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Abstract: In the era of big data, massive harmful multimedia resources publicly available on the
Internet greatly threaten children and adolescents. In particular, recognizing pornographic videos is
of great importance for protecting the mental and physical health of the underage. In contrast to the
conventional methods which are only built on image classifier without considering audio clues in
the video, we propose a unified deep architecture termed PornNet integrating dual sub-networks
for pornographic video recognition. More specifically, with image frames and audio clues extracted
from the pornographic videos from scratch, they are respectively delivered to two deep networks for
pattern discrimination. For discriminating pornographic frames, we propose a local-context aware
network that takes into account the image context in capturing the key contents, whilst leveraging
an attention network which can capture temporal information for recognizing pornographic audios.
Thus, we incorporate the recognition scores generated from the two sub-networks into a unified
deep architecture, while making use of a pre-defined aggregation function to produce the whole
video recognition result. The experiments on our newly-collected large dataset demonstrate that our
proposed method exhibits a promising performance, achieving an accuracy at 93.4% on the dataset
including 1 k pornographic samples along with 1 k normal videos and 1 k sexy videos.

Keywords: pornographic video recognition; local-context aware network; attention network; unified
deep architecture

1. Introduction

With the rapid development of the Internet, substantial short videos are uploaded
freely onto the Internet by personal users every day. Among these videos publicly available,
those with harmful or illegal contents are not only detrimental to personal mental health
but also threaten social security and stability [1]. In particular, short pornographic videos
seriously affect the mental growth of children and adolescents, since the underage have easy
access to these harmful videos with the help of the Internet [2,3]. Therefore, pornographic
video recognition is extremely important for preventing the current Internet environment
from being contaminated, and thus plays a crucial role in protecting the mental health of
the underage [4].

Although the last two decades have witnessed massive research devoted to recogniz-
ing pornographic images [5–8], pornographic video recognition is still an open problem. In
general, the key information contained in the pornographic videos manifests itself in image
frames and audio cues. Thus, these two modalities are usually extracted from the videos
in the first place, and then handled separately for recognizing pornographic contents.
On the one hand, the pornographic images exhibit significant intra-class variances when
scenario, scale, and background change. In particular, the private part that distinguishes a
pornographic image from normal images often accounts for a small local region, whereas
the image background irrelevant to pornographic contents may consist of a large portion
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of the image area. Previous research [2,9–16] focuses on searching a naked person and de-
tecting skin regions by using low-level patterns [17] such as texture, color, and geometrical
features, whereas it is unreasonable to assume that all images with large skin areas are
pornographic. With the success of deep convolutional neural network (DCNN) in image
classification and detection [18], more attention has been paid to the application of DCNN
in porn detection [3,19,20]. However, distinguishing the difference between sexy photos
and porn images is still a challenging task. On the other hand, massive pornography
videos can just be accurately recognized by its audio information alone, while some videos
with periodic screaming and moaning cannot be understood by image content, since no
pornographic images are shown explicitly. Therefore, fusing pornographic audio and
visual information is significantly beneficial for improving recognition accuracy. Despite
massive efforts devoted to environmental sound classification (ESC) [21–25] in the audio
domain, it is well known that few research focuses on recognizing pornographic audio. The
most popular strategy aims to perform the feature embedding obtained by pre-processing
an audio signal and subsequently delivers the resulting features to DCNNs.

To address the above challenges and difficulties, in this paper, we propose a unified
deep architecture termed PornNet in which the two heterogeneous modalities of image and
audio in the videos are separately handled for accurate pornographic video recognition.
In terms of porn image detection, a detection-classification network (DCNet) based on
an anchor free [24] and bidirectional feature pyramid network (BiFPN) [26] is proposed
to capture the global and local information of images. More specifically, porn images
are classified into three categories according to global information, i.e., normal, sexy,
and porn images, whilst six categories which are breast_porn, vagina_porn, penis_porn,
buttock_porn, breast_sexy, and buttock_sexy are defined according to local information.
The proposed DCNet allows the extraction of discriminative features of normal, sexy, and
porn images for both global information and local information from sensitive body parts.
On the other hand, DCNN is used for recognizing pornographic audios for the first time. In
particular, log Mel-Spectrogram is calculated as feature embedding from input audio data,
while an additional log Mel-Spectrogram is generated for an image-like representation
of the spectrum of frequencies varying with time [27]. Meanwhile, a Resnet-Attention
network (RANet), which is also used as temporal segmentation network is proposed
to extract inter-context and extra-context of log Mel-Spectrograms. To summarize, our
contributions are listed as follows:

1. In order to capture the global and local information of porn images, we propose the
DCNet including two carefully designed branches, namely detection and classification.
In the detection branch, particularly, our proposed detector is anchor box free as
well as proposal free, and thus completely avoids the complicated computation
process related to anchor boxes such as setting the rate of the anchors. Besides, a
weighted bi-directional feature pyramid network (BiFPN) is used to achieve multi-
scale feature fusion;

2. We propose a RANet based on audio feature embedding for pornographic audio detec-
tion. Specifically, the feature embedding termed log Mel-Spectrogram is an image-like
representation, and the number of features is equal to the audio seconds. Further-
more, a frequency attention block is used to extract the inter-spatial relationship of
a spectrogram, while the framework of Temporal Segment Networks (TSN) [28] is
used for capturing the relationship of spectrograms along the temporal dimension in
RANet. To the best of our knowledge, this is the first attempt to introduce DCNN to
recognize pornographic audio;

3. For pornographic video recognition, we specially assemble a dataset including 1 k
real-world pornographic videos merged with 1 k videos and 1 k normal videos. Due
to the privacy and copyright issue, we only show some examples analogous to our
simulated data as illustrated in Figure 1. Experiments show that our proposed method
can achieve an accuracy of 93.4% on the real-world dataset, demonstrating superior
performance over the other state-of-the-art networks.
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Figure 1. Some example sexy images analogous to our simulated data.

