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Abstract: Changing the water-to-cement ratio is one of the major ways to develop cement slurry with
different densities, which in turn will greatly affect the pore structure and mechanical properties
of cement slurry. In the current study, the cement hydration model HYMOSTRUC3D was used to
investigate the effects of water-to-cement (w/c) ratio (0.40, 0.44, 0.50) on the pore structure evolution
and strength development of cement slurry. The microstructure of the cement stone was characterized
via scanning electron microscope (SEM) and micro-computed tomography (micro-CT), and the
mechanical strength of the cement stone was tested and analyzed via a mechanical tester. The
simulated compressive strength and capillary porosity are in good agreement with the measured
data, where the relative error between the simulated results and measured results are within 0.6~10.7%
and 13.04~25.31%, respectively. The capillary porosity is proved as the main factor affecting the
compressive strength of cement stone with different w/c ratios. Herein, the mathematical relationship
between the measured capillary porosity and compressive strength could be well fitted via the
mathematical prediction models of the Balshin function (R2 = 0.95), Ryshkewitch function (R2 = 0.94),
Schiller function (R2 = 0.96), and the linear regression function (R2 = 0.95). Moreover, the linear
regression function (y = −2.38x + 82.76) can be used to characterize and predict the quantitative
relationship between the compressive strength and capillary porosity of cement stone. The findings in
this study will provide a reference value in the fields of oil and gas cementing and building concrete.

Keywords: hydration model; cement slurry; microstructure; w/c ratio; compressive strength;
capillary porosity

1. Introduction

Cement slurry is typically utilized in filling the annular space between the pipe and
rock formation, sealing casing columns, preventing formation series collusion, protecting
production reservoirs, and stabilizing the oil and gas wells [1–6]. In the duration of the
lifetime of oil and gas wells, they are prone to leakage at any time after the commencement
of production [7], which may bring many problems to both field production and the eco-
logical environment [8]. Due to the particularity of oil and gas well cementing engineering,
a variety of cementing slurry systems with different density ranges are often used in the
cementing process and changing the w/c ratio is one of the main and effective ways to
develop cementing slurry with different densities. It is worth noting that the workability
and durability of the cement sheath are strongly affected by the w/c ratios [9]. Meanwhile,
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the w/c ratios greatly affect the pore structure and mechanical properties of cement slurry, in
which case the porosity and mechanical properties are the main parameters to characterize
the durability and service life of the cement sheath.

Over the past decades, many researchers [10–13] investigated the influence of the
w/c ratio and curing age on the pore structure evolution and mechanical properties of
cementitious materials. Schulze [10] illustrated that the influence of w/c and cement content
on the properties of polymer-modified mortars has a similar influence as unmodified
mortars. The compressive strength decreased with increasing w/c ratio and the cement
content was of minor influence, while shrinkage and water absorption increased with the
water–cement ratio and cement content. Rahmani et al. [12] demonstrated that the abrasion
resistance of concrete is improved by 42% and the porosity of concrete is decreased to 13.1%
by reducing the w/c ratio from 0.46 to 0.30 in nano-silica concrete specimens. Li et al. [13]
used ice particles instead of liquid water as mixing water to prepare cement pastes and
found that the total porosity is the main factor in determining the compressive strength of
hardened cement paste with super low w/c ratios.

Furthermore, based on different experimentally measured results [14–18], different
types of mathematical prediction models and regression models have focused on the re-
lationship between porosity and strength. Anya et al. [19] derived an empirical model to
calculate the uniaxial compressive strength of cement stone and studied the relationship
between ultrasonic pulse transit time, density, w/c ratio, water-solids ratio, and strength.
Wei et al. [20] discussed the pore volume fractal dimension of low-density microsphere
cement and its relationship with pore structure and mechanical properties. Li et al. [13]
established the relationship between compressive strength and total porosity of hardened
cement paste with super low w/c ratios according to the Balshin function, Ryshkewitch
function, and Schiller function. The relationship between the strength of hardened cement
paste and the w/c ratio is well-studied. However, there are few reports on how the compres-
sive strength of cement slurry is produced and what its influencing factors are. In addition,
the study concentrated on cement slurry about the relationship between capillary porosity
and compressive strength under different w/c ratios is not clear.

Recently, micro-CT has become a popular technique widely used in evaluating the
microstructure property of cementitious materials due to its simple and non-destructive
characteristics and short test time. Eric et al. [21] began to study the internal damage
characteristics of Portland cement hydration products based on micro-CT in 1997 and found
that the research and application of micro-CT in the field of cement concrete has increased
dramatically. Micro-CT was initially used to investigate the internal structure of cement
such as pore types (pores and damages) [22], pore shapes [23–26], and pore network [27,28].
The statistical and morphological analyses based on micro-CT provide a new view of the
cement microstructure because they can provide a realistic 3D geometry [29].

With rapid computer technology developing, numerical approaches have drawn
great attention from lots of scholars. Many kinds of cement hydration models have
been established gradually, such as the Jennings-Johnson model [30], HYMOSTRUC3D
model [31–33], Navi-Pignat model [34], CEMHYD3D model [35], DuCOM model [36], µic
model [37], HydratiCA model [38], THAMES model [39], Park’s model [40], Thermody-
namic modeling [41], etc. The above hydration models provide a new solution for the
study on microstructure evolution and hydration mechanism of cement-based materials.
In this paper, the HYMOSTRUC3D model was selected to simulate the hydration process
and the microstructure development of cement slurry. Instead of using a certain charac-
teristic particle size to represent its real particle size distribution, the HYMOSTRUC3D
model [31–33] can consider the continuous particle size distribution of cement particles.
The HYMOSTRUC3D model is a function of the clinker composition, particle size distri-
bution of cement, w/c ratios of cement paste, and temperature in which the hydration of
cement particle is controlled by the strict stereological principle and chemical reaction
kinetics principle. The three-dimensional structure of cement slurry can be reconstructed,
and the dynamic hydration process of cement slurry can be displayed with the visualiza-



Appl. Sci. 2021, 11, 3063 3 of 17

tion software Para View. Compared with other hydration models, the HYMOSTRUC3D
model is more rigorous and powerful. The model was first proposed to calculate the hy-
dration rate of cement particles, during which the hydration process was divided into two
stages (phase boundary reaction stage and diffusion-controlled reaction stage) based on
the hydration rate parameters k0 and δtr. Since then, the HYMOSTRUC3D model has been
developed dramatically. Up to now, the HYMOSTRUC3D model has been used to simulate
many properties of cement-based materials and blended cement-based materials, including
the mechanical properties [31,42], microstructure [32], the autogenous shrinkage [33], the
transport properties [43], the tensile strength and stiffness [44] of cement-based materials.

Hence, the HYMOSTRUC3D and micro-CT models were selected to study the effects
of the w/c ratio on pore structure evolution and strength development of cement slurry. The
relationships between cement clinker, hydration products, porosity, compressive strength,
etc. with w/c ratios (0.40, 0.44, 0.50) and hydration times (1, 3, 7, 28, 140 days) were obtained
from the cement slurry hydration kinetics model established on the HYMOSTRUC3D
model [33], and the simulated results were compared with the measured results (mechanical
tester and micro-CT). Moreover, the relationship between the compressive strength and
capillary porosity was established by the mathematical prediction models (Balshin function,
Ryshkewitch function, Schiller function [45,46], and linear function), and the residuals of
those mathematical models were analyzed. The evolution mechanisms of pore structure
were discussed via SEM. The findings of this study have certain application prospects in
the fields of oil and gas cementing and building concrete.

2. Materials and Methods

The flowchart of the research approach is shown in Figure 1. The cement hydration
model HYMOSTRUC3D, the experimental analysis methods (mechanical tester, micro-CT,
and SEM), the mathematical prediction models (Balshin function, Ryshkewitch function,
Schiller function [45,46] and linear function) were combined to study the effects of the w/c
ratio on the pore structure evolution and strength development of cement slurry. Moreover,
the residuals of those mathematical models were analyzed, and the evolution mechanisms
of pore structure were discussed.
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2.1. Materials

High sulfate-resistant grade G oil-well cement (GOC, according to Chinese National
Standard GB/T 10238-2015, manufactured in Shandong Special Cement Co., Ltd., Shan-
dong, China) with a density of 3.15 g/cm3 was used to make the slurries, and the mineral
components of the GOC are listed in Table 1. The particle size distribution of the GOC
was tested by a laser diffraction particle size analyzer (Mastersizer 3000, Malvern Pan-
alytical, UK), and the cumulative volume fraction of cement particles was fitted by the
Rosin–Rammler–Bennet (RRB) function (y = 100− 100exp(−bxn), where y is the cumulative
volume fraction, x is the particle size of the GOC, b and n are fitting parameters. The RRB
function (y = 100 − 100exp(−0.04143x1.02)) can be used to represent the distribution of
cement particles. The results are shown in Figure 2.

Table 1. The mineral components of GOC.

Phase C3S C2S C3A C4AF CSH2

Mass
fraction/% 63.49 13.26 2.00 15.81 4.08
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Figure 2. Particle size distribution of GOC.

In order to eliminate aeration, a transparent defoamer with a PH of 7.0 ± 0.5 and
a density of 1.00 g/cm3 ± 0.02 g/cm3 was used. The defoamer is a mixture of refined
hydrocarbons and unsaturated fatty acid esters. The slurry also contained a light-yellow
antifiltrating agent with a PH of 5.5 ± 0.5 and a density of 1.08 g/cm3 ± 0.01 g/cm3. The
antifiltrating agent is composed of AMPS Copolymer. All the above agents were supplied
by Oilfield Chemistry Research Institute of CNOOC Oilfield Services Co., Ltd., Hong Kong,
China. The slurry was prepared according to the Chinese National Standards GB/T 10238-
2015. Three different w/c ratios of 0.40, 0.44, and 0.50 were selected in this work. The
composition of the prepared cement slurry is summarized in Table 2. After mixing, the
fresh cement slurry was cast into steel molds (50.8 mm × 50.8 mm × 50.8 mm for the
compressive strength test, and ϕ25 mm × 100 mm for the micro-CT test) and pre-cured in
a water bath at a temperature of 30 ◦C.



Appl. Sci. 2021, 11, 3063 5 of 17

Table 2. Selected compositions of cement slurries.

Composition Action 1 2 3

w/c ratio 0.40 0.44 0.50
defoaming agent eliminate aeration 0.5 0.5 0.5

antifiltrating agent reduce cement slurry
flitration 6 6 6

GOC sets the cement slurry 100 100 100
All components in % by mass of cement.

2.2. Experimental Analysis Methods
2.2.1. Compressive Strength Analysis

The values of the compressive strength of the experimental samples were measured
using a mechanical tester (ZCYA-W300C, Jinan Xinghuo testing machine Co., Ltd., Jinan,
China). For each group, six cubical samples (50.8 mm × 50.8 mm × 50.8 mm) were tested
and then the average of the compressive strength of each group was used as the final test
result to ensure the accuracy of the test results.

The simulated compressive strength was calculated through the HYMOSTRUC3D
model. Sun et al. [47,48] concluded that the effective contact area (AEC) between particles
is the main parameter to determine the bearing capacity of a cementitious material. In the
HYMOSTRUC3D model, AEC is defined as the contact area in the direction normal to the
direction of the applied load. Taking the load applied in the y direction as an example, the
particle contact relationship can be divided into four cases, as shown in Figure 3. AEC-y is
the sum of the effective contact area of all particles in the representative element volume
(REV) in the y direction, AEC–y = ∑n

i=1 AEC−y,i. The total effective contact area AEC is
defined as the average value of AEC in x, y, and z directions, that is, AEC = (AEC–x + AEC–y
+ AEC–z)/3.
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2.2.2. Fractured Surface Morphology

The morphology of the samples was observed by SEM (Phenom™ XL G2, Eindhoven,
Phenom Scientific, Eindhoven, The Netherlands).

