
∂z12

· · · ∂G2
∂z33

...
...

...
...

∂G2n
∂z11

∂G2n
∂z12

· · · ∂G2n
∂znn


z=0,u=0

,

B2 =


∂G1
∂u1

∂G1
∂u2

· · · ∂G1
∂un

∂G2
∂u1

∂G2
∂u2

· · · ∂G2
∂un

...
...

...
...

∂G2n
∂u1

∂G2n
∂u2

· · · ∂G2n
∂un


z=0,u=0

,

z =
[

z1 z2
]T , D =

[
I 0

]
,

(6)

I ∈ <n×n is the identity matrix and z = [z1, z2]
T ∈ <2n×1, z1 ∈ <n×1, z2 ∈ <n×1, and

u ∈ <n×1 are described in (5), A ∈ <2n×2n, B ∈ <2n×n.
Since the linear robot model has been obtained in (6), now the known methods for

linear systems [31,32] are used to determine the controllability and observability of robots.
Using the linear robot model (6) of the transformed structural properties method, the

controllability matrix is:

C =
[

B AB A2B · · · A2n−1B
]
, (7)

If the rank of the controllability matrix C is equal to 2n, the robot model of the
transformed structural properties method is controllable around the origin.

Using the linear robot model (6) of the transformed structural properties method, the
observability matrix is:

O =
[

D DA DA2 · · · DA2n−1 ]T , (8)

If the rank of the observability matrix O is equal to 2n, the robot model of the trans-
formed structural properties method is observable around the origin.

Remark 1. The linearization method uses the linearization in the robot model A, B being an
approximation that could produce erroneous results, while the transformed structural properties
method uses a transformation in one part of the robot model A1, B1 evading the requirement to
satisfy some structural conditions, and uses the linearization in the other part of the robot model A2,
B2 evading erroneous results because of the approximation nature.

Remark 2. The proposed transformed structural properties method is better than previous methods
because the proposed method could satisfy the following gravity terms condition used to obtain more
precise controllability and observability results: if the gravity terms X(z1) ∈ <n×1 of the robot
model (5) contain constant or cosine functions, then the linearization is evaded with A2, B2 of (6)
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equal to zero, and a linear robot model is obtained with A1, B1 of (6); this linear robot model (6) is
used to determine the controllability and observability.

Remark 3. We describe two methods, both methods are based on two stages, the second stage of
both methods described by Equations (3), (7), (4) and (8) is equal, but the first stage of both methods
described by Equations (1), (2), (5) and (6) is completely different. Thus, the difference of the first
stage produces different results in both methods.

The examples of the following two sections satisfy the gravity terms condition.

3. Scara Robot

In this section, we compare the two methods to determine the controllability and
observability of the scara robot.

The scara robot has three degrees of freedom. It has two rotary joints and two links
configured in a horizontal position, it has one linear joint and one link configured in a
vertical position. We express the scara robot of Figure 1, where θ1, θ2, are the angles of the
joints one, two in rad and lc3 is the length of the link three, in m.
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Figure 1. Scara robot.

3.1. Linearization Method

Now, the linearization method of [24–32] is applied to the scara robot.
We write the scara robot as (1), and we detail it as:

F(z1, z2) = τ, y = Dz,

F(z1, z2) =

[
z2

W(z1)
•
z2 + V(z1, z2)z2 + X(z1)

]
,

F(z1, z2) =
[

F1 F2 · · · F6
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
, τ =

[
0 u

]T

(9)



Appl. Sci. 2021, 11, 3082 7 of 18

where F(z1, z2) ∈ <6×1 is a nonlinear function vector containing all the robot terms
F1, F2, · · · , F6, which are described as follows:

F1 = z21, F2 = z22, F3 = z23,

F4 = − [(m2l2
c2+m3l2

2)+l1C2(m2lc2+m3l2)]
[J13+m1l2

c1+m2(l2
1+l2

2)+m3(l2
1+l2

2)+2l1C2(m2lc2+m3l2)]
•
z22

+ [2l1S2(m2lc2+m3l2)]
[J13+m1l2

c1+m2(l2
1+l2

2)+m3(l2
1+l2

2)+2l1C2(m2lc2+m3l2)]
z22z21

+ [l1S2(m2lc2+m3l2)]
[J13+m1l2

c1+m2(l2
1+l2

2)+m3(l2
1+l2

2)+2l1C2(m2lc2+m3l2)]
z22z22

+ 1
[J13+m1l2

c1+m2(l2
1+l2

2)+m3(l2
1+l2

2)+2l1C2(m2lc2+m3l2)]
u1,

F5 = − [(m2l2
c2+m3l2

2)+l1C2(m2lc2+m3l2)]
[J3+(m2l2

c2+m3l2
2)]

•
z21

− [2l1S2(m2lc2+m3l2)]
[J3+(m2l2

c2+m3l2
2)]

z21z21 +
1

[J3+(m2l2
c2+m3l2

2)]
u2,

F6 = [g] + 1
[m3]

u3,

(10)

m1, m2, m3 are the masses of the links one, two, three, z11 = θ1, z12 = θ2, are the angles
of the joints one, two in rad, z13 = lc3 is the length of the link three, in m, and g is the
acceleration gravity constant. l1 = l2 = 0.3 m, lc1 = l1/2, lc2 = l2/2, m1 = m2 = m3 = 0.3
kg, J13 = J1 + J2 + J3, J1 = 0.0208 kgm2, J2 = J3 = 0.0127 kgm2, g = 9.81 m/s2.

By using the linearization method described in (2), the linear model is:

•
z = Az + Bu, y = Dz,

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B =



0 0 0
0 0 0
0 0 0

4.1331 0 0
0 21.529 0
0 0 3.3333

,

D =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

,

(11)

By using the linearization method described in (3), the controllability matrix is:

C =



0 0 0 c14 0 0
0 0 0 0 c25 0
0 0 0 0 0 c36

c41 0 0 0 0 0
0 c52 0 0 0 0
0 0 c63 0 0 0

, (12)

c14 = c41 = 4.1331, c25 = c52 = 21.529, c36 = c63 = 3.3333. Since the rank of the
controllability matrix is 6, the scara robot is controllable.
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By using the linearization method described in (4), the observability matrix is:

O =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, (13)

Since the rank of the observability matrix is 6, the scara robot is observable.

3.2. Transformed Structural Properties Method

Now, the transformed structural properties method of this study is applied to the
scara robot.

We write the scara robot as (5), and we detail it as:

•
z = A1z + B1u + G(z1), y = Dz,

A =

[
0 I
0 −W−1(z1)V(z1, z2)

]
,

B =

[
0

W−1(z1)

]
,

G(z1) =

[
0

−W−1(z1)X(z1)

]
,

G(z1) =
[

G1 G2 · · · G6
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
,

(14)

where W(z1) ∈ <3×3 is a matrix with the inertia terms W11, W12, · · · , W33, V(z1, z2) ∈ <3×3

is a matrix with the centripetal and Coriolis terms V11, V12, · · · , V33, and X(z1) ∈ <3×1 is a
vector with the gravity terms X1, X2, X3, which are described as follows:

W11 = J13 + m1l2
c1 + m2

(
l2
1 + l2

2
)

+m3
(
l2
1 + l2

2
)
+ 2l1C2(m2lc2 + m3l2),

W12 = W21 =
(
m2l2

c2 + m3l2
2
)
+ l1C2(m2lc2 + m3l2),

W22 = J3 +
(
m2l2

c2 + m3l2
2
)
, W33 = m3,

V11 = −2l1S2(m2lc2 + m3l2)z22,
V12 = −l1S2(m2lc2 + m3l2)z22,
V21 = 2l1S2(m2lc2 + m3l2)z21,

X3 = −m3g, G6 = −[g],

(15)

the other terms of W(z1), V(z1, z2), X(z1), G(z1) are zero. m1, m2, m3 are the masses of the
links one, two, three, z11 = θ1, z12 = θ2, are the angles of the joints one, two in rad, z13 = lc3
is the length of the link three, in m, and g is the acceleration gravity constant. l1 = l2 = 0.3
m, lc1 = l1/2, lc2 = l2/2, m1 = m2 = m3 = 0.3 kg, J13 = J1 + J2 + J3, J1 = 0.0208 kgm2,
J2 = J3 = 0.0127 kgm2, g = 9.81 m/s2.



Appl. Sci. 2021, 11, 3082 9 of 18

By using the transformed structural properties method described in (6), the linear
model is:

•
z = Az + Bu, y = Dz,

A = A1 + A2, B = B1 + B2,

A1 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B1 =



0 0 0
0 0 0
0 0 0

11.043 −2.4567 0
−2.4567 8.0055 0

0 −0 3.3333

,

A2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B2 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

T

,

D =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

,

(16)

By using the transformed structural properties method described in (7), the controlla-
bility matrix is:

C =



0 0 0 c14 c15 0
0 0 0 c24 c25 0
0 0 0 0 0 c36

c41 c42 0 0 0 0
c51 c52 0 0 0 0
0 −0 c63 0 0 0

, (17)

c15 = c51 = c24 = c42 = −2.4567, c14 = c41 = 11.043, c25 = c52 = 8.0055, c36 = c63 =
3.3333. Since the rank of the controllability matrix is 6, the scara robot is controllable.

By using the transformed structural properties method described in (8), the observ-
ability matrix is:

O =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, (18)

Since the rank of the observability matrix is 6, the scara robot is observable.
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3.3. Comparison of Results

In the proposed transformed structural properties method, the gravity terms X(z1)
of the scara robot model (14) and (15) contain constant functions, the linearization is
evaded with A2, B2 of (16) are equal to zero, and a linear robot model is obtained with
A1, B1 of (16). Thus, the transformed structural properties method satisfies the gravity
terms condition of Remark 2. Furthermore, the linear model (16) of the transformed
structural properties method is more approximated to the robot model than the linear
model (11) of the linearization method, and the controllability and observability results
of the transformed structural properties method (17) and (18) are more precise than the
controllability and observability results of the linearization method (12) and (13).

4. Two-Link Robot

In this section, we compare the two methods to determine the controllability and
observability in the two-link robot.

The two-link robot has two degrees of freedom. It has two rotary joints and two links
configured in a vertical position. We express the two-link robot of Figure 2, where θ1, θ2
are the angles of the joints one, two in rad.
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4.1. Linearization Method

Now, the linearization method of [24–32] is applied to the two-link robot.
We write the two-link robot as (1), and we detail it as:

F(z1, z2) = τ, y = Dz,

F(z1, z2) =

[
z2

W(z1)
•
z2 + V(z1, z2)z2 + X(z1)

]
,

F(z1, z2) =
[

F1 F2 F3 F4
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
, τ =

[
0 u

]T

(19)
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where F(z1, z2) ∈ <4×1 is a nonlinear function vector containing all the robot terms
F1, F2, · · · , F4, which are described as follows:

F1 = z21, F2 = z22,

F3 =
[m2l2

c2S2z21]
[J12+m2l2

c2C2]
z22 +

1
[J12+m2l2

c2C2]
u1,

F4 = − [m2l2
c2S2C2z21]

[J2+m2l2
c2]

z21 − m2glc2C2

[J2+m2l2
c2]

+ 1
[J2+m2l2

c2]
u2,

(20)

m2 is the mass of the link two in kg, z11 = θ1, z12 = θ2 are the angles of the joints
one, two in rad, g is the acceleration gravity constant, and J1 and J2 are the inertias in
kgm2, C2 = cos(z12), S2 = sin(z12). m2 = 0.34 kg, l2 = 0.293 m, lc2 = l2

2 , J12 = J1 + J2,
J1 = 0.0208 kgm2, J2 = 0.0127 kgm2, and g = 9.81 m/s2.

By using the linearization method described in (2), the linear model is:

•
z = Az + Bu, y = Dz,

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

B =


0 0
0 0

24.512 0
0 50.007

,

D =

[
1 0 0 0
0 1 0 0

]
,

(21)

By using the linearization method described in (3), the controllability matrix is:

C =


0 0 24.512 0
0 0 0 50.007

24.512 0 0 0
0 50.007 0 0

, (22)

Since the rank of the controllability matrix is 4, the two-link robot is controllable.
By using the linearization method described in (4), the observability matrix is:

O =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, (23)

Since the rank of the observability matrix is 4, the two-link robot is observable.

4.2. Transformed Structural Properties Method

Now, the transformed structural properties method of this study is applied to the
two-link robot.
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We write the two links robot as (5), and we detail it as:

•
z = A1z + B1u + G(z1), y = Dz,

A =

[
0 I
0 −W−1(z1)V(z1, z2)

]
,

B =

[
0

W−1(z1)

]
,

G(z1) =

[
0

−W−1(z1)X(z1)

]
,

G(z1) =
[

G1 G2 G3 G4
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
,

(24)

where W(z1) ∈ <2×2 is a matrix with the inertia terms W11, W12, · · · , W22, V(z1, z2) ∈ <2×2

is a matrix with the centripetal and Coriolis terms V11, V12, · · · , V22, and X(z1) ∈ <2×1 is a
vector with the gravity terms X1, X2, which are described as follows:

W11 = J12 + m2l2
c2C2, W22 = J2 + m2l2

c2,
V12 = −m2l2

c2S2z21, V21 = m2l2
c2S2C2z21,

X2 = m2glc2C2,
(25)

m2 is the mass of the link two in kg, z11 = θ1, z12 = θ2 are the angles of the joints
one, two in rad, g is the acceleration gravity constant, and J1 and J2 are the inertias in
kgm2, C2 = cos(z12), S2 = sin(z12). m2 = 0.34 kg, l2 = 0.293 m, lc2 = l2

2 , J12 = J1 + J2,
J1 = 0.0208 kgm2, J2 = 0.0127 kgm2, and g = 9.81 m/s2.

By using the transformed structural properties method described in (6), the linear
model is:

•
z = Az + Bu, y = Dz,

A = A1 + A2, B = B1 + B2,

A1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

B1 =


0 0
0 0

24.512 0
0 50.007

,

A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

B2 =

[
0 0 0 0
0 0 0 0

]T

,

D =

[
1 0 0 0
0 1 0 0

]
,

(26)

By using the transformed structural properties method described in (7), the controlla-
bility matrix is:

C =


0 0 24.512 0
0 0 0 50.007

24.512 0 0 0
0 50.007 0 0

, (27)
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Since the rank of the controllability matrix is 4, the two-link robot is controllable.
By using the transformed structural properties method described in (8), the observ-

ability matrix is:

O =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, (28)

Since the rank of the observability matrix is 4, the two-link robot is observable.

4.3. Comparison of Results

In the proposed transformed structural properties method, the gravity terms X(z1)
of the two-link robot model (24) and (25) contain cosine functions, the linearization is
evaded with A2, B2 of (26) are equal to zero, and a linear robot model is obtained with
A1, B1 of (26). Thus, the transformed structural properties method satisfies the gravity
terms condition of Remark 2. Furthermore, the linear model (26) of the transformed
structural properties method is more approximated to the robot model than the linear
model (21) of the linearization method, and the controllability and observability results
of the transformed structural properties method (27) and (28) are more precise than the
controllability and observability results of the linearization method (22) and (23).

5. Cylindrical Robot

In this section, we compare the two methods to determine the controllability and
observability ofthe cylindrical robot.

The cylindrical robot has three degrees of freedom. It has one rotary joint and one link
configured in a horizontal position, and it has two linear joints and two links configured in
a vertical position. We express the cylindrical robot of Figure 3, where θ1 is the angle of the
joint one in rad, and lc2, lc3 are the lengths of the links two, three, in m.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21 
 

5. Cylindrical Robot 
In this section, we compare the two methods to determine the controllability and 

observability ofthe cylindrical robot. 
The cylindrical robot has three degrees of freedom. It has one rotary joint and one 

link configured in a horizontal position, and it has two linear joints and two links con-
figured in a vertical position. We express the cylindrical robot of Figure 3, where 1θ is the 

angle of the joint one in rad, and 2cl , 3cl are the lengths of the links two, three, in m. 

 
Figure 3. Cylindrical robot. 

5.1. Linearization Method 
Now, the linearization method of [24–32] is applied to the cylindrical robot. 
We write the cylindrical robot as (1), and we detail it as: 

[ ]
[ ] [ ] [ ]

1 2

2

1 2

1 2 1 2 2 1

1 2 1 2 6

1 2

( , ) ,    ,

( , ) ,
( ) ( , ) ( )

( , ) ,

,    0 ,    0

T

T T

F z z y Dz
z

F z z
W z z V z z z X z

F z z F F F

z z z D I u

τ

τ

•

= =

 
 =
 + + 

=

= = =



 
(29)

where 6 1
1 2( , )F z z ×∈ ℜ is a nonlinear function vector containing all the robot terms 

1 2 6, , ,F F F , which are described as follows: 

[ ]
[ ] [ ]

[ ]

[ ] [ ]

2 3

1 2 3 1 2 3 12

2 3

3

1 21 2 22 3 23
( 4 ) 1

4 22 21 1( 4 ) ( 4 )

2 1
5 12 21 2( 4 )

1
6 3

,   ,   ,

2 m m
J m m J m m z

m m

m

F z F z F z

F z z u

F z z u

F g u

+
+ + + +

+

= = =

= − +

= +

= +

 
(30)

1m , 2m , 3m are the masses of the links one, two, three, 11 1z θ= is the angle of the joint 

one in rad, 12 2cz l= , 13 3cz l= are the lengths of the links two, three, in m, and g is the 

acceleration gravity constant, 2 12cos( )C z= , 2 12sin( )S z= . 1 2 0.3l l= = m, 3 0.2l = m,

1 1 / 2cl l= , 2 2 / 2cl l= , 3 3 / 2cl l= , 1 0.21m = kg, 2 0.09m = kg, 3 0.06m = kg,

1 0.04624J = kgm2, 2 0.02545J = kgm2, 3 0.03616J = kgm2,and 9.81g = m/s2. 
By using the linearization method described in (2), the linear model is: 

Figure 3. Cylindrical robot.

5.1. Linearization Method

Now, the linearization method of [24–32] is applied to the cylindrical robot.
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We write the cylindrical robot as (1), and we detail it as:

F(z1, z2) = τ, y = Dz,

F(z1, z2) =

[
z2

W(z1)
•
z2 + V(z1, z2)z2 + X(z1)

]
,

F(z1, z2) =
[

F1 F2 · · · F6
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
, τ =

[
0 u

]T

(29)

where F(z1, z2) ∈ <6×1 is a nonlinear function vector containing all the robot terms
F1, F2, · · · , F6, which are described as follows:

F1 = z21, F2 = z22, F3 = z23,
F4 = −2 [(m2+4m3)]

[J1+(m2+4m3)]
z22z21 +

1
[J1+(m2+4m3)z12]

u1

F5 = z12z2
21 +

1
[(m2+4m3)]

u2

F6 = [g] + 1
[m3]

u3

(30)

m1, m2, m3 are the masses of the links one, two, three, z11 = θ1 is the angle of the joint
one in rad, z12 = lc2, z13 = lc3 are the lengths of the links two, three, in m, and g is the
acceleration gravity constant, C2 = cos(z12), S2 = sin(z12). l1 = l2 = 0.3 m, l3 = 0.2 m,
lc1 = l1/2, lc2 = l2/2, lc3 = l3/2, m1 = 0.21 kg, m2 = 0.09 kg, m3 = 0.06 kg, J1 = 0.04624
kgm2, J2 = 0.02545 kgm2, J3 = 0.03616 kgm2, and g = 9.81 m/s2.

By using the linearization method described in (2), the linear model is:

•
z = Az + Bu, y = Dz,

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B =



0 0 0
0 0 0
0 0 0

21.626 0 0
0 3.0303 0
0 0 16.667

,

D =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

,

(31)

By using the linearization method described in (3), the controllability matrix is:

C =



0 0 0 c14 0 0
0 0 0 0 c25 0
0 0 0 0 0 c36

c41 0 0 0 0 0
0 c52 0 0 0 0
0 0 c63 0 0 0

, (32)

c14 = c41 = 21.626, c25 = c52 = 3.0303, c36 = c63 = 16.667. Since the rank of the
controllability matrix is 6, the cylindrical robot is controllable.
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By using the linearization method described in (4), the observability matrix is:

O =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, (33)

Since the rank of the observability matrix is 6, the cylindrical robot is observable.

5.2. Transformed Structural Properties Method

Now, the transformed structural properties method of this study is applied to the
cylindrical robot.

We write the cylindrical robot as (5), and we detail it as:

•
z = A1z + B1u + G(z1), y = Dz,

A =

[
0 I
0 −W−1(z1)V(z1, z2)

]
,

B =

[
0

W−1(z1)

]
,

G(z1) =

[
0

−W−1(z1)X(z1)

]
,

G(z1) =
[

G1 G2 · · · G6
]T ,

z =
[

z1 z2
]T , D =

[
I 0

]
,

(34)

where W(z1) ∈ <3×3 is a matrix with the inertia terms W11, W12, · · · , W33, V(z1, z2) ∈ <3×3

is a matrix with the centripetal and Coriolis terms V11, V12, · · · , V33, and X(z1) ∈ <3×1 is a
vector with the gravity terms X1, X2, X3, which are described as follows:

W11 = J1 + (m2 + 4m3)z12,
W22 = (m2 + 4m3), W33 = m3,

V11 = (m2 + 4m3)z12z22,
V12 = (m2 + 4m3)z12z21,

V21 = −(m2 + 4m3)z12z21,
X3 = −m3g, G6 = −g,

(35)

m1, m2, m3 are the masses of the links one, two, three, z11 = θ1 is the angle of the joint
one in rad, z12 = lc2, z13 = lc3 are the lengths of the links two, three in m, and g is the
acceleration gravity constant, C2 = cos(z12), S2 = sin(z12). l1 = l2 = 0.3 m, l3 = 0.2 m,
lc1 = l1/2, lc2 = l2/2, lc3 = l3/2, m1 = 0.21 kg, m2 = 0.09 kg, m3 = 0.06 kg, J1 = 0.04624
kgm2, J2 = 0.02545 kgm2, J3 = 0.03616 kgm2, and g = 9.81 m/s2.

By using the transformed structural properties method described in (6), the linear
model is:
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•
z = Az + Bu, y = Dz,

A = A1 + A2, B = B1 + B2,

A1 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B1 =



0 0 0
0 0 0
0 0 0

21.626 0 0
0 3.0303 0
0 0 16.667

,

A2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

B2 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

T

,

D =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

,

(36)

By using the transformed structural properties method described in (7), the controlla-
bility matrix is:

C =



0 0 0 c14 0 0
0 0 0 0 c25 0
0 0 0 0 0 c36

c41 0 0 0 0 0
0 c52 0 0 0 0
0 0 c63 0 0 0

, (37)

c14 = c41 = 21.626, c25 = c52 = 3.0303, c36 = c63 = 16.667. Since the rank of the
controllability matrix is 6, the cylindrical robot is controllable.

By using the transformed structural properties method described in (8), the observ-
ability matrix is:

O =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, (38)

Since the rank of the observability matrix is 6, the cylindrical robot is observable.

5.3. Comparison of Results

In the proposed transformed structural properties method, the gravity terms X(z1)
of the cylindrical robot model (34) and (35) contain constant functions, the linearization
is evaded with A2, B2 of (36) are equal to zero, and a linear robot model is obtained with
A1, B1 of (36). Thus, the transformed structural properties method satisfies the gravity
terms condition of Remark 2. Furthermore, the linear model (36) of the transformed
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structural properties method is more approximated to the robot model than the linear
model (31) of the linearization method, and the controllability and observability results
of the transformed structural properties method (37) and (38) are more precise than the
controllability and observability results of the linearization method (32) and (33).

6. Conclusions

In this study, we proposed the transformed structural properties method to determine
the controllability and observability of robots. Some authors proposed a linearization
method, and others proposed a structural properties method, while this study considered
a method as the combination of the other two methods. The numerical results showed that
the transformed structural properties method obtained a more approximated robot model
and obtained more precise controllability and observability results. The proposed method
could be used for any of the conventional structures of robots. In the forthcoming work, the
proposed method will be used not only to determine the controllability and observability
but the proposed method will also be used to obtain a controller and an observer.
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