2. Related Work

Generally, methods for recognizing pornographic videos can be classified into image-
based recognition and audio-based recognition approaches. Particularly, audio classifi-
cation has attracted much attention in recent years, and thus our pornographic audio
recognition benefits from recent advances in audio classification.

2.1. Porn Image Recognition

In terms of image representation, the existing methods for pornographic image recog-
nition can be classified as hand-crafted feature-based and DCNN-based schemes.

2.1.1. Hand-Crafted Feature-Based Approaches

Prior to the advent of DCNN, conventional porn image recognition approaches rely
on various low-level hand-crafted features to classify adult images. Wang et al. [29]
made use of wavelet for image representation, while the normalized central moments, the
daubechies wavelet transformation, and the color histogram are used to generate semantic-
mating vectors for image classification. Zhao and Cai [2] combined the edge, color, and
texture features along with SIFT descriptors for enhancing the recognition performance.
Although hand-crafted features allow straightforward image representation, their limited
discriminative power fails to capture the essential content of a pornographic image and
thus leads to a degraded recognition performance.

2.1.2. DCNN-Based Approaches

With tremendous success achieved by DCNN in image classification, DCNN has
been extensively used for recognizing pornographic images. Moustafa et al. [3] combined
GoogLeNet [18] and AlextNet [30] to produce an ensemble model for porn image recogni-
tion. They show that the recognition accuracy of their model is slightly better than either
one model. Mallmann et al. [31] considered the recognition of pornographic content as
an object problem and used detection network for detecting pornographic private parts.
Ou et al. [19] took full use of the complementarity of local context and global context
information, and proposed a context-ensemble detection system with a fine-to-coarse strat-
egy. Wang et al. [20] proposed GcNet and SpNet for capturing local and global context.
Compared with the methods based on hand-crafted features, the major advantages of
DCNN-based methods are two-fold. With sufficient descriptive and discriminating power,
DCNN is capable of capturing the most sensitive features in porn images. Meanwhile, with
the help of DCNN, those methods can effectively distinguish between sexy photos and
porn images by combining local and global contents. Our proposed porn image recognition
scheme falls into the group of DCNN-based methods.

2.2. Porn Audio Recognition

Different from image signals, an audio signal has distinct characteristics, and thus
many methods are specifically tailored towards the audio domain. In general, the existing
porn audio recognition methods can be roughly divided into two categories as follows:
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2.2.1. Raw Waveform and 1D-CNN

In the 1D-CNN architecture, the raw waveform of an audio example is usually used as
the input fed to the network. Tokozume and Harada [32] proposed a one-dimensional CNN
architecture termed EnvNet which shows a promising performance using raw waveform
data as input. Zhu et al. [33] used raw waveform data at different time scales as the input
of 1D-CNN for improving performance. Abdoli et al. [34] used a gammatone filter bank
for the initialization model which revealed an improved performance compared with the
other random weight initialization methods. Note that these methods avoid the procedure
of pre-processing the raw waveform data.

2.2.2. Time-Frequency Representation and 2D-CNN

In terms of 2D-CNN, raw waveform of audio data should be transformed into a two-
dimensional representation, such as Mel-scaled spectrograms [35], Mel-frequency cepstral
coefficients (MFCC) [36], and log-power Mel-Spectrogram [37]. In [38], 2D CNN is imposed
on Mel-scaled spectrograms for environmental sound classification. Mydlarz et al. [39]
proposed a 2D CNN architecture with five layers using the augmented data as new training
samples. Guzhov et al. [40] proposed a 2D CNN with attention block termed EsResNet for
Environmental Sound Classification. The EsRestNet uses log-pow SIFT spectrograms as
input and achieves the state-of-the-art results on ESC-10/-50 [41] and UrbamSound8K [42].
In our framework, we adopt the EsRestNet-like structure which abandons the time block
as our pornographic audio recognition network, whilst using log Mel-spectrogram as the
input audio representation instead of log-pow Spectrograms. The framework of Temporal
Segment Networks (TSN) [28] is employed for capturing the temporal context of audio
examples.

3. Our Proposed Methods

In our framework, a video sample is decomposed into massive image frames and
an audio file, each of which is handled by the corresponding network. The framework
is illustrated in Figure 2. The DCNet is proposed to recognize pornographic frames and
generate the results of images. The video-frames result is calculated through simple voting.
Audio feature embeddings which are log Mel-spectrograms and image-like representation
of the audio are produced by VGGish [37]. The RANet is used to recognize audio feature
embeddings and generate video-audio result [43]. In the video-frames and video-audio
fusion algorithm, a well-designed function is pre-defined to aggregate the recognition the
result from video-frames and video-audio.