2.2.3. Pore Structure Analysis

In this study, a micro-CT instrument (nano voxel-3000, Tianjin Sanying Precision
Instrument Co., Ltd., Tianjin, China, as shown in Figure 4) was chosen to scan the samples.
The X-ray energy of this micro-CT was 150 kV/60 mA, and a high-resolution microscopy
detector was used with a pixel density of 2048 × 2048 and a resolution of 2 µm. The sample
was scanned from 0◦ to 360◦ with two scans per degree, and the exposure time for each
scan was 1 s. The data matrix of X-ray intensities and radiographs was collected by the
CCD detector. Moreover, the Voxel Studio Recon software was used to reconstruct the
3D microstructure, the Avizo Fire 8 [49,50] was used to perform the image segmentation
of the samples with a measured resolution of 3.38 µm and a grayscale range of 0–65,535
(i.e., 216−1).
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Figure 4. Picture of nano voxel-3000.

Due to the limitations of calculation time and workstation configuration, it is difficult
to perform calculations for the whole 3D reconstructed image [51]. A common approach is
to select a volume of interest (VOI) [52]. Yio et al. [53] suggested that the physical length
of the VOI should be bigger than 100 µm. Fusseis et al. [51] proposed that 200 × 200
× 200 voxels should be a practical limit for supervised algorithms. Liu et al. [52] also
determined that 200 × 200 × 200 voxels were sufficient to represent the structure of the
sample. Therefore, 200 × 200 × 200 voxels were selected as the VOI.

In the 3D reconstructed image, according to their respective gray values, the phases
can be segmented to determine their spatial positions and volumes. Based on the global
threshold method [51,53,54], the threshold segmentation of pores was carried out to recon-
struct the pore structure of the cement paste. To analyze the pore structure and capillary
porosity, three VOIs were intercepted for each analysis of capillary porosity, and the average
value was used as the final test result. The specific analysis process is shown in Figure 5.



Appl. Sci. 2021, 11, 3063 7 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 4. Picture of nano voxel-3000. 

Due to the limitations of calculation time and workstation configuration, it is difficult 

to perform calculations for the whole 3D reconstructed image [51]. A common approach 

is to select a volume of interest (VOI) [52]. Yio et al. [53] suggested that the physical length 

of the VOI should be bigger than 100 μm. Fusseis et al. [51] proposed that 200 × 200 × 200 

voxels should be a practical limit for supervised algorithms. Liu et al. [52] also determined 

that 200 × 200 × 200 voxels were sufficient to represent the structure of the sample. There-

fore, 200 × 200 × 200 voxels were selected as the VOI.  

In the 3D reconstructed image, according to their respective gray values, the phases 

can be segmented to determine their spatial positions and volumes. Based on the global 

threshold method [51,53,54], the threshold segmentation of pores was carried out to re-

construct the pore structure of the cement paste. To analyze the pore structure and capil-

lary porosity, three VOIs were intercepted for each analysis of capillary porosity, and the 

average value was used as the final test result. The specific analysis process is shown in 

Figure 5. 

 

Figure 5. The flowchart of pore structure test and analysis using micro-CT. Figure 5. The flowchart of pore structure test and analysis using micro-CT.

2.3. Establishment of Hydration Kinetics Model of Cement Slurry with HYMOSTRUC3D

Wang et al. [55–57] demonstrated that mineral components can affect the initial hy-
dration rate of cement paste dramatically. Referring to the research results of Nguyen
et al. [56,57], the hydration parameters K0 and δtr of GOC were calculated to be 0.0503 µm/h
and 2.35 µm/h, respectively, as shown in Table 3.

Table 3. The hydration parameters of GOC.

Phase C3S C2S C3A C4AF GOC

Hydration
parameters

K0 (µm/h) 0.0713 0.0047 0.0644 0.02 0.0503
δtr (µm/h) 2.66 3.07 3.58 1.19 2.35

Zhang et al. [58] suggested that the REV size of cementitious materials selected for
HYMOSTRUC3D simulation should be 1003 µm3. However, some cement particles are
larger than 100 µm in diameter (as shown in Figure 1), thus, REV = 200 µm was selected.

Then, hydration coefficients such as the particle size distribution (RRB fitting results),
cement mineral composition, hydration parameters of cement, the w/c ratio, and REV size
were substituted into the HYMOSTRUC3D model to establish the cement slurry hydration
model, and the compressive strength, porosity, and hydration products of the cement slurry
were obtained.

