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Abstract: In recent years, designing in existing environments has been consistently emphasized in
community planning. However, practicing such on-site design is not easy for designers, because
the current technical conditions do not allow virtual design objects into real environments for 3D
visualization and interaction. Thus, designers’ intuitive design perceptions, accurate design judg-
ments, and convenient design decisions are hardly supported. This paper explores the possibilities of
using mixed reality (MR) technology to improve designers’ on-site design experiences in commu-
nity planning. For this, we introduced an MR design support system (MR-DSS) for the interactive
on-site 3D visualization of virtual design objects. With the MR-DSS, we performed a design ex-
periment with sixteen participants in a typical on-site design scene of community planning. The
results showed that the MR technology could provide designers with intuitive design perceptions,
accurate design judgments, and convenient design decisions, thus effectively improving their on-site
design experiences.

Keywords: MR-DSS; on-site design intuitiveness; on-site design accuracy; on-site design convenience;
community planning

1. Introduction

With the gradual fading of urban growth supremacism, community planning that fo-
cuses on optimizing urban stock assets has stepped onto the stage of history [1]. Compared
to traditional urban planning and design, focusing on new areas of development, commu-
nity planning has to confront the limitations originating from existing environments [1,2].
Further, current community environments generally contain some trivial details, such
as old buildings, public facilities, street furniture, and landscapes, which are difficult to
measure and integrate accurately into conventional basic design drawings, making it dif-
ficult for designers to make design judgments and decisions [3]. As a result, designers
have gradually chosen to return to the design site to deeply perceive and understand the
environmental details and to imagine and develop design proposals on-site [4]. Such an
on-site design method originates from the “back to the things themselves” concept of the
phenomenological movement [5], which encourages designers to immerse their proposals
in community environments in order to evoke the spirit of the place [6].

However, limited by technicalities, the current on-site design of community planning
mainly relies on the visual imagination of the designers [7], which is too abstract to support
their intuitive design perceptions, accurate design judgments, and convenient design
decisions. It therefore always leads to tedious, repetitive work [8].

In order to address the limitations relating to design intuitiveness, accuracy, and
convenience, scholars have been committed to introducing the rapid development of
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computer graphics (CG). Virtual reality (VR), a typical computer-generated imagery tech-
nology, was the earliest technology of this kind to be applied to the urban planning and
design fields [9]. By assembling individual physical devices such as personal computers
(PCs), head-mounted displays (HMDs), display screens, cameras, and sensors, early VR
design support systems (VR-DSS), such as Geo walls, vision domes, and CAVEs, gener-
ated immersive virtual environments indoors, which allowed designers to make intuitive
spatial judgments and design imaginations [10]. Meanwhile, 3D digital design objects
were rendered for visualization in immersive virtual environments [11]. Improvements
in computer performance provided the immersive virtual environments with more vivid
details, including sound and animation [12]. The introduction of the tangible interactive
interface allowed designers to interact with the virtual world in real time [13,14]. Nev-
ertheless, the immersive virtual environments generated by VR were detached from the
physical world, rarely providing real spatial perception [15]. Additionally, creating models
for immersive virtual environments costs considerable time and effort and still might not
restore all the real environmental details, offering scant support for an accurate design
judgment [8]. In addition, the VR-DSS is generally involved in expensive and complicated
devices that are usually operated in professional scientific laboratories and not available to
most designers [14,16].

In summary, VR technology has the potential to improve on-site design intuitiveness,
because it can simulate the vivid existing environments. However, the simulation of the ex-
isting environments would require a lot of effort and hardly contribute to improving design
convenience. Additionally, the simulated virtual existing environments cannot support
real spatial perception and thus can do nothing in terms of improving design accuracy.

Subsequently, the more advanced computer-generated imagery technology, aug-
mented reality (AR), was introduced to the urban planning and design fields into compen-
sate for the shortcomings of VR. AR can create environments where digital information
can be inserted into a predominantly real-world view [17]. With portable devices, such
as smartphones and mobile tablets, AR can bring virtual design objects into real design
scenes for visualization [18,19]. Additionally, portable devices can be a tangible input
interface to provide real-time manipulation behaviors (e.g., moving, rotating and zooming)
for designers to adjust their virtual design objects in AR environments [4]. At the same
time, real-time environmental analysis (such as wind, light and heat) for the virtual design
objects, combined with remote computing, can be rendered in AR environments [8,20].
Since this 2D display on the screen of the portable device barely describes the real 3D
spatial relationship, it was difficult for designers to make intuitive design perceptions,
even if they returned to the design site [21]. Similarly, the input interface of the AR design
support system (AR-DSS) on the screen of the portable device was relatively stiff. These
interactions did not support flexible design actions, and it was difficult for designers to
make accurate judgments [21].

In short, depending on portable devices, AR technology can bring virtual design
objects into real design environments, thus avoiding the repeated trips between the design
studios and design site and providing possibilities relating to the improvement of the on-
site design convenience. Nevertheless, the visualization and interaction of virtual design
objects are limited by the 2D screen display of portable devices, which hardly improve
on-site design intuitiveness and accuracy.

Mixed reality (MR) technology combines the advantages of both VR and AR [22]
since it can merge real and virtual worlds to produce new visual environments where
physical and digital objects coexist and interact in real time [23]. The rapid development of
hardware, especially the advent of the Microsoft HoloLens (Microsoft, Redmond, WA), a
head-mounted display, makes MR available for some professional fields. Until now, MR
has been used in the medical field for 3D visualization in surgery planning [24,25], the
aerospace field for the simulation of the space exploration environments [26], the tourism
field for interactive acoustic and visual navigation [27], the engineering field to promote
communication and safety in on-site construction [28,29], and in other fields.
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Overall, these successful applications demonstrate some important technical charac-
teristics of MR, such as 3D on-site visualization, natural control mode (based on gaze and
gesture), accurate spatial mapping, and real depth perception, which offer the potential to
improve the current on-site design intuitiveness, accuracy, and convenience.

This study intends to apply mixed reality (MR) to community planning to improve
on-site design with regard to intuitive perception, accurate judgment, and convenient
decisions. Thus, an on-site design experiment, using an MR design support system (MR-
DSS) for a typical community planning and design scene, was performed to examine the
effectiveness of MR.

2. Materials and Methods

To realize the study objectives, we selected an MR-DSS based mainly on Microsoft
HoloLens and carried out an on-site design experiment with sixteen participants to assess
the effectiveness of MR in improving the on-site design experience in community planning.

2.1. MR-DSS
2.1.1. Hardware

We chose Microsoft HoloLens (Microsoft Corp., Redmond, WA, USA) as the main
hardware device of the MR-DSS in this study. Microsoft HoloLens is an MR head-mounted
display (Figure 1) with a weight of 579 g and a battery life of two-three hours [30]. It
contains an Intel 32-bit processor, a custom-built Microsoft Holographic Processing Unit
(HPU 1.0), 2 GB RAM, and 64 GB flash memory [30]. Using optical waveguide technology,
a 3D hologram can be viewed through the widescreen stereoscopic lens within a user’s
viewpoint of native surroundings [31]. A depth camera and four environmental under-
standing sensors are used to scan and sense the physical environment, which provides the
potential for interaction between the virtual and real worlds [30]. An inertial measurement
unit (IMU) receives input orders from users [30]. Finally, a speaker and four microphones
have been integrated to support two-way communication [30].
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Figure 1. Microsoft HoloLens.

2.1.2. Software

In this study, we used HoloDesigner, an MR application software on Microsoft
HoloLens. HoloDesigner was developed in-house by the Unity 3D game engine in C#
language, which could achieve the on-site interactive 3D visualization of design objects. As
Figure 2 shows, HoloDesigner offers three interactive interfaces and six function buttons.
Specifically, the three interactive interfaces are the model-loading interface, the material-
loading interface, and the function selection interface. Six function buttons are involved in
model adjustment, model placement, model removal, material selection, distance measure-
ment, and interface switching. The design data, referring to 3D models and 2D material
maps, are stored and loaded from the cloud server. It is worth noting that HoloDesigner
not only supports human–computer interaction based on the gaze and gesture of users,
but also supports physical interaction between the virtual and real worlds.
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2.2. Case Selection and Data Preparation

We selected a typical public space design scene of community planning as the experi-
mental case. This community space is located in Yuzhong District of Chongqing City in
China, which was preliminarily designed by a professional group to add some benches, tree
pools, and flowerpots (Figure 3). However, the preliminary design proposal has not been
implemented, because it was relatively rough and needed to be further developed on-site.
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Figure 3. The preliminary design proposal for a typical public space of community planning.