3.1. Detection-Classification Network

Figure 3 illustrates the architecture of DCNet for distinguishing the pornographic
images in the video clips. To be specific, the network can be divided into four modules: The
backbone, the bidirectional feature pyramid network (BiFPN) [26], the detection network,
and global classification network.
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Figure 2. The framework of our proposed method. A video is decomposed into massive image frames and an audio
file from scratch. Then, the detection-classification network (DCNet) is used to recognize video frames for porn image
recognition, whilst the Resnet-Attention network (RANet) is proposed for porn audio recognition. The final score of the
whole video being pornographic is obtained by fusing the image and audio recognition results.
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Figure 3. The DCNet architecture for porn image recognition. In DCNet, the bidirectional feature pyramid network (BiFPN)
is used to achieve multi-scale feature fusion, while the classification network generates the recognition score of the video
falling into any of the three categories: Normal, sexy, and porn. Besides, the detection branch is capable of capturing local
information. Note that GAP denotes global average pooling and C is the channel of feature maps. In addition, S is the stride
of convolutional kennel while H ×W is the height and the width of feature maps.

With the ResNet-50 used as our backbone in our DCNet, BiFPN is built on the top
layers at each stage of the ResNet-50. More specifically, activations from the 3rd layer
to 7th layer P̃in = (Pin

3 , ..., Pin
7 ) are used as input features delivered to the subsequent

BiFPN. Pin
i represents a feature level with 1/2i resolutions of the input images. Here,

(Pin
3 , Pin

4 , Pin
5 ) are computed from top-down and lateral connections to the output of the
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convolutional layers at each residual stage of backbone network. Pin
6 and Pin

7 are obtained by
imposing one convolutional layer on Pin

5 and Pin
6 separately with the stride at 2. Considering

cross-scale connections, a bidirectional path, top-down, and bottom-up, works as one
feature layer imposed on the same layer multiple times as shown in Figure 2. To balance
among different input features at different resolution scales with different contributions,
an additional weight for each input layer is used such that the network is capable of
learning the importance of each input feature. Considering the computational efficiency,
fast normalized fusion strategy is used as the weighted fusion approach:

O = ∑
i

ωi
ε + ∑j ωj

Ii (1)

where ω ≥ 0 by applying a Relu layer after each ωi, while ε = 0.001 indicates a small value
for avoiding numerical instability. In a nutshell, BiFPN integrates both the fast normalized
feature fusion and the bidirectional cross-scale connections. Mathematically, the two fused
features at level 5 for BiFPN are formulated as follows:

Ptd
5 = Conv

(ω1Pin
5 + ω2Resize(Pin

6 )

ω1 + ω2 + ε

)
(2)

Pout
5 = Conv

(ω′1Pin
5 + ω′2Ptd

6 + ω′3Resize(Pout
4 )

ω′1 + ω′2 + ω′3 + ε

)
(3)

where Resize(·) usually denotes upsampling or downsampling operation for resolution
matching. Ptd

5 is the intermediate feature at 5th level on the top-down pathway, while Pout
5

is the output feature at the 5th level on the bottom-up pathway.
The ground-truth bounding boxes in an image are defined as {Bi}N

i=1, where Bi =

(x(i)0 , y(i)0 , x(i)1 , y(i)1 , c(i)) ∈ R4 × {1, 2, . . . , C}. Here (x(i)0 , y(i)0 ) and (x(i)1 , y(i)1 ) are the coor-
dinates of the left-top and right-bottom corners of the bounding box. c(i) denotes the
class that the object in the bounding box belongs to while C is the number of classes.
Inspired by [26], the detection network is anchor box free as well as proposal free. For
each location (x, y) on the feature map Ptd

i , the corresponding mapping location in the
input image is (xs + s

2 , ys + s
2 ) (s denotes the stride) near the center of the receptive field.

Similar to the FCNS for semantic segmentation [44], our detection network directly uses
the location-specific image regions as training samples instead of anchor boxes in anchor-
based detectors. Specifically, when a location (x, y) falls into any ground-truth box, it is
considered as a positive sample with the ground-truth label C∗. Otherwise, it is viewed as
a negative sample. We use a 4D vector t∗ = (l∗, t∗, r∗, b∗) to denote the regression targets
for the location. Here l∗, t∗, r∗, and b∗ are the distance from the location to four sides of the
bounding box. Thus, two scenarios usually occur. Firstly, if a location falls into multiple
bounding boxes, we simply choose the one with minimal area used as its regression target.
Secondly, unlike the anchor-based detectors assigning anchor boxes with different sizes to
different levels of feature map, the range of bounding box regression for each level is lim-
ited. If a location satisfies max(l∗, t∗, r∗, b∗) > mi or max(l∗, t∗, r∗, b∗) < mi−1, the location
is defined as a negative sample. Here, mi is the maximum distance that ith-level feature
map needs regression. In our work, m2, m3, m4, m5, m6, and m7 are set as 0, 64, 128, 256,
512, and ∞, respectively. Otherwise, to suppress the detected low-quality bounding boxes
which are far away from the center of an object, a single-layer branch, in parallel with the
classification branch, is used for predicting the “centernes” of the location. Mathematically,
the centerness target is defined as:

centerness =

√
min(l∗, r∗)
max(l∗, r∗)

× min(t∗, b∗)
max(t∗, b∗).

(4)
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In addition to the above-mentioned detection network, the global classification net-
work classifies an image into three categories: normal, sexy, and porn with the ground-truth
label of an image defined as g∗. Note that it is built on the last stage of backbone network.
To generate high-level feature map G7, we make use of Pin

5 for the input features of the six
convolutional layers, followed by a global average pooling layer, a fully connected layer
with softmax activation used for classification.