3. Results and Discussion
3.1. Compressive Strength

Figure 6 presents the simulated and measured compressive strength of cement samples
at hydration times of 1, 3, 7, 28, and 140 days, in which the error bar represents the standard
deviation. As can be seen from Figure 6, the compressive strength of the cement stone
decreased with the increasing w/c ratio from 0.40 to 0.50 and increased with the increasing
hydration time at the same w/c ratio.
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With the increase of w/c ratio from 0.40 to 0.44, the compressive strength of the cement
stone at 1, 3, 7, 28, and 140 days decreased by 24.30%, 22.17%, 9.41%, 4.12%, and 1.75%,
respectively. With the increase of the w/c ratio from 0.44 to 0.50, the compressive strength
of the cement stone at 1, 3, 7, 28, and 140 days decreased by 33.49%, 20.24%, 26.94%,
36.22%, and 24.86%, respectively. When the w/c ratio was 0.40, the daily growth rates of
compressive strength of the cement paste from 1 to 3 days, 1 to 7 days, 1 to 28 days, and 1
to 140 days were 84.74%, 38.33%, 12.31%, and 2.82%, respectively, and the daily growth
rate of compressive strength markedly decreased with the hydration time.

It also can be seen from Figure 6 that, when the w/c ratio is 0.40, 0.44, and 0.50,
respectively, the relative deviation between the simulated results and measured results is
1.5~10.7%, 0.5~9.2%, and 0.6~9.1%, respectively. The maximum relative deviation between
the simulated results and measured results is 10.7%, which indicates that the simulated
results are in good agreement with the measured results.

3.2. Capillary Porosity

Figure 7 shows the capillary porosity gotten from the micro-CT and HYMOSTRUC3D
models, in which the error bar represents standard deviation. As Figure 7 indicates, the
capillary porosity of the cement stone increased with the increase in the w/c ratio and
decreased with the increase in hydration time. With the increase of the w/c ratio from 0.40
to 0.44, the capillary porosity of cement stone at 1, 3, 7, and 28 days increased by 6.85%,
11.39%, 6.64%, and 23.07%, respectively. With the increase of the w/c ratio from 0.44 to 0.50,
the capillary porosity of the cement stone at 1, 3, 7, and 28 days increased by 3.08%, 6.94%,
10.59%, and 12.81%, respectively.

When the w/c ratio was 0.40, the daily reduction rates of capillary porosity of the
cement slurry from 1 to 3 days, 1 to 7 days, and 1 to 28 days were 13.62%, 6.02%, and
1.91%, respectively. The daily reduction rate of capillary porosity markedly decreased
with the hydration time, while the decreasing trend reduced dramatically. In addition, the
porosity of cement stone increased with the increase in the w/c ratio, which is contrary to
the changing trend of compressive strength.
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The relative deviations between the simulated results and measured results were
13.95~20.43%, 13.04~21.73%, and 17.56~25.31%, while the water–cement ratios were 0.40,
0.44, and 0.50, respectively.

It can be seen from Figures 6 and 7 that the capillary porosity increased with the
increase in the w/c ratio at the same hydration time, while the mechanical strength decreased
as the w/c ratio increased. In the well cementing industry, a lower w/c ratio should be
selected as far as possible to prepare cement slurry and thus improve the early mechanical
properties of the cement sheath.

Comparing the porosity results gotten from the micro-CT and HYMOSTRUC3D
models, the micro-CT-measured results were smaller than those of the HYMOSTRUC3D
model, while the overall trend of the porosity measured by the micro-CT model is consistent
with the porosity simulated by the HYMOSTRUC3D model. The analysis shows that the
resolution of the HYMOSTRUC3D model is 1 µm, while the resolution of the micro-CT
model is 3.38 µm. Therefore, the measured porosity is lower than the simulated porosity,
which can be attributed to CT not recognizing the pores between 1 and 3.38 µm. The
limited resolution of the micro-CT model is the main reason for the smaller porosity values
compared with the HYMOSTRUC3D simulated results, micro-CT is inadequate for testing
nanoscale and sub-micron pores.