According to the preliminary design proposal, the design data mainly contained 3D
models and 2D material (wood and stone) maps of the planned benches, tree pools, and
flowerpots. As shown in Figure 4, these 3D models and 2D material maps were created by
Google Sketchup and Adobe Photoshop, respectively, and stored in the cloud server. Their
uniform resource locators (URLs) were written in the designated data-implementing script
of the MR-DSS to complete the data preparation.
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2.3. On-Site Design Experiment

We recruited sixteen participants to take part in the on-site design experiment at the
selected design scene. According to the study objectives, we evaluated the effectiveness of
MR in improving the on-site design experience on the basis of three aspects (intuitiveness,
accuracy, and convenience) through interviews and questionnaires.

2.3.1. Participants

The sixteen participants included eight women and eight men, and the age range
was 24 to 47 years (Mean ± SD: 30.38 ± 7.18 years, Median: 27 years). While only five
had used MR before, all the participants were designers who had participated in relevant
on-site design in community planning. Their design experience ranged from 3 to 26 years
(Mean ± SD: 9.25 ± 7.15 years, Median: 6.5 years), which helped them to understand how
MR changes their design experience.

2.3.2. Experimental Procedures

First, as shown in Figure 5, we gave a ten-minute brief usage introduction of the
MR-DSS to every participant separately (Figures 6–8).
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Figure 5. The on-site experimental procedures. Subsequently, each participant used the MR-DSS to
engage in a ten-minute on-site design experience (Figure 6). According to the preliminary design
proposal, each participant firstly selected the planned 3D street furniture models for on-site visualiza-
tion in the real design scene and then made real-time design adjustments (suitable model, position,
size, and materials), according to their real spatial perception and the community environmental
details (Figures 7 and 8).
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When the participants finished their on-site design experiences, we implemented a
focus group to discuss the important factors for improving the on-site design experience
using MR in terms of three aspects: intuitiveness, accuracy, and convenience.

Based on the focus group, we designed a questionnaire, and the responses to all the
main questions were rated on a five-point Likert scale (Figure 9). Then, we conducted an
interview with each participant using the questionnaire to examine the effectiveness of MR
in improving the on-site design experience.

The results of the questionnaire are described in terms of the means and standard
deviation. The Kruskal–Wallis test, with significance at the 5% level, was used to examine
whether the questionnaire response trends differed based on the “design experience” and
“MR usage experience” of the participants. Notably, for the Kruskal–Wallis test, we divided
the participants into three groups (1–10 years, 11–20 years, and 21–30 years) according to
their design experience and into two groups based on whether they had ever used MR
devices. All the statistical analyses were performed using SPSS® Statistics Base 22 software.
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3. Results and Analysis

In this section, we describe and analyze the main results of this on-site design exper-
iment based on our research goals: on-site design intuitiveness, on-site design accuracy,
and on-site design convenience.

3.1. On-Site Design Intuitiveness Using MR

According to the interviews, we saw that the mean and standard deviation of the
score for on-site design intuitiveness using MR were 4.15 and 0.21, respectively (as shown
in Figure 10), which mainly included three concrete factor evaluations in our questionnaire.

For the realness of the physical environments, the mean and standard deviation of
the score were 5.00 and 0.00 apart (Figure 10). Almost all the participants expressed that
MR had not changed any details of the physical environment of this community public
space; thus, they could experience completely real spatial perception even while wearing
the MR head-mount display Microsoft HoloLens. Second, regarding the verisimilitude of
the virtual design objects, the mean and standard deviation of the score were 3.81 and 0.40,
respectively, as Figure 10 shows. Most of the participants stated that MR technology not
only presented stereoscopic forms and exact scales for 3D street furniture models but also
described life-like details for them. A few participants responded that there were some
chromatic aberrations and sawtooth for 3D street furniture models, but this did not affect
their perception and judgment. With respect to the immersion of the MR environments,
the mean and standard deviation of the score were 3.63 and 0.50, respectively, as shown in
Figure 10. Furthermore, most of the participants said that in the MR environments, they
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could walk freely about the site to deeply understand the real environmental details and
choose a suitable 3D street furniture model for the appropriate position, size, and material
using gestures and gazes. Nevertheless, some participants pointed out that the relatively
overloaded head-mount display and its narrow field of visualization (FOV) influenced
their immersion experience to some extent in the experiment.
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Through the Kruskal–Wallis test (Tables 1 and 2), we also found no significant differ-
ences in the scores of on-site design intuitiveness using MR in the different MR usage experi-
ence groups (p = 0.112 > 0.05) or in the different design experience groups (p = 0.145 > 0.05).
We found that the improvements in on-site design intuitiveness originated from the natural
technological characteristics of MR, regardless of the user.