Mathematically, the training loss function of our DCNet is formulated as follows:

L = λ1Lglobal_cls + λ2Ldetect (5)

where;

Ldetect =
1

Npos
∑
x,y

Lcls(p(x,y)cls
, c∗x,y)

+
1

Npos
∑
x,y

Lcent(p(x,y)cent
, centerness∗)

+
1

Npos
∑
x,y

I{c∗x,y>0}Lreg(tx,y, t∗x,y)

(6)

where Lglobal_cls, Lcls, Lcent, and Lreg are cross entropy loss, focal loss [45], binary cross
entropy loss and IOU loss [46]. Besides, Npos denotes the number of positive samples,
whilst λ1 and λ2 are tradeoff weights both of which are empirically set as 0.5.

3.2. ResNet-Attention Network

Figure 4 illustrates the architecture of RANet for pornographic audio detection. With
the feature of audio data fed to RANet, the network can be divided into three modules: the
backbone, the frequency attention block, and the temporal attention block. Consistent with
DCNet, the backbone of RANet is used as the ResNet architecture.
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Figure 4. The RANet architecture for pornographic audio detection. Inspired by Temporal Segment Networks (TSN) [28],
K log Mel-spectrograms are generated from the audio data and delivered into the RANet. In addition, the frequency attention
which contains three attention blocks is used for capturing the most important information in frequency domain. Thus, the
recognition scores of K log Mel-Spectrograms are fused by the segmental consensus function for porn audio recognition.
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In our work, we use VGGish [37] to generate audio feature embedding from au-
dio samples. In the pre-processing procedure, an input audio is first resampled to 16
KHZ, and then we compute log Mel-spectrogram M ∈ RH×W from every one second of
the transformed audio data. Here, H is 96 and W is 64. The total number of log Mel-
spectrograms generated from the audio sample is equal to the elapsed seconds. Formally,
given a set of log Mel-spectrograms calculated by VGGish, we evenly divide them into K
parts {S1, S2, ..., SK}. Inspired by TSN [28], a log Mel-spectrogram TK is randomly sampled
from its corresponding segment SK. Then, the RANet models a sequence of spectrograms
(T1, T2, ..., TK) as follows:

RAN(T1, T2, ..., TK) = H(g(F(T1 : W), F(T2 : W), ...,

F(TK : W))).
(7)

Here, F(Tk : W) indicates a ConvNet with parameters W which operates on Tk
and produces class scores. To achieve a consensus of class hypothesis among them, the
segmental consensus function g which is defined as gi = ∑K

k=1 A(Tk) f k
i combines the

outputs from multiple spectrograms. A(Tk) is the attention weight for Tk. Based on
this consensus, the softmax function H predicts the probability of the whole audio being
pornographic.

In our RANet, the frequency attention block enables capturing the most important
information in frequency domain. To incorporate the frequency attention mechanism into
our framework, we propose improving the Resnet network by adding a stack of attention
blocks in parallel as shown in Figure 3. For instance, the first attention block frequency
attention A1 reconceives the same input x as the first layer L1. Next, it processes x by
frequency-dedicated convolutional filters and thus produces an output of the same shape
as the one provided by L1. At last, the input Latt of the second layer is constructed by the
element-wise multiplication of Ai and L1 blocks:

Latt
i (x) = Li(x)� Ai(x) (8)

3.3. Fusion of Pornographic Image and Audio Recognition Results

In our scenario, we extract image frames and audio data from the given video with a
1fps sampling rate and 16KHz sampling frequency respectively. Thus, the generated N
images and the audio data are delivered to our DCNet and RANet for pornographic content
recognition. Furthermore, with the classification result of each image frame Ri

m ∈ {0, 1, 2}
obtained, we aggregate the recognition results of all the images via voting strategy, leading
to the aggregated result Rm ∈ {0, 1, 2}. Here, 0, 1, 2 represent three image classes, i.e.,
normal, porn, and sex. Analogously, the recognition result of the audio data can be
computed as Ra ∈ {0, 1}. Thus, the following aggregation function is pre-defined to fuse
the results of the porn image and audio recognition:

R =


1(porn) Rm = 1 or Ra = 1
0(normal) Rm = Ra = 0
2(sexy) Rm = 2 and Ra = 0

(9)

Equation (9) can be interpreted as the following three cases: Firstly, the test video is
identified as pornographic when either the image or audio data in the video is classified
as pornographic. Secondly, the test video is normal when both of the two modalities are
recognized as normal. Thirdly, the test video is classified as sexy when the audio data is
normal whereas the image data is identified as sexy.
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4. Experiments
4.1. Dataset

Since no public datasets are available for the task of pornographic video recognition,
we have checked 100,000 videos on the Internet and collected a large-scale dataset from
them. The newly assembled dataset consists of 10,000 pornographic videos, 10,000 videos,
and 10,000 normal videos. Specifically, 8934 videos contain pornographic images and
8676 videos contain pornographic audios in the 10,000 pornographic videos. The average
length of these videos is two minutes. All the pornographic videos involved in our dataset
come from three pornographic web sites and are captured by personal mobile phone.
Overall, they are categorized into two groups in terms of the video contents, namely
nudity-typed and behavior-typed pornographic videos. The former type refers to videos
revealing a human private part, such as a naked breast, vagina, penis, and buttock. Different
from the nudity-typed videos, the latter video type represent those exhibiting pornographic
behaviors, whereas the aforementioned human private part is not shown in videos. The
pornographic videos are usually captured by personal users in an unprofessional way and
thus they contain complex backgrounds with undesirable video quality.

In addition to the above-mentioned porn videos, the videos were downloaded from
web sites. Similar to the pornographic videos in appearance, videos include bikini, a
seductive posture, and man or baby with a bare upper body, demonstrating semi-exposed
human private part, such as semi-exposed breast and buttock. The normal videos in our
dataset are also downloaded from web sites, and can be categorized into two groups,
namely normal-human type and no-human type. In the former type of normal videos,
people in these videos are normally dressed, while the videos of no-human type cover a
variety of topics including animals, natural, and living goods without humans contained.

The dataset is split into three partitions, the training set, validation set, and test set.
Specifically, 80% of the data are used for training, while the rest are evenly divided for
validation and test respectively. As aforementioned, we sampled image frames from
videos with a 1fps sampling rate along with the audio data with 16 KHz frequency. In
terms of DCNet training, we manually select 20,000 porn images, 20,000 sexy images,
and 20,000 normal images from the sampled frames, and make use of bounding boxes to
annotate the sensitive contents of the training images, including breast_porn, vagina_porn,
penis_porn, buttock_porn, breast_sexy, and buttock_sexy. All audio data are also labeled
as either normal or pornographic examples which encode the erotic voice. Similar to the
training images, we randomly selected 20,000 pornographic and 20,000 normal audio files
for training the RANet.

4.2. Experimental Setup
4.2.1. Training Setup

For training DCnet, the input training images were resized to maintain their short side
being 768 and long side less or equal to 1333, since the input resolution must be dividable
by 27 = 128. Next, we used ResNet-50 as our backbone network and initialized it with the
weights pre-trained on ImageNet [30]. Meanwhile, the newly added layers were initialized
as in [45]. Our network was trained with mini-batch stochastic gradient descent (SGD)
for 50 K iterations with the initial learning rate set as 0.001 and a mini-batch size of 32.
The learning rate was reduced by a factor of 10 at iteration 20 k and 40 k, respectively.
Momentum and weight decay are set as 0.9 and 0.0001, respectively.

Analogous to the training setup on DCNet, the mini-batch size, momentum, and
weight were respectively set as 256, 0.9, and 0.0001 for training RANet. The learning rate
was initialized as 0.001 and decreased by 0.1 every 150,00 iterations. The whole training
procedure takes 35,000 iterations. Moreover, the most important parameter in training
RANet was the number of segments K. In particular, RANet was reduced to the plain
ConvNets when K equals to 1. With the increase in K, further performance improvement is
expected. Inspired by [28], we evaluated the performance with varying values of K ranging
from 1 to 9 by using the same test approach. The results are shown in Figure 5 . We observe
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that increasing K leads to better performance. The highest accuracy is reported at 85.3%
when K grows up to 5, while further increasing K does not improve the performance. Thus,
we set K = 5 in the following experiments.

Figure 5. Performance of our RANet on validation set with varying values of K. The results indicate
the average accuracy of recognizing porn and normal videos.

4.2.2. On-the-fly Inference

For the on-the-fly inference, given a test video, we firstly derive N image frames and
a sequence of audio data from the video. Then, N log Mel-spectrograms are produced
by VGGish for video representation. For a specific image frame, the detection result and
classification result are obtained by the detection and the global classification network. For
porn image recognition, we only use the classification results of the N images and employ
the voting strategy to aggregate the scores. In addition, following TSN [28], K is set as 20
when feeding the audio data to the trained RANet model, leading to the audio recognition
results. The final result is calculated by both image and audio classification scores.

4.3. Ablation Studies

To evaluate the performance of our proposed method, we conduct a set of ablation studies
on the respective DCNet and RANet. In all the ablation experiments, we report the validation
accuracy of the 1 k pornographic videos, 1 k videos, and 1 k normal videos respectively.

4.3.1. Ablation Studies on DCNet

We use Resnet-50 architecture as a single classification network without being com-
bined with a detection network as our baseline. Apart from the baseline, we compare
four different detection-classification frameworks: RCNet using RetinaNet as the detection
net, FCNet which is bidirectional feature pyramid network, A-RCNet using anchor-free
detection network, and DCNet using anchor-free bidirectional feature pyramid network.

It is shown in Table 1 that compared with the baseline, all four detection-classification
architectures have boosted the validation performance to some extent. Specifically, the
accuracy gain of 1.4% is achieved when a detection network works as an auxiliary branch.
For porn video validation, BiFPN can boost the accuracy from 90.6% to 91.4%, while
anchor-free detector improves the accuracy from 90.6% to 91.5%. Particularly, DCNet
improves the ResNet-50 baseline from 89.2% to 92.5%. This is attributed to the obvious
difference between breast_porn and breast_sexy that accelerates the function of detection
network branch. On the contrary, the performance gain for the validation of normal videos
is relatively limited. This implies that no sensitive information in normal videos weaken
the function of the detection network branch.
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Table 1. Comparison of different detection-classification networks. P, S, and N denote videos of a
porn, sexy, and normal class, respectively.

Networks Precision (%) Recall (%) Acc (%)P S N P S N

ResNet50 85.0 90.3 93.5 90.1 85.0 92.4 89.2
RCNet 87.5 92.3 94.2 91.6 86.3 94.0 90.6
FCNet 88.3 93.3 94.8 92.3 87.2 94.6 91.4

A-RCNet 88.5 93.5 94.7 92.4 87.3 94.8 91.5
DCNet 90.0 95.5 95.1 93.5 88.5 95.5 92.5

4.3.2. Ablation Studies on ResNet-Attention Network

To produce effective image-like feature embedding of audio data, we impose four
features on our RANet: Mel-frequency cepstral coefficients (MFCC), gammatone frequency
cepstral coefficients (GFCC), log-power short time fourier transform (STFT) spectrograms,
and log Mel-spectrograms. As shown in Table 2, log Mel-Spectrograms can achieve a better
accuracy 86.3% in recognizing pornographic audios, and thus it is used as the feature
embedding of the audio data in the following experiments.

Table 2. The performance of our RANet with different features. Mel-frequency cepstral coefficients
(MFCC), gammatone frequency cepstral coefficients (GFCC), and short time fourier transform (STFT).

Features Precision (%) Recall (%) Acc (%)P N P N

MFCC 82.9 76.0 73.1 85.0 79.1
GFCC 86.2 78.1 75.6 87.9 81.8

log-power SIFT Spectrograms 82.3 82.1 82.1 82.4 82.3
Log Mel-Spectrograms 85.5 87.0 87.3 85.2 86.3

In addition, we use a VGG network excluding attention module as our baseline. We
compare the performance of five networks: VGGNet-16, ResNet-18, A-ResNet18 (ResNet-
18 with attention module), ResNet-50, and RANet (ResNet-50 with attention module). Since
audio data are only categorized into porn and normal type, 1 k porn videos and 1 k normal
videos for validation are used for evaluating the performance of these architectures. As
illustrated in Table 3, deeper network architecture tends to achieve better results. Compared
with the backbone, more specifically, Resnet-50 obtains a performance improvement from
81.6% to 83.8%. A-Resnet-18 embedded achieves the accuracy of 85.0%, outperforming
Resnet-50 by 0.7%. Our RANet which embeds frequency attention module into the ResNet-
50 achieves the best accuracy at 86.3%.

Table 3. Comparison of different audio-classification networks.

Networks Precision (%) Recall (%) Acc (%)P N P N

VGG 80.6 82.6 83.1 80.0 81.6
ResNet-18 82.5 85.0 85.6 81.9 83.8

A-ResNet-18 83.8 86.1 86.6 83.3 85.0
ResNet-50 83.0 85.6 86.1 82.4 84.3

RANet 85.5 87.0 87.3 85.2 86.3

4.3.3. Combining DCNet and RANet

As discussed in the ablation studies above, we fuse the image and audios recognition
results for pornographic video recognition. More specifically, we make use of Equation (9)
to produce the final decision. In practice, we conduct two groups of experiments. First,
A-ResNet-18 is used to produce the audio recognition results while it is combined with
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five different detection-classification networks presented in Table 1. Second, we replace A-
ResNet-18 with RANet for performing porn audio recognition. The results are illustrated in
Tables 4 and 5 respectively. By comparing Tables 1 and 4, we can observe that A-ResNet-18
obviously increases the performance from 92.5% to 93.1% obtained by DCNet, along with
the accuracy gains of 0.9%, 0.7%, 0.7%, and 0.9% achieved by ResNet50, RCNet, FCNet,
and A-RCNet respectively. Particularly, significant performance improvement manifests itself
into the precision and recall of porn video recognition. Furthermore, combining A-ResNet-18
and DCNet improves the precision from 85.0% to 93.2% and the recall from 90.1% to 95.0%.
This sufficiently demonstrates the beneficial effect of RANet in further performance boost.
Thus, the best accuracy at 93.4% is achieved by combining DCNet and RANet.

Table 4. Comparison of different frameworks in which A-ResNet-18 is combined with varying
detection-classification networks.

Frameworks Precision (%) Recall (%) Acc (%)P S N P S N

A-ResNet-18 + ResNet50 88.7 90.3 93.7 92.2 85.0 92.6 89.9
A-ResNet-18 + RCNet 90.1 92.3 94.3 93.6 86.3 94.1 91.3
A-ResNet-18 + FCNet 92.4 93.3 94.9 94.2 87.2 94.8 92.1

A-ResNet-18 + A-RCNet 92.3 93.5 94.8 94.8 87.3 95.0 92.4
A-ResNet-18 + DCNet 93.2 95.5 95.3 95.0 88.5 95.8 93.1

Table 5. Comparison of different frameworks in which RANet is combined with varying detection-
classification networks.

Frameworks Precision (%) Recall (%) Acc (%)P S N P S N

RANet + ResNet50 90.3 90.3 93.9 92.6 85.0 92.7 90.1
RANet + RCNet 93.3 92.3 94.4 94.0 86.3 94.3 91.5
RANet + FCNet 94.1 93.3 94.9 94.6 87.2 94.9 92.2

RANet + A-RCNet 94.3 93.5 95.1 95.1 87.3 95.3 92.6
RANet + DCNet 95.6 95.5 95.6 95.8 88.5 96.0 93.4

5. Conclusions

In this paper, we proposed a unified deep architecture termed PornNet integrating
dual sub-networks for pornographic video recognition. Specifically, a local-context aware
network is proposed for discriminating pornographic image frames, whilst an attention net-
work which is also used as temporal segment networks is used to recognize pornographic
audios. The results generated from the two sub-networks were aggregated for generating
the whole video recognition result. Since no audio labels were available in the exiting
porn video recognition datasets, we collected a large-scale dataset with both image and
audio label annotated. Experiments on our newly-collected large dataset demonstrated the
effectiveness of our proposed method, achieving an average accuracy with 93.4%, tested
on 1 k pornographic videos, 1 k videos, and 1 k normal videos.

Author Contributions: Conceptualization, Z.F. and T.D.; methodology, Z.F.; software, Z.F.; validation,
Z.F. and J.L.; formal analysis, Z.F.; writing—original draft preparation, Z.F.; writing—review and
editing, J.L.; supervision, J.L.; project administration, G.C. and T.Y.; funding acquisition, J.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 61703096).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2021, 11, 3066 13 of 14

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy and copyright issue.

Acknowledgments: The authors greatly appreciate all the reviewers for their positive and construc-
tive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Levy, S. Good Intentions, Bad Outcomes: Social Policy, Informality, and Economic Growth in Mexico; Brookings Institution Press:

Washington, DC, USA, 2010.
2. Zhao, Z.; Cai, A. Combining multiple SVM classifiers for adult image recognition. In Proceedings of the IEEE International

Conference on Network Infrastructure and Digital Content, Beijing, China, 24–26 September 2010; pp. 149–153.
3. Moustafa, M. Applying deep learning to classify pornographic images and videos. arXiv 2015, arXiv:1511.08899.
4. Tamburlini, G.; Ehrenstein, O.; Bertollini, R. Children’s Health and Environment: A Review of Evidence: A Joint Report from the European

Environment Agency and the WHO Regional Office for Europe; World Health Organization, Regional Office for Europe, EE Agency:
Copenhagen, Denmark, 2002.

5. Bosson, A. Non-retrieval: Blocking pornographic images. In Proceedings of the International Conference on Image and Video
Retrieval, London, UK, 18–19 July 2002; pp. 50–60.

6. Zheng, Q.-F.; Zeng, W.; Wang, W.-Q.; Gao, W. Shape-based adult image detection. Inter. J. Image Graph. 2006, 6, 115–124. [CrossRef]
7. Jang, S.-W.; Park, Y.-J.; Kim, G.-Y.; Choi, H.-I.; Hong, M.-C. An adult image identification system based on robust skin segmentation.

J. Imaging Sci. Technol. 2011, 55, 20508–20601. [CrossRef]
8. Deselaers, T.; Pimenidis, L.; Ney, H. Bag-of-visual-words models for adult image classification and filtering. In Proceedings of the

Pattern Recogn, Tampa, FL, USA, 8–11 December 2008; pp. 1–4.
9. Jiao, F.; Gao, W.; Duan, L.; Cui, G. Detecting adult image using multiple features. In Proceedings of the International Conferences

on Info-Tech and Info-Net., Beijing, China, 29 October–1 November 2001; pp. 378–383.
10. Shih, J.-L.; Lee, C.-H.; Yang, C.-S. An adult image identification system employing image retrieval technique. Pattern Recogn. Lett.

2007, 28, 2367–2374. [CrossRef]
11. Yin, H.; Xu, X.; Ye, L. Big Skin Regions Detection for Adult Image Identification. In Proceedings of the 2011 Workshop on Digital

Media and Digital Content Management, Hangzhou, China, 15–16 May 2011; pp. 242–247.
12. Zhu, Q.; Wu, C.-T.; Cheng, K.-T.; Wu, Y.-L. An adaptive skin model and its application to objectionable image filtering. In

Proceedings of the 12th annual ACM international conference on Multimedia, New York, NY, USA, 10–15 October 2004; pp. 56–63.
13. Smith, D.; Harvey, R.; Chan, Y.; Bangham, J. Classifying Web Pages by Content. In Proceedings of the IEE European Workshop

Distributed Imaging, London, UK, 18 November 1999; pp. 1–7.
14. Chan, Y.; Harvey, R.; Bangham, J. Using Colour Features to Block Dubious Images. In Proceedings of the European Signal

Processing Conference, Tampere, Finland, 4–8 September 2000; pp. 1–4.
15. Garcia, C.; Tziritas, G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans.

Multimed. 1999, 1, 264–277. [CrossRef]
16. Fleck, M.M.; Forsyth, D.A.; Bregler, C. Finding naked people. In Proceedings of the European Conference on Computer

Vision(ECCV), Cambridge, UK, 14–18 April 1996; pp. 593–602.
17. Lopes, A.P.; de Avila, S.E.; Peixoto, A.N.; Oliveira, R.S.; Araujo, A.A. A bag-of-features approach based on hue-sift descriptor for

nude detection. In Proceedings of the European Signal Processing Conference, Scotland, UK, 24–28 August 2009; pp. 1552–1556.
18. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

19. Ou, X.; Ling, H.; Yu, H.; Li, P.; Zou, F.; Liu, S. Adult Image and Video Recognition by a Deep Multicontext Network and
Fine-to-Coarse Strategy. ACM T. Intel. Syst. Technol. 2017, 8, 1–25. [CrossRef]

20. Wang, X.; Cheng, F.; Wang, S. Adult image classification by a local-context aware network. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2989–2993.

21. Kong, Q.; Xu, Y.; Wang, W.; Plumbley, M.D. Audio Set classification with attention model: A probabilistic perspective. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada,
15–20 April 2018; pp. 316–320.

22. Yu, C.; Barsim, K.S.; Kong, Q.; Yang, B. Multi-level attention model for weakly supervised audio classification. arXiv 2018,
arXiv:1803.02353.

23. Chou, S.-Y.; Jang, J.-S.R.; Yang, Y.-H. Learning to recognize transient sound events using attentional supervision. In Proceedings of
the International Joint Conferences on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 3336–3342.

24. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636.

http://doi.org/10.1142/S0219467806002082
http://dx.doi.org/10.2352/J.ImagingSci.Technol.2011.55.2.020508
http://dx.doi.org/10.1016/j.patrec.2007.08.002
http://dx.doi.org/10.1109/6046.784465
http://dx.doi.org/10.1145/3057733


Appl. Sci. 2021, 11, 3066 14 of 14

25. Wang, Y.; Li, J.; Metze, F. A comparison of five multiple instance learning pooling functions for sound event detection with weak
labeling. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
12–17 May 2019; pp. 31–35.

26. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

27. Bozkurt, B.; Germanakis, I.; Stylianou, Y. A study of time-frequency features for CNN-based automatic heart sound classification
for pathology detection. Comput. Biol. Med. 2018, 100, 132–143. [CrossRef]

28. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Gool, L.V. Temporal segment networks for action recognition in videos.
IEEE Trans. Pattern Anal. 2018, 41, 2740–2755. [CrossRef] [PubMed]

29. Wang, J.Z.; Li, J.; Wiederhold, G.; Firschein, O. System for Screening Objectionable Images. Comput. Commun. 1998, 21, 1355–1360.
[CrossRef]

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, 3–6 December 2012; pp. 1097–1105.

31. Mallmann, J.; Santin, A.O.; Viegas, E.K. PPCensor: Architecture for real-time pornography detection in video streaming. Future
Gener. Comp. Syst. 2020, 112, 945–955. [CrossRef]

32. Tokozume, Y.; Harada, T. Learning environmental sounds with end- to-end convolutional neural network. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 2721–2725.

33. Zhu, B.; Xu, K.; Wang, D.; Zhang, L.; Li, B.; Peng, Y. Environmental sound classification based on multi-temporal resolution
convolutional neural network combining with multi-level features. In Proceedings of the Pacific Rim Conference on Multimedia,
Hefei, China, 21–22 September 2018; pp. 528–537

34. Abdoli, S.; Cardinal, P.; Koerich, A.L. End-to-end environmental sound classification using a 1D convolutional neural network.
Expert Syst. Appl. 2019, 136, 252–263. [CrossRef]

35. Volkmann, J.; Stevens, S.S.; Newman, E.B. A scale for the measurement of the psychological magnitude pitch. J. Acoust. Soc. Am.
1937, 8, 208. [CrossRef]

36. Logan, B. Mel frequency cepstral coefficients for music modeling. In Proceedings of the International Symposium on Music
Information Retrieval (ISMIR), Plymouth, MA, USA, 23–25 October 2000; Volume 270.

37. Hershey, S.; Chaudhuri, S.; Ellis, D.P.W. CNN architectures for large-scale audio classification. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 131–135.

38. Piczak, K.J. Environmental sound classification with convolutional neural networks. In Proceedings of the IEEE International
Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, USA, 17–20 September 2015; pp. 1–6.

39. Mydlarz, C.; Salamon, J.; Bello, J.P. The implementation of low-cost urban acoustic monitoring devices. Appl. Acoust. 2017, 117,
207–218. [CrossRef]

40. Guzhov, A.; Raue, F.; Hees, J.; Dengel, A. ESResNet: Environmental Sound Classification Based on Visual Domain Models. arXiv
2020, arXiv:2004.07301.

41. Piczak, K.J. Esc: Dataset for environmental sound classification. In Proceedings of the ACM International Conference on
Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1015–1018.

42. Salamon, J.; Jacoby, C.; Bello, J.P. A dataset and taxonomy for urban sound research. In Proceedings of the ACM International
Conference on Multimedia, Mountain View, CA, USA, 18–19 June 2014; pp. 1041–1044.

43. Riaz, H.; Park, J.; Choi, H.; Kim, H.; Kim, J. Deep and Densely Connected Networks for Classification of Diabetic Retinopathy.
Diagnostics 2020, 100, 24. [CrossRef] [PubMed]

44. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

45. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

46. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the ACM
International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520.

http://dx.doi.org/10.1016/j.compbiomed.2018.06.026
http://dx.doi.org/10.1109/TPAMI.2018.2868668
http://www.ncbi.nlm.nih.gov/pubmed/30183621
http://dx.doi.org/10.1016/S0140-3664(98)00203-5
http://dx.doi.org/10.1016/j.future.2020.06.017
http://dx.doi.org/10.1016/j.eswa.2019.06.040
http://dx.doi.org/10.1121/1.1901999
http://dx.doi.org/10.1016/j.apacoust.2016.06.010
http://dx.doi.org/10.3390/diagnostics10010024
http://www.ncbi.nlm.nih.gov/pubmed/31906601

	Introduction
	Related Work
	Porn Image Recognition
	Hand-Crafted Feature-Based Approaches
	DCNN-Based Approaches

	Porn Audio Recognition
	Raw Waveform and 1D-CNN
	Time-Frequency Representation and 2D-CNN


	Our Proposed Methods
	Detection-Classification Network
	ResNet-Attention Network
	Fusion of Pornographic Image and Audio Recognition Results

	Experiments
	Dataset
	Experimental Setup
	Training Setup
	On-the-fly Inference

	Ablation Studies
	Ablation Studies on DCNet
	Ablation Studies on ResNet-Attention Network
	Combining DCNet and RANet


	Conclusions
	References