However, as Liu et al. [49] concluded, it is very important to obtain pore structures
with large volumes in the cement stone. Silva et al. [59] also demonstrated that the big
capillary pores can be correlated to the strength properties of the cement paste. Hence, the
following discussion in Section 3.4 is based on the measured results, in which the influence
of capillary porosity (pores larger than 3.38 µm in diameter) on the compressive strength
of cement stone is discussed.

3.3. Pore Structure Evolution

The changes in volume fraction of mineral components and hydration products were
evaluated by the HYMOSTRUC3D model, the results were shown in Figure 8. As shown
in Figure 9, the 3D microstructures of the cement stone with the w/c ratio of 0.44 at 0, 1, and
28 days were reconstructed by the Para View visualization software.
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At the initial hydration stage, the volume content of pores accounts for a relatively
higher proportion than those at the later hydration stage. The pores are mostly connected
pores and occupied by water (Figures 8 and 9a). As the hydration reaction proceeded
and the degree of hydration increased, unhydrated cement particles and water decreased
sharply. Lots of hydration products such as C-S-H gel and CH were generated gradually,
resulting in a volumetric expansion effect, and they occupied the pore spaces (Figures 8
and 9). The lower capillary porosities indicated that the pores were filled with continuously
formed hydration products [60]. As a result, the microstructures become more compact
with the increase in hydration time at the same w/c ratio (Figure 9).

With the further hydration of cement, hydration products were continuously gener-
ated and wrapped onto the surface of unhydrated cement (Figure 9b,c). Meanwhile, the
hydration products continuously formed and hindered the migration of water and ions,
resulting in the hydration rate of GOC gradually slowing down, the isolation of pores, and
the gradual optimization of pore structure. At the later hydration stage, capillary water
was almost consumed absolutely, finally forcing the hydration reaction to stop. Meanwhile,
the skeleton of cement slurry was basically constructed, and almost all pores were no
longer connected [61].

Capillary pores are commonly considered the remnants of the initially water-filled
space [62,63]. With the w/c ratio increasing from 0.40 to 0.44 and 0.44 to 0.50, the initial
water volume ratio increased by 2.34% and 3.09% respectively. Correspondingly, the pore
spaces and the capillary porosity increased with the increase in the w/c ratio at the same
hydration time (Figure 10). On the contrary, the mechanical strength decreased as the w/c
ratio increased.



Appl. Sci. 2021, 11, 3063 11 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

   

Figure 9. Microstructure of cement stone under different hydration time using HYMOSTRUC3D (a) 0 days; (b) 1 day; (c) 

28 days. 

With the further hydration of cement, hydration products were continuously gener-

ated and wrapped onto the surface of unhydrated cement (Figure 9b,c). Meanwhile, the 

hydration products continuously formed and hindered the migration of water and ions, 

resulting in the hydration rate of GOC gradually slowing down, the isolation of pores, 

and the gradual optimization of pore structure. At the later hydration stage, capillary wa-

ter was almost consumed absolutely, finally forcing the hydration reaction to stop. Mean-

while, the skeleton of cement slurry was basically constructed, and almost all pores were 

no longer connected [61].  

Capillary pores are commonly considered the remnants of the initially water-filled 

space [62,63]. With the w/c ratio increasing from 0.40 to 0.44 and 0.44 to 0.50, the initial 

water volume ratio increased by 2.34% and 3.09% respectively. Correspondingly, the pore 

spaces and the capillary porosity increased with the increase in the w/c ratio at the same 

hydration time (Figure 10). On the contrary, the mechanical strength decreased as the w/c 

ratio increased. 

   

Figure 10. Pore structure of cement stone at 28 days under different w/c ratios using micro-CT (a) 0.40; (b) 0.44; (c) 0.50. 

3.4. The Relationship between Compressive Strength and Capillary Porosity 

Based on the analysis in Figures 6–10, the capillary porosities of the cement stone 

increased and the compressive strengths decreased with the increase in the w/c ratio at the 

same hydration time. The compressive strength and the capillary porosity of the cement 

stone were negatively correlated. To present the relationship between compressive 

strength and porosity of the cement stone, three widely accepted functions, the Balshin 

function, Ryshkewitch function, and Schiller function [45,46] were chosen and described 

as follows: 

Balshin function, 

𝑦 = 𝑎(1 − 𝑥/100) 𝑏 (1) 

Figure 10. Pore structure of cement stone at 28 days under different w/c ratios using micro-CT (a) 0.40; (b) 0.44; (c) 0.50.

