
applied  
sciences

Article

High-Fidelity Fin–Actuator System Modeling and Aeroelastic
Analysis Considering Friction Effect

Jin Lu, Zhigang Wu * and Chao Yang

����������
�������

Citation: Lu, J.; Wu, Z.; Yang, C.

High-Fidelity Fin–Actuator System

Modeling and Aeroelastic Analysis

Considering Friction Effect. Appl. Sci.

2021, 11, 3057. https://doi.org/

10.3390/app11073057

Academic Editors: Roman Starosta

and Jan Awrejcewicz

Received: 3 March 2021

Accepted: 28 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
lujin@buaa.edu.cn (J.L.); yangchao@buaa.edu.cn (C.Y.)
* Correspondence: wuzhigang@buaa.edu.cn; Tel.: +86-010-82317510

Featured Application: A high fidelity aeroelastic model of a typical fin–actuator system is estab-
lished, in which the friction model is more accurate. The influence of freeplay and friction on the
system stability is analyzed using the time-domain method and frequency-domain method, and
some suggestions for flutter suppression design are put forward.

Abstract: Both the dynamic characteristics and structural nonlinearities of an actuator will affect
the flutter boundary of a fin–actuator system. The actuator models used in past research are not
universal, the accuracy is difficult to guarantee, and the consideration of nonlinearity is not adequate.
Based on modularization, a high-fidelity modeling method for an actuator is proposed in this paper.
This model considers both freeplay and friction, which is easy to expand. It can be directly used to
analyze actuator characteristics and perform aeroelastic analysis of fin–actuator systems. Friction can
improve the aeroelastic stability, but the mechanism of its influence on the aeroelastic characteristics
of the system has not been reported. In this paper, the LuGre model, which can better reflect the
friction characteristics, was integrated into the actuator. The influence of the initial condition, freeplay,
and friction on the aeroelastic characteristics of the system was analyzed. The comparison of the
results with the previous research shows that oversimplified friction models are not accurate enough
to reflect the mechanism of friction’s influence. By changing the loads, material, and geometry of
contact surfaces, flutter can be effectively suppressed, and the power loss caused by friction can
be minimized.

Keywords: freeplay; friction; actuator; dynamic stiffness; aeroelasticity; nonlinerity

1. Introduction

Flutter is a critical problem in modern flight vehicle design. To pursue lighter weight,
wings and control surfaces tend to be more flexible, which may lead to flutter. Flutter
instability will seriously affect aircraft performance and flight safety [1]. The conventional
aeroelastic analysis of the control surface often focused only on the surface itself, and
the actuator supporting the surface was regarded as a linear torsion spring with constant
stiffness [2], as shown in Figure 1a. In fact, many experiments have proved that the actuator
itself has dynamic characteristics, especially electromechanical servo actuators. Electrome-
chanical servo actuators have good maintainability, low static power consumption, and
storage convenience, so they have been widely used in missile control fin position servo
systems [3]. Thus, they are the modeling objects of this paper. An electromechanical actua-
tor consists of multiple components that can be classified as the moment of inertia (MOI),
elastic spring, and damper, as shown in Figure 1b, which means that the actuator should
not be over-simplified as a linear spring. Moreover, the stiffness of the actuator will change
according to the change in the external load, which is called dynamic stiffness. In addition,
the actuator has control algorithms and electrical and mechanical nonlinearities such as
current/voltage saturation, freeplay, and friction [4]. The analysis of the fin–actuator
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system, considering the dynamic characteristics of the actuating system, makes the results
different from those of wings only [5], which will affect the flutter boundary of the system.

Figure 1. Model comparison for flutter analysis, where (a) is the model of the conventional fin–
actuator system and (b) is the fin–actuator system considering the characteristics of an actuator.

Both the dynamics and structural nonlinearity of the actuator will greatly affect
the aeroelastic characteristics of the system [6,7]. In the field of aeroelