friried applied
b sciences

Article
Transformed Structural Properties Method to Determine the
Controllability and Observability of Robots

Dany Ivan Martinez 1, José de Jesus Rubio *1, Victor Garcia 1, Tomas Miguel Vargas 1 Marco Antonio Islas 1©,
Jaime Pacheco 17, Guadalupe Juliana Gutierrez !, Jesus Alberto Meda-Campaiia 2(”, Dante Mujica-Vargas 3
and Carlos Aguilar-Ibafiez

check for

updates
Citation: Martinez, D.I.; Rubio, J.d.J.;
Garcia, V.; Vargas, T.M.; Islas, M.A;
Pacheco, J.; Gutierrez, G.J.;
Meda-Campana, J.A.; Mujica-Vargas,
D.; Aguilar-Ibafiez, C. Transformed
Structural Properties Method to
Determine the Controllability and
Observability of Robots. Appl. Sci.
2021, 11, 3082. https://doi.org/
10.3390/app11073082

Academic Editor:

Krzysztof Kozlowski

Received: 1 January 2021
Accepted: 25 March 2021
Published: 30 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Seccién de Estudios de Posgrado e Investigacion, ESIME Azcapotzalco, Instituto Politécnico Nacional,
Av. de las Granjas No. 682, Col. Santa Catarina, Ciudad de México 02250, Mexico;
danyivanmtz@gmail.com (D.I.M.); victorazul14@gmail.com (V.G.); miguelxplo88@gmail.com (T.M.V.);
anto_islas@outlook.com (M.A.L); jpachecoma@ipn.mx (J.P.); ggutierrezp@ipn.mx (G.J.G.)

Seccién de Estudios de Posgrado e Investigacion, ESIME Zacatenco, Instituto Politécnico Nacional,
Av. IPN S/N, Col. Lindavista, México City 07738, Mexico; jmedac@ipn.mx

Department of Computer Science, Tecnolégico Nacional de México/CENIDET, Interior Internado Palmira
S/N, Palmira, Cuernavaca 62490, Mexico; dantemv@cenidet.edu.mx

Centro de Investigacion en Computacion, Instituto Politécnico Nacional, Av. Juan de Dios Bétiz S/N,
Col. San Pedro Zacatenco, México City 07738, Mexico; carlosaguilari@cic.ipn.mx

*  Correspondence: rubio.josedejesus@gmail.com or jrubioa@ipn.mx; Tel.: +52-55-57296000 (ext. 64497)

Abstract: Many investigations use a linearization method, and others use a structural properties
method to determine the controllability and observability of robots. In this study, we propose a
transformed structural properties method to determine the controllability and observability of robots,
which is the combination of the linearization and the structural properties methods. The proposed
method uses a transformation in the robot model to obtain a linear robot model with the gravity
terms and uses the linearization of the gravity terms to obtain the linear robot model; this linear
robot model is used to determine controllability and observability. The described combination
evades the structural conditions requirement and decreases the approximation error. The proposed
method is better than previous methods because the proposed method can obtain more precise
controllability and observability results. The modified structural properties method is compared
with the linearization method to determine the controllability and observability of three robots.

Keywords: controllability; observability; transformation; linearization; robots

1. Introduction

The concept of controllability denotes the ability to move a robot around in its entire
configuration space using only certain admissible manipulations. The exact definition
varies slightly within the framework or the kind of applied robots. Controllability and
observability are dual aspects of the same problem.

Many authors have proposed interesting controllers or observers such as [1-9]; how-
ever, in most of the studies, the robot models are assumed to be controllable or observable
without any proof. A method to determine the controllability of a robot model is important
because a robot model that is assured to be controllable can guarantee the existence of a
controller to reach one of the objectives such as regulation, tracking, disturbance rejection,
etc. A method to determine the observability of a robot model is important because a robot
model that is assured to be observable can guarantee the existence of an observer to reach
one of the objectives such as states estimation, disturbance estimation, etc. Hence, it would
be interesting to study when the controllability and observability of robots is not assumed.

There are some studies about controllability and observability. In [10-13], the au-
thors are focused on the local, linear, global, and exact controllability and observability.
In [14-16], the authors discuss the controllability and observability of linear time-varying
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systems. In [17-20], the authors use algorithms to determine controllability and observ-
ability. In [21-23], the authors use the geometric method to determine controllability and
observability. In [24-26], the authors consider the fact that robot models are changed
from being linearly uncontrollable to linearly controllable when the equilibrium point is
moved from the origin to a different one. In [27-29], the authors propose feedback for the
linearization of robot models to determine controllability. In [30-32], the authors present a
controllability analysis proving that some robots are not controllable. In [33-35], the au-
thors extract properties of the mechanical parameters to demonstrate that some robots are
controllable and observable. In [36-38], the authors design elastic, flexible, or micro-robots,
which, since their design, are controllable. In [39,40], authors find a transformation to
determine which states have the greatest contribution in controllability and observability.

From the aforementioned studies, some authors use a linearization method [24-32],
and the other use a structural properties method [33-40] to determine the controllability and
observability of robots. The linearization method is an approximation of the robot model
around the origin, and the structural properties method is a different representation of the
nonlinear model based on transformations. The linearization method has the problem that
could produce erroneous results because of the approximation nature, and the structural
properties method has the problem that the robot model requires to satisfy structural
conditions. It would be interesting to propose a method to determine the controllability
and observability of robots that evade the problems presented in the mentioned methods.

In this study, we propose a transformed structural properties method to determine
the controllability and observability of robots that is the combination of the linearization
method [24-32] and the structural properties method [33-40]. The proposed method uses a
transformation in the robot model to obtain a linear robot model with the gravity terms
and uses the linearization of the gravity terms to obtain a linear robot model; this linear
robot model is used to determine controllability and observability. The combination of
the linearization and structural properties methods contributes to evade the problems
of both methods by evading the structural conditions requirement and decreasing the
approximation error.

The proposed transformed structural properties method is better than previous meth-
ods because the proposed method could satisfy the following gravity terms condition
used to obtain more precise controllability and observability results: if the gravity terms
of the robot model contain constant or cosine functions, then the linearization is evaded,
and a linear robot model is obtained; this linear robot model is used to determine the
controllability and observability.

Finally, the transformed structural properties method is compared with the lineariza-
tion method to determine the controllability and observability of the scara, two links, and
cylindrical robots. The scara, two links, and cylindrical robots are selected because they
satisfy the gravity terms condition and could be applied in pick and place, screwed, printed
circuit boards, packaging, labeling, etc.

This paper is organized as follows. In Section 2, the linearization and the transformed
structural properties methods are detailed. In Section 3, the linearization and the trans-
formed structural properties methods are applied to determine the controllability and
observability of the scara robot. In Section 4, the linearization and the transformed struc-
tural properties methods are applied to determine the controllability and observability of
the two links robot. In Section 5, the linearization and the transformed structural properties
methods are applied to determine the controllability and observability of the cylindrical
robot. In Section 6, the conclusion and the forthcoming work are detailed.
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2. Two Methods to Determine the Controllability and Observability of Robots

A method to determine the controllability of a robot model is important because a
robot model which is assured to be controllable can guarantee the existence of a controller
to reach one of the objectives such as regulation, tracking, disturbance rejection, etc. A
method to determine the observability of a robot model is important because a robot model
which is assured to be observable can guarantee the existence of an observer to reach one
of the objectives such as states estimation, disturbance estimation, etc.

The main concern of this section is to present two methods to determine the controlla-
bility and observability of robots. First, the linearization method, which is known in the
literature, will be presented. Second, the transformed structural properties method, which
is the main contribution of this study, will be presented.

2.1. Linearization Method to Determine the Controllability and Observability of Robots

The robot model considered is detailed. The robot model is important because it is
the starting point in determining the controllability and observability of robots with this
method.

For the robots with n degrees of freedom, considering the contact force and constraints,
the robot model is:

F(z1,22) =1,y = Dz,
Z3
W(z1)zs + V(z1,22)72 + X(2z1) |’ )
[F B -+ By ]T,
,D=[1 0],t=[0 u

F(21/Z2) =
]T

I € R™*" is the identity matrix, z; € R"*! is the joint angle or link displacement of
the robot, z, € R"*1 is the velocity of the robot, z € R21x1 is the state, W(z1) € R"™"isa
matrix with the inertia terms, which is symmetric and positive definite, V(zq,z;) € R"*" is
a matrix with the centripetal and Coriolis terms, X(z1) € R"*! is a vector with the gravity
terms, u € R is the input, F(z1,22) € R21x1 {5 a nonlinear function vector containing
all the robot terms, D € R2"*" and yE R1<1 i the output.

Now, the linearization method of [24-32] is presented. The linear robot model is
important because it is required in determining the controllability and observability of
robots. The linearization method is an approximation of the robot model around the origin.

The robot model (1) is linearized around the origin by the linearization method to
obtain the following linear robot model:

L[]
z = Az + Bu,
9F(21,22) 0F(z1,23)
A= 1,42 B =
_Bz 2=0u=0 ou _ lz=0u=0
JoF; JF; . oF;
aZu 8212 0z
o, 0B, b
A= 9z11 32.12 9233 )
aFZn aF2n e aPZn (2)
L 9z11  0zpp 9Zun | z=0,u=0
[ ok oh . 9F ]
Jduq Jdup Juy
dh 9B . b
B— ouq Jdup Juy ,
by, by, “e @
L dug duy dun | z=0,u=0




Appl. Sci. 2021, 11, 3082

40f18

A € R B ¢ 21X Since the linear robot model has been obtained in (2), now
the known methods for linear systems [31,32] are used to determine the controllability and
observability of robots.

Using the linear robot model (2) of the linearization method, the controllability matrix
is:

C=[B AB A?B ... A¥™1B], @)

If the rank of the controllability matrix C is equal to 2n, the robot model of the
linearization method is controllable around the origin.
Using the linear robot model (2) of the linearization method, the observability matrix
is:
O=[D DA DA% ... pA™-1]T 4)

If the rank of the observability matrix O is equal to 27, the robot model of the lineariza-
tion method is observable around the origin.

2.2. Transformed Structural Properties Method to Determine the Controllability and Observability
of Robots

The linear robot model with gravity terms considered is detailed. The linear robot
model with gravity terms is important because it is the starting point in determining the
controllability and observability of robots with this method.

By using the fact that the inverse of the robot inertia matrix W(z;) € R"*" is well
defined, (1) is represented as the following linear robot model with gravity terms:

Z=Aiz+Bu+ G(z1),y = Dz,

Ay = [ 8 —W*1(21I)V(Zl’22) }

0
By = [ Wl(z) |’ ©
0
G(z1) = { _W—l(zl)X(Zl) ]/
G(Zl) _ [ G] G2 GZn }T/

z=[ 27 ZZ]T,D:[I 0],

I € R™*" is the identity matrix, z; € R"*! is the joint angle or link displacement of
the robot, z, € R"*! is the velocityof the robot, z € R21x1 is the state, W(z1) € R"™*"isa
matrix with the inertia terms, which is symmetric and positive definite, V(zq,z;) € R"*" is
a matrix with the centripetal and Coriolis terms, X(z1) € R"*! is a vector with the gravity
terms, u € R is the input, G(z;) € R?"*! is a nonlinear function vector containing
only the gravity terms of F(z1,z;) € R2"*!, and y € R"*! is the output. A; € R,
B1 c %2n><n, D e §R2n><n.

Now the transformed structural method of this study is presented to determine the
controllability and observability of robots, which is the combination of the linearization
method of [24-32] and the structural properties method of [33—40]. The linearization
method is an approximation of the robot model around the origin, and the structural prop-
erties method is a different representation of the nonlinear model based on transformations.
The combination of the linearization and structural properties methods contributes to
evade the problems of both methods by evading the structural conditions requirement and
decreasing the approximation error.
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The robot model (1) was transformed to obtain a linear robot model with the gravity
terms (5), and the gravity terms are linearized around the origin by the linearization method
to obtain the following linear robot model:

2:A2+Bu,y:Dz,
A= A1+ Ay B= B+ By,

Ay = [ 8 —W*1(21I)V(Zl’22) }

0
B, =
! W l(z) |/
0G(z1) 0G(z1)
Ay = L B, =
2 0z z:O,u:O’ 2 ou z:O,u:O,
96 G 9G
dz11 021 9Zpn
2 2 e 2
9211 0712 9233 (6)
Ay = ] ,
aGZn aGZn . aGZn
dz;1  9z12 Znn | 3=0,u=0
G G . 9G
oy Jduy duy
G G 9G
) ) )
B2 — u up Un ,
3Gy, 3Gy, R 3Gy,
Jouq dup duy, 2=0,u=0

z=[zn 2], D=[1 0],

I € R"*" is the identity matrix and z = [zl,zz]T e R2x1 721 € Rx1 2, € 1 and
u € R"*! are described in (5), A € R¥"*2", B € R,

Since the linear robot model has been obtained in (6), now the known methods for
linear systems [31,32] are used to determine the controllability and observability of robots.

Using the linear robot model (6) of the transformed structural properties method, the

controllability matrix is:
C=[B AB A?B ... A™1B], ?)

If the rank of the controllability matrix C is equal to 2n, the robot model of the
transformed structural properties method is controllable around the origin.

Using the linear robot model (6) of the transformed structural properties method, the
observability matrix is:

O=[D DA DA% ... pA™-1]T, )

If the rank of the observability matrix O is equal to 21, the robot model of the trans-
formed structural properties method is observable around the origin.

Remark 1. The linearization method uses the linearization in the robot model A, B being an
approximation that could produce erroneous results, while the transformed structural properties
method uses a transformation in one part of the robot model A1, By evading the requirement to
satisfy some structural conditions, and uses the linearization in the other part of the robot model Ay,
B, evading erroneous results because of the approximation nature.

Remark 2. The proposed transformed structural properties method is better than previous methods
because the proposed method could satisfy the following gravity terms condition used to obtain more
precise controllability and observability results: if the gravity terms X(z1) € R™*! of the robot
model (5) contain constant or cosine functions, then the linearization is evaded with Ay, By of (6)
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equal to zero, and a linear robot model is obtained with A1, By of (6); this linear robot model (6) is
used to determine the controllability and observability.

Remark 3. We describe two methods, both methods are based on two stages, the second stage of
both methods described by Equations (3), (7), (4) and (8) is equal, but the first stage of both methods
described by Equations (1), (2), (5) and (6) is completely different. Thus, the difference of the first
stage produces different results in both methods.

The examples of the following two sections satisfy the gravity terms condition.

3. Scara Robot

In this section, we compare the two methods to determine the controllability and
observability of the scara robot.

The scara robot has three degrees of freedom. It has two rotary joints and two links
configured in a horizontal position, it has one linear joint and one link configured in a
vertical position. We express the scara robot of Figure 1, where 61, 6,, are the angles of the
joints one, two in rad and I3 is the length of the link three, in m.

/@ 2 />\/ l1 E

02
o 01
=<

T

Figure 1. Scara robot.

3.1. Linearization Method

Now, the linearization method of [24-32] is applied to the scara robot.
We write the scara robot as (1), and we detail it as:

F(z1,20) =T,y = Dz,
22
W(z1)z2 + V(z1,22)20 + X(z1) |’ )
(er ) [F KR - K ]T’
z=[=zn z],D=[1 0],t=[0 u]"

F(Zl,Zz) =
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where F(z1,z5) € R6*! is a nonlinear function vector containing all the robot terms
Fi,F,--- ,Fs, which are described as follows:

Fy = zp31, B = 223, F3 = 223,

F _ [(mzl?2+m3l%)+11C2(mzlcz+m3l2)] 2
* (i3t 12 +my (B4B) +my (B12) 420Gy (myly+msly)| 22
2115y (malp+mslp
+ [ Zy0Z
[]l3+mll?1+m2(l%+l%)+M3(l%+l%)+211C2(mzlcz+m312)] 22421
+ (1S (malea+m3lp)]

2722
[]13+m1l§1+m2(l%+l§)+m3(l%1+l%)+211Cz(mzlcz+m312)] 22222 (10)

+ [n3+my 12 +my (B+12) +m3 (12+12) +21; C (mal g +ms3l)| "
F— _ [(mal?+m313 ) +1 Co(malep+msly)] @
0 Jot (mally tms )]
o [21152(MQ152+M312) 1 U
2 2/

[+ (ol s3] 21220 T (ol rmalg)]

Fs = [8] + fuaytis,
my, my, m3 are the masses of the links one, two, three, z11 = 61, z1p = 6, are the angles
of the joints one, two in rad, z13 = I3 is the length of the link three, in m, and g is the
acceleration gravity constant. I; =l =03 m, [l =11/2,1l0 =12/2,m) =my =m3 =03
kg, 13 =J1+ ]2+ J3, J1 = 0.0208 kgm?, ], = J3 = 0.0127 kgm?, ¢ = 9.81 m/s>.
By using the linearization method described in (2), the linear model is:

E:Az+Bu,y: Dz,
0 001 0O
0 00OO0OT1TPO

A 0 000 O01 ,
0 000 OO
0 00 O0OTP O
0 00 O0OTP
0 0 0 (11)
0 0 0
B— 0 0 0
4.1331 0 0 !
0 21.529 0
0 0 3.3333
1 000 00O
D=|01 0 0 0 0],
0 01 00O
By using the linearization method described in (3), the controllability matrix is:

0 0 0 C14 0 0

0 0 0 0 Co5 0

0 0 0 0 0 C36

C= C41 0 0 0 0 0 ’ (12)
0 Cs2 0 0 0 0
0 0 Ce3 0 0 0

14 = ¢4 = 4.1331, co5 = c5p = 21.529, ¢35 = cg3 = 3.3333. Since the rank of the
controllability matrix is 6, the scara robot is controllable.
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By using the linearization method described in (4), the observability matrix is:

, (13)

[l ololol S
[N elNelBoll =)
[N eNoll o No)
[Nl oo Ne)
O =L O O OO
_ o O O oo

Since the rank of the observability matrix is 6, the scara robot is observable.

3.2. Transformed Structural Properties Method

Now, the transformed structural properties method of this study is applied to the
scara robot.

We write the scara robot as (5), and we detail it as:

Z=Aiz+Bu+ G(z1),y = Dz,

A= [ 8 —W’1(21I)V(Zl'22) }

0
B = [ W1(z) } o
0
G(z1) = [ ~W1(21)X(z1) ]
Gz1)=[G G -+ Gg }T'

z=[z zz]T,D:[I 0],

where W (z1) € R3*3 is a matrix with the inertia terms Wiy, Wiy, - - -, Wag, V(z1,22) € R3*3
is a matrix with the centripetal and Coriolis terms Vi1, Vi, - - -, V33, and X(z1) € R3*1isa
vector with the gravity terms X, X5, X3, which are described as follows:

W11 = I13 + mllfl + mz(l% + l%)
+mz (I3 +13) + 21, Co(mal e + m3lp),
Wip = War = (mal%) 4+ m3l3) + 11Co(maley + m3ly),
Wy = J3 4 (mal?, + m3l3), Waz = m3,
Vi1 = —211Sy(male + m3ly)zoo,
Vi = —11Sa(malea + m3ly)zaa,
Vo1 = 2115y (malep + m3la)zo1,
X3 = —m3g, Go = —|[g],

(15)

the other terms of W(z1), V(z1,22), X(z1), G(z1) are zero. my, my, m3 are the masses of the
links one, two, three, z1; = 01, z12 = 03, are the angles of the joints one, two inrad, z13 = I3
is the length of the link three, in m, and g is the acceleration gravity constant. /; = I, = 0.3
m, I =1/2,10 =1/2,m =my =mz =03kg, 13 =J1+ o+ J3, ] = 0.0208 kgm?,
J2 = J3 = 0.0127 kgm?, ¢ = 9.81 m/s>.
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By using the transformed structural properties method described in (6), the linear

model is:

E:Az—b—Bu,y:Dz,
A:A1+A2,B:B1+Bz,

Al =

oS O o o oo

B, =

0

oo o oo

11.043

—2.4567

Ap

o]
N
I
| — |
COoORrCCLe s o000

»)
|

OO O O o oo

o oo o

OO OO oo

0

[lelollell

O O O O oo

oo o © oo

OO O = O

| }
0
0
0
0 ,
0

3.3333 (16)

=l ellollollol)

|
],

oo o © oo

By using the transformed structural properties method described in (7), the controlla-

bility matrix is:

0 0 0 C14 C15 0
0 0 0 Crq4 C25 0
- 0 0 0 0 0 C36
€= C41 Cy2 0 0 0 0 ! (17)
C51 C52 0 0 0 0
0 -0 C63 0 0 0
Cl5 = C51 = Cp4 — Cy4p = —2.4567, Clg = C41 = 11.043, Cy5 = C5p = 8.0055, C36 — Ce3 =

3.3333. Since the rank of the controllability matrix is 6, the scara robot is controllable.
By using the transformed structural properties method described in (8), the observ-

ability matrix is:

[l elololl S

]

O O OO

o O OO

SO =R O OO

_ o O o O

, (18)

_ o0 O O oo

Since the rank of the observability matrix is 6, the scara robot is observable.
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3.3. Comparison of Results

In the proposed transformed structural properties method, the gravity terms X(z;)
of the scara robot model (14) and (15) contain constant functions, the linearization is
evaded with Aj, B, of (16) are equal to zero, and a linear robot model is obtained with
A1, By of (16). Thus, the transformed structural properties method satisfies the gravity
terms condition of Remark 2. Furthermore, the linear model (16) of the transformed
structural properties method is more approximated to the robot model than the linear
model (11) of the linearization method, and the controllability and observability results
of the transformed structural properties method (17) and (18) are more precise than the
controllability and observability results of the linearization method (12) and (13).

4. Two-Link Robot

In this section, we compare the two methods to determine the controllability and
observability in the two-link robot.

The two-link robot has two degrees of freedom. It has two rotary joints and two links
configured in a vertical position. We express the two-link robot of Figure 2, where 61, 6,
are the angles of the joints one, two in rad.

02

Figure 2. Two-link robot.

4.1. Linearization Method

Now, the linearization method of [24-32] is applied to the two-link robot.
We write the two-link robot as (1), and we detail it as:

F(z1,2z0) =1,y = Dz,
%)

W(z1)z2 + V(z1,22)22 + X(z1) |’ (19)
Fizi,z2) = B K F4}T,

z=[z z]|,D=[1 0],t=[0 u]

F(Z],Zz) =

T
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where F(z1,z5) € R%*! is a nonlinear function vector containing all the robot terms
F,F,--- ,F;, which are described as follows:

F =251, F =z,

12,5221
F = [m2 2 Zon + 1 uq,
[ 2[]1z+mzl}f2cz] 2 [J12+m21% G ! (20)
mal5S2Cozy Mgl Co 1
P = — c Z — & Up,
4 []2+mzl§2] 21 []2+mzl§2] [Iz+mzlczz] 2
my is the mass of the link two in kg, z11 = 61, z1p = 0; are the angles of the joints

one, two in rad, g is the acceleration gravity constant, and J; and J, are the inertias in
kgm?, C; = cos(z13), Sp = sin(z12). my = 0.34 kg, [ = 0293 m, Iy = 2, Jio = J1 + ],
J1 = 0.0208 kgm?, ], = 0.0127 kgm?, and ¢ = 9.81 m/s>.

By using the linearization method described in (2), the linear model is:

E:Az+Bu,y: Dz,
0 010
0 0 01
A= 0 00 0}
0 00O
0 0 (21)
0 0
b= 24.512 0 ’
0 50.007
10 00
b= { 0100 } ’
By using the linearization method described in (3), the controllability matrix is:
0 0 24.512 0
0 0 0 50.007
€= 24.512 0 0 0 ’ @2)
0 50.007 0 0
Since the rank of the controllability matrix is 4, the two-link robot is controllable.
By using the linearization method described in (4), the observability matrix is:
10 00
0100
0= 0010} @3
0 0 01

Since the rank of the observability matrix is 4, the two-link robot is observable.

4.2. Transformed Structural Properties Method

Now, the transformed structural properties method of this study is applied to the
two-link robot.
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We write the two links robot as (5), and we detail it as:
A12+B1M+G( ),y:Dzr
[ )V(er 22) } '
|: W~ 1(21) :|, (24)

0
G(z1) = { ~W1(z1)X(z1) ]/
G@)=[G G G Gil,
z=[z =], D=[10],

where W (z1) € R%*? is a matrix with the inertia terms Wiy, Wiy, - - -, Wap, V(21,22) € R2*?
is a matrix with the centripetal and Coriolis terms Vi1, Vi, - - -, Vap, and X(z1) € R21isa
vector with the gravity terms Xj, Xo, which are described as follows:

Wit = J1p + mpl%,Co, Wap = Jo + mpl3,
Via = —mal2, 80251, Vo1 = mpl%5,Coza1, (25)
Xo = mpgloCy,

my is the mass of the link two in kg, z17 = 61, z1p = 0; are the angles of the joints
one, two in rad, g is the acceleration gravity constant, and J; and J, are the inertias in
kng, Cz = COS(le), 52 = SiI‘l(212). my = 0.34 kg, lz = 0.293 m, lc2 = 172, ]12 = ]1 + ]2,
Ji = 0.0208 kgm?, J, = 0.0127 kgm?, and ¢ = 9.81 m/s.
By using the transformed structural properties method described in (6), the linear
model is:
§:Az+Bu,y: Dz,
A=A1+ Ay, B= B+ By,

0010

000 1

A=1000 0]

0000

0 0

0 0
Bi=1 4512 0 ’ 26)

0  50.007

0000

0000

A2=1000 0]

0000

T

g, _[0 000

210 00 0]~

1000

D‘{0100}’

By using the transformed structural properties method described in (7), the controlla-
bility matrix is:

0 0 24.512 0
0 0 0 50.007
€= 24.512 0 0 0 ! @7

0 50.007 0 0
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Since the rank of the controllability matrix is 4, the two-link robot is controllable.
By using the transformed structural properties method described in (8), the observ-
ability matrix is:

1 0 00
0100

0= 001 0] (28)
0 0 01

Since the rank of the observability matrix is 4, the two-link robot is observable.

4.3. Comparison of Results

In the proposed transformed structural properties method, the gravity terms X(z;)
of the two-link robot model (24) and (25) contain cosine functions, the linearization is
evaded with A, B, of (26) are equal to zero, and a linear robot model is obtained with
A1, By of (26). Thus, the transformed structural properties method satisfies the gravity
terms condition of Remark 2. Furthermore, the linear model (26) of the transformed
structural properties method is more approximated to the robot model than the linear
model (21) of the linearization method, and the controllability and observability results
of the transformed structural properties method (27) and (28) are more precise than the
controllability and observability results of the linearization method (22) and (23).

5. Cylindrical Robot

In this section, we compare the two methods to determine the controllability and
observability ofthe cylindrical robot.

The cylindrical robot has three degrees of freedom. It has one rotary joint and one link
configured in a horizontal position, and it has two linear joints and two links configured in
a vertical position. We express the cylindrical robot of Figure 3, where 60, is the angle of the
joint one in rad, and Iy, I3 are the lengths of the links two, three, in m.

Figure 3. Cylindrical robot.

5.1. Linearization Method
Now, the linearization method of [24-32] is applied to the cylindrical robot.
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We write the cylindrical robot as (1), and we detail it as:

F(z1,2z2) =1,y = Dz,

F(z1,22) = . “2 ,
W(z1)zz + V(z1,22)2z2 + X(z1) (29)
F(z1,z2)=[Fh E - Fe}T,
z=[z ], D=[1 0],t=[0 u]"

where F(z1,z5) € R6*! is a nonlinear function vector containing all the robot terms
Fi,F,-- -, Fs, which are described as follows:

Fy =z, b = 203, F5 = 223,

_ _n_[(my+4m3)] 1
Fy = [+ (mp+4m3)] 222721 + 1+ (mip+4m3)z1] 11 (30)

Fs = 217, + (g +dm3)] 42
Fs = [8] + g3
my, my, mz are the masses of the links one, two, three, z;; = 6 is the angle of the joint
one in rad, z1p = I, 213 = I3 are the lengths of the links two, three, in m, and g is the
acceleration gravity constant, C; = cos(z12), Sp = sin(z12). I1 =l =03 m, 3 = 0.2 m,
Il =0/21p=01/213=13/2,m =021kg, my =0.09 kg, m3 = 0.06 kg, J; = 0.04624
kgm?, ], = 0.02545 kgm?, J3 = 0.03616 kgm?, and ¢ = 9.81 m/s>.
By using the linearization method described in (2), the linear model is:

E:Az+Bu,y: Dz,
000100
000010
A 0 00 0O01 ,
000O0O0OO
000O0O0OO
00 0O0©O0OO
0 0 0 31)
0 0 0
B— 0 0 0
21.626 0 0 ’
0 3.0303 0
0 0 16.667
100 0 00
D=|010 00 0|,
001000
By using the linearization method described in (3), the controllability matrix is:
0 0 0 C14 0 0
0 0 0 0 C25 0
0 0 0 0 0 C36
€= C41 0 0 0 0 0 ! (32)
0 C52 0 0 0 0
0 0 Ce3 0 0 0

c14 = ¢4 = 21.626, cp5 = c5p = 3.0303, c36 = ce3 = 16.667. Since the rank of the
controllability matrix is 6, the cylindrical robot is controllable.
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By using the linearization method described in (4), the observability matrix is:
100000
010000
001000
0= 000100} 33
000O0T1O0
000O0O0T1

Since the rank of the observability matrix is 6, the cylindrical robot is observable.

5.2. Transformed Structural Properties Method

Now, the transformed structural properties method of this study is applied to the
cylindrical robot.
We write the cylindrical robot as (5), and we detail it as:

= A1z + Biu + G( 1),y =Dz,

= [ )V(zl,Zz) }
[ W*1(21) } o

G(z1) = { _WA(;)X(zl) ]

G(z))=[G1 Gy -+ Gg }T,

z=[zn z],D=[1 0],

where W (z1) € R3*3 is a matrix with the inertia terms Wiy, Wiy, - - -, Wag, V(z1,22) € R3*3
is a matrix with the centripetal and Coriolis terms Vi1, Vi, - - -, V33, and X(z1) € R3*1isa
vector with the gravity terms X1, X5, X3, which are described as follows:

Wit = J1 + (ma +4m3)z1p,
W = (my + 4ms3), Wz = ms,
Vi1 = (my +4m3)z12227,
Vip = (mg +4m3)z10271,
Vo1 = —(my + 4m3)z10201,
X3 = —m3g, Gg = —g,

(35)

my, my, m3 are the masses of the links one, two, three, z;; = 6 is the angle of the joint
one in rad, z1p = Icp, 213 = I3 are the lengths of the links two, three in m, and g is the
acceleration gravity constant, C; = cos(z12), Sp = sin(z12). I1 =l =03 m, 3 =02 m,
lcl = 11/2, Zc2 = 12/2, lc3 = 13/2, my = 0.21 kg, myp = 0.09 kg, ms = 0.06 kg, ]1 = 0.04624
kgm?, ], = 0.02545 kgm?, J3 = 0.03616 kgm?, and ¢ = 9.81 m/s2.

By using the transformed structural properties method described in (6), the linear
model is:
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2:A2+Bu,y: Dz,
A=A1+ A, B=B1+ By,
000100
0000T10
00000 1
A=100000 0]
0000O0O
000000
0 0 0
0 0 0
B, — 0 0 0
21626 0 0o |’
0 3033 0
0 0  16.667 (36)
0000O0 O
000000
AZ:oooooo
0000O0O0]
000000
000000
000000171
32:[000000],
000000
10000 0
D—010000],
001000

By using the transformed structural properties method described in (7), the controlla-
bility matrix is:

0 0 0 C14 0 0
0 0 0 0 Co5 0
- 0 0 0 0 0 C36
€= C41 0 0 0 0 0 ! (37)
0 C52 0 0 0 0
0 0 Ce3 0 0 0

c14 = ¢4 = 21.626, cp5 = c5p = 3.0303, ¢3¢ = ce3 = 16.667. Since the rank of the
controllability matrix is 6, the cylindrical robot is controllable.

By using the transformed s