3.4. The Relationship between Compressive Strength and Capillary Porosity

Based on the analysis in Figures 6–10, the capillary porosities of the cement stone
increased and the compressive strengths decreased with the increase in the w/c ratio at the
same hydration time. The compressive strength and the capillary porosity of the cement
stone were negatively correlated. To present the relationship between compressive strength
and porosity of the cement stone, three widely accepted functions, the Balshin function,
Ryshkewitch function, and Schiller function [45,46] were chosen and described as follows:

Balshin function,
y = a(1− x/100)b (1)

Ryshkewitch function,
y = ae−bx (2)

Schiller function,
y = aln(b/x) (3)

One linear function,
y = ax + b (4)

where, y is the compressive strength of the cement stone, MPa; x is the capillary porosity of
the cement stone, in percentage; a and b are fitting parameters.

In this study, the Balshin function, Ryshkewitch function, and Schiller function were
used to fit the relationship between compressive strength and porosity, and the results
are shown in Figure 11. According to the analysis in Figure 11, the correlation coefficients
(R) between the measured compressive strength and the predicted results of Balshin
function, Ryshkewitch function, and Schiller function were no less than 0.970 (i.e., R2 ≥ 0.94)
(Figure 11a–c), which indicated that the correlation between compressive strength and
the porosity of cement paste is high. A linear function was used to fit the relationship
between compressive strength and porosity. The result is plotted in Figure 11d, and the
correlation coefficient was 0.975 (i.e., R2 ≥ 0.95). Furthermore, the accuracy of the model
function in predicting compressive strength was estimated based on statistical analysis. The
predicted results were compared with the measured results (Table 4). Except for individual
abnormal data points, the internally studentized residuals of the prediction model were
all within the range of [−2, 2]. The individual abnormal data points within the range of
(−∞, −2) ∪ (2, ∞) of the internal studentized residuals were judged as abnormal points at
the 95% confidence level, which was ignored in the regression straight line fitting. Hence,
the occurrence of abnormal points will not affect the fitting results. It can also be found
from Table 3 that there were no abnormal points in the fitting results of the one linear
function, which indicates that y = −2.38x + 82.76 was the most representative function.
It proved that the relationship between the compressive strength and porosity could be
established by the linear function. Combining the results in Figure 10 with Section 3.2, the
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capillary porosity is the main factor in determining the compressive strength of the cement
stone, which is consistent with the result of Pandey et al. [16,45,46].
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Table 4. Statistical analysis results of prediction functions of compressive strength.

Function Measured Results Predicted Results Residual Internally
Studentized Residuals

Balshin function

49.30 54.07 −4.77 2.093
47.27 40.60 6.67 −1.714
37.62 36.34 1.28 −0.209
30.15 33.15 −3.00 0.992
34.08 32.44 1.64 −0.423
30.72 28.38 2.34 −0.744
24.90 26.63 −1.73 0.432
23.91 22.50 1.41 −0.624
19.07 19.13 −0.06 −0.274
11.40 12.83 −1.43 −0.033
8.63 10.35 −1.72 −0.013
5.74 9.32 −3.58 0.518
49.30 54.64 −5.34 2.233
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Table 4. Cont.

Function Measured Results Predicted Results Residual Internally
Studentized Residuals

Ryshkewitch function

47.27 40.29 6.98 −1.579
37.62 35.93 1.69 −0.264
30.15 32.72 −2.57 0.805
34.08 32.02 2.06 −0.485
30.72 28.01 2.71 −0.785
24.90 26.31 −1.41 0.291
23.91 22.34 1.57 −0.646
19.07 19.16 −0.09 −0.289
11.40 13.30 −1.90 0.027
8.63 11.03 −2.40 0.095
5.74 10.08 −4.34 0.597
49.30 52.32 −3.02 1.388

Schiller function

47.27 40.70 6.57 −2.121
37.62 36.88 0.74 −0.128
30.15 33.95 −3.80 1.424
34.08 33.28 0.80 −0.196
30.72 29.39 1.33 −0.432
24.90 27.65 −2.75 0.974
23.91 23.35 0.56 −0.241
19.07 19.60 −0.53 0.093
11.40 11.58 −0.18 −0.134
8.63 7.87 0.76 −0.511
5.74 6.17 −0.43 −0.116
49.30 48.20 1.10 0.001

One linear function

47.27 40.23 7.04 −1.930
37.62 37.23 0.39 0.063
30.15 34.78 −4.63 1.564
34.08 34.21 −0.13 0.179
30.72 30.71 0.01 0.086
24.90 29.07 −4.17 1.343
23.91 24.78 −0.87 0.272
19.07 20.76 −1.69 0.466
11.40 11.22 0.18 −0.242
8.63 6.31 2.32 −0.967
5.74 3.96 1.78 −0.835

However, the mathematical functions that are used to characterize the relationship
between capillary porosity and mechanical properties have a certain application prospect
in the fields of well cementing. Further experimental research and statistical analysis will
be processed in the following study.

3.5. SEM Findings

SEM images of the fracture surface morphologies of cement stone samples with w/c
ratios of 0.40, 0.44, 0.50 at one day and seven days are shown in Figure 12. Image J was used
to statistically analyze the morphologic characteristics of crystalline CH, 20 CH crystals.

In Figure 12, with the increase in the w/c ratio, the pore spaces of samples increased
obviously, the side length of the formed CH crystals became larger and more regular. The
proportion of large capillary pores increased correspondingly. When the w/c ratio is 0.40, only
a few well-crystallized hexagonal and tabular CH crystals can be found, while the side length
of the hexagonal CH crystals is mainly distributed in the range of 0.8~2.5 µm (Figure 12a).
When the w/c ratio is 0.44, the formed CH crystals are in clusters, and most of them are
well crystallized hexagonal and tabular, while the side length of the CH crystals is mainly
distributed in the range of 1.3~3.6 µm (Figure 12b). When the w/c ratio is 0.50, compared to
the samples with w/c ratios of 0.40 and 0.44, the formed CH crystals in Figure 11c are larger
and looser, while the side length of the CH crystals is mainly distributed in the range of
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1.9~5.3 µm (Figure 12c). Compared to the results in Figure 12c,d, it also can be found that
the cement stone trends to be more compact as the hydration time increases.
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The cement particles in the cement slurry with a high w/c ratio have a relatively
higher hydration degree compared to the cement stone with a low w/c ratio. However, the
proportion of cement decreases as the w/c ratio increases, and the amount of hydration
products decreases correspondingly (Figure 8, Figure 9, and Figure 12). Macroscopically,
the mechanical properties of the cement stone decrease with the increase in the w/c ratio
(Figure 6).

4. Conclusions

1. The simulated compressive strength and capillary porosity using the cement slurry hy-
dration kinetics model established on HYMOSTRUC3D demonstrated a good agreement
with the experimentally measured data, where the relative errors between the simulated
results and measured results are within 0.6%~10.7% and 13.04~25.31% respectively.

2. With the increase in the w/c ratio, the volume content of hydration products and the com-
pressive strength decreases, while the volume of pores and capillary porosity increases.
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3. The compressive strength of cement stone is negatively correlated with capillary
porosity. Capillary porosity is the main factor affecting the compressive strength of
cement stone. In the well cementing industry, a lower w/c ratio should be selected
as far as possible to prepare cement slurry and thus improve the early mechanical
properties of the cement sheath.

4. The mathematical relationship between the measured capillary porosity and com-
pressive strength of cement slurry is well fitted by the Balshin function (R2 = 0.95),
Ryshkewitch function (R2 = 0.94), Schiller function (R2 = 0.96), and the linear function
(R2 = 0.95). Those mathematical functions can be used to characterize and predict the
quantitative relationship between the compressive strength and capillary porosity of
cement stone. Those findings have a certain application prospect in the fields of well
cementing, meanwhile, it can help to improve the accuracy of the model established
on HYMOSTRUC3D.

5. The effects of the w/c ratio should be considered in building a broader mathematical
function of the w/c ratio, porosity, and compressive strength.
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