Table 1. The Kruskal–Wallis test for different MR usage experience groups in on-site design intuitiveness using MR.

Mean Ranks of Scores for the MR Usage Experience Groups p-Value

With MR usage experience Without MR usage experience (Kruskal–Wallis)

On-site design intuitiveness
using MR 11.00 7.36 0.112

Table 2. The Kruskal–Wallis test for different design experience groups in on-site design intuitiveness using MR.

Mean Ranks of Scores for the MR Design Experience Groups p-Value

1–10 Years 11–20 Years 21–30 Years (Kruskal–Wallis)

On-site design intuitiveness using MR 9.17 9.50 3.00 0.145

3.2. On-Site Design Accuracy Using MR

From the interviews, we found that the mean and standard deviation of the score for
on-site design accuracy using MR were 3.65 and 0.56, respectively, chiefly involving three
concrete factor evaluations in the questionnaire (Figure 11).
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Figure 11. The mean and standard deviation of the score for on-site design accuracy using MR,
design material selection, design position judgment, and design size control.

In terms of design material selection, the mean and standard deviation of the score
were 3.69 and 0.60, respectively (Figure 11). Most participants stated that MR could render
vivid textures and colors for various materials, which contributed to the relatively accurate
material selection in specific existing community environments. A minority of participants,
however, indicated that the rendering of the material was based on prepared 2D texture
maps that could not represent the 3D details. Concerning design position judgment, the
mean and standard deviation of the score were 3.88 and 0.81, respectively, as shown in
Figure 11. The participants universally stated that MR displayed a totally real spatial
relationship; thus, they could easily make position judgments about virtual design objects
in the real community scene. With the measurement function of this MR-DSS, they were
even able to acquire accurate spatial distances and coordinates. However, a small number
of participants with rich design experience did not agree. They noted that they could still
make accurate position judgments on site by deducing the planning and design layout
in their minds, even without MR. Regarding design size control, the mean and standard
deviation of the score were 3.38 and 0.72, respectively (Figure 11). Similar to the results
for design position judgment, most of the participants reported that MR technology aided
in effectively controlling the design size in this experiment, while those with rich design
experience indicated that the effectiveness of MR was only mediocre. Furthermore, some
participants responded that the unfamiliar interaction mode challenged them in accurately
controlling the size of the virtual design objects in the experiment.

From the Kruskal–Wallis test (Table 3), we also saw significant differences (p = 0.049 < 0.05)
in the scores for on-site design accuracy using MR between different MR usage experience
groups. More precisely, the average rating (4.07) from the group with MR usage experience
was significantly higher than that (3.45) from the group without MR usage experience, as
shown in Figure 12. The Kruskal–Wallis test (Table 4) additionally revealed significant
differences (p = 0.045 < 0.05) in the ratings of on-site design accuracy using MR among
different design experience groups. Further, from Figure 13, we can see that the average
scores for on-site design accuracy were 3.89, 3.53, and 2.83 in the 1–10 year, 11–20 years,
and 21–30 years design experience groups, respectively, showing a clear downward trend
with the increase in design experience.
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Table 3. The Kruskal–Wallis test for different MR usage experience groups in on-site design accuracy using MR.

Mean Ranks of Scores for the MR Usage Experience Groups p-Value

With MR usage experience Without MR usage experience (Kruskal–Wallis)

On-site design accuracy using MR 11.90 6.95 0.049
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Table 4. The Kruskal–Wallis test for different design experience groups in on-site design accuracy using MR.

Mean Ranks of Scores for the Design Experience Groups p-Value

1–10 Years 11–20 Years 21–30 Years (Kruskal–Wallis)

On-site design accuracy using MR 10.56 7.50 1.75 0.036

3.3. On-Site Design Convenience Using MR

In accordance with the interviews, the mean and standard deviation of the score for
on-site design convenience using MR were 3.90 and 0.36, respectively, which primarily
contained three specific factor evaluations in our questionnaire (see Figure 14).

First, regarding the comfort of the MR-DSS, the mean and standard deviation of
the score were 3.56 and 0.51, respectively (Figure 14). We found that some participants
wore the head-mount display Microsoft HoloLens with their hands supporting the weight.
However, most of the participants did not report feeling uncomfortable during their ten-
minute design experience with MR. Only a small number of participants pointed out that
the Microsoft HoloLens was uncomfortable for someone wearing glasses. Regarding the
difficulty of learning the MR-DSS, the mean and standard deviation of the score were 4.44
and 0.51, respectively, as shown in Figure 14. Most of the participants stated they were
able to grasp the basic manipulation rules of the MR-DSS, during the ten-minute usage
introduction. The experiment also demonstrated that almost all the participants could
engage in essential design actions with this MR-DSS, Regarding the control of the MR-DSS,
the mean and standard deviation of the score were 3.69 and 0.48, respectively (Figure 14).
We could see that almost all the participants had achieved real-time design control with
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this MR-DSS. Nevertheless, most responded that they were not used to the current natural
control mode based on gestures and gazes and used a large amount of effort in performing
tiny detail manipulation.
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The Kruskal–Wallis test (Table 5) suggested significant differences (p = 0.014 < 0.05)
in the scores of on-site design convenience with MR among different design experience
groups. Specifically, the average scores in different design experience groups (1–10years,
11–20 years, and 21–30 years) were 4.11, 3.73, and 3.33, respectively, indicating a noticeable
drop as design experience increased (Figure 15). Additionally, there were no identified
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differences (p = 0.077 > 0.05) between the different MR usage experience groups with
respect to the scores for on-site design convenience using MR, according to the Kruskal–
Wallis test (Table 6). Most participants stated that the basic control of this MR support
system was easy to grasp, even those who had never used an MR device.

Table 5. The Kruskal–Wallis test for different design experience groups in on-site design convenience using MR.

Mean Ranks of Scores for the Design Experience Groups p-Value

1–10 Years 11–20 Years 21–30 Years (Kruskal–Wallis)

On-site design convenience using MR 11.22 6.20 2.00 0.014

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15 
 

that the Microsoft HoloLens was uncomfortable for someone wearing glasses. Regarding 
the difficulty of learning the MR-DSS, the mean and standard deviation of the score were 
4.44 and 0.51, respectively, as shown in Figure 14. Most of the participants stated they 
were able to grasp the basic manipulation rules of the MR-DSS, during the ten-minute 
usage introduction. The experiment also demonstrated that almost all the participants 
could engage in essential design actions with this MR-DSS, Regarding the control of the 
MR-DSS, the mean and standard deviation of the score were 3.69 and 0.48, respectively 
(Figure 14). We could see that almost all the participants had achieved real-time design 
control with this MR-DSS. Nevertheless, most responded that they were not used to the 
current natural control mode based on gestures and gazes and used a large amount of 
effort in performing tiny detail manipulation. 

The Kruskal–Wallis test (Table 5) suggested significant differences (p = 0.014 < 0.05) 
in the scores of on-site design convenience with MR among different design experience 
groups. Specifically, the average scores in different design experience groups (1–10years, 
11–20 years, and 21–30 years) were 4.11, 3.73, and 3.33, respectively, indicating a notice-
able drop as design experience increased (Figure 15). Additionally, there were no identi-
fied differences (p = 0.077 > 0.05) between the different MR usage experience groups with 
respect to the scores for on-site design convenience using MR, according to the Kruskal–
Wallis test (Table 6). Most participants stated that the basic control of this MR support 
system was easy to grasp, even those who had never used an MR device. 

Table 5. The Kruskal–Wallis test for different design experience groups in on-site design convenience using MR. 

 Mean Ranks of Scores for the Design Experience Groups p-Value 
 1–10 Years 11–20 Years 21–30 Years (Kruskal–Wallis) 

On-site design convenience using MR 11.22 6.20 2.00 0.014 

 
Figure 15. The average scores for on-site design convenience using MR in different design experi-
ence groups. 

Table 6. The Kruskal–Wallis test for different MR usage experience groups in on-site design convenience using MR. 

 Mean Ranks of Scores for the MR Usage Experience Groups p-Value 
 With MR usage experience Without MR usage experience (ANOVA) 

Figure 15. The average scores for on-site design convenience using MR in different design experience
groups.

Table 6. The Kruskal–Wallis test for different MR usage experience groups in on-site design convenience using MR.

Mean Ranks of Scores for the MR Usage Experience Groups p-Value

With MR usage experience Without MR usage experience (ANOVA)

On-site design convenience
using MR 11.50 7.14 0.077

4. Discussion and Conclusions

This study aimed to use mixed reality (MR) technology to improve on-site design
experiences in community planning. To test its feasibility, we invited sixteen designers to
participate in an on-site design experiment using MR for a typical community planning
and design scene. The results validate that MR can significantly improve on-site design
intuitiveness, accuracy, and convenience in community planning.

Specifically, MR can create interactive visualization environments where life-like 3D
virtual design objects are displayed in the real world. In MR environments, designers
can therefore not only understand the specific community environmental details but also
visualize potential design objects and make further design deductions intuitively. MR
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environments present a wholly real spatial relationship between virtual objects and the
real world, which contributes to designers making accurate position perceptions and size
judgments when imagining, deducting, and assessing their design proposals. At the same
time, the vivid texture rendered by MR could aid designers in finding suitable design
materials within the community contexts. With current portable MR-DSS and brief usage
instructions, designers can acquire basic design control skills in MR environments. Thus,
with MR, they can immerse their design proposals in an actual community scene and make
real-time design adjustments conveniently instead of resorting to repeated observation,
recording, sketching, and modeling between their studios and the design site.

Importantly, it can also be seen from the research results that although almost all the
participants admitted that using MR led to improvements in on-site design of community
planning, those with rich design experience gave relatively low ratings in the interviews.
More specifically, the experienced designers had cultivated mature design habits that relied
on their visual imagination through many years of planning and design practice. While
they did experience the advantages of MR in this ten-minute on-site design experiment, it
was difficult for the experienced designers to change long-standing design habits in such a
short time. They preferred conventional on-site design methods that might be more tedious
and complicated to the unfamiliar new technology. In their opinion, MR might serve as an
auxiliary to current on-site design of community planning when necessary.

However, there are still some limitations to our study. First, regarding the hardware,
we selected Microsoft HoloLens, which was the most advanced MR head-mount display
at the time. Its technical characteristics (3D holographic visualization, natural control
mode, accurate spatial mapping, and real depth perception) fit our study purposes well.
Its weight (579 g), however, makes it unsuitable for wearing over long periods, and its low
battery life (less than three hours) makes it less suitable for supporting sustainable outdoor
design work. Additionally, the narrow FOV of the Microsoft HoloLens cannot present the
whole MR environment, which can affect environmental perception and design judgment
to some extent. Second, with regard to the software, because there were no suitable apps
in the official Microsoft Store, we developed the application software, HoloDesigner, in-
house. As we are not professional programmers, the current appearance, fluency, and
stability of HoloDesigner need to be optimized further. This software also has only basic
design functions (such as moving, zooming, and rotating), which barely support relatively
complicated design work. Third, the design data used in the experiment were prepared
beforehand, which might have limited the design imagination of the participants. Data
preparation is a complex process that not only involves data creation, editing and uploading
but also necessitates some coding work. If they are already familiar with the MR-DSS,
designers can prepare the corresponding design data according to their specific design
tasks by themselves. Fourth, in terms of the participants, some were from the same design
institute. Thus, they might have already formed an attitude towards the new technology
in their daily work before participating in the study, which might have affected their
performance in the experiment. In addition, the sample size was relatively small; therefore,
the results might not represent the attitudes of all designers. Finally, due to the simple
experimental tasks and limited hardware power, the on-site design experience time with
MR for a single participant was only ten minutes. Participants therefore might have found
it difficult to fully understand the MR technology and make reasonable judgments about it.

Future work will examine how MR technology can support design communication
between designers and residents in community planning. We intend to further improve the
current MR-DSS to achieve a smoother operation, friendlier control, and richer functions,
and, most importantly, multi-user sharing services. We then hope to apply it to facilitate
the deliberation process of actual community planning projects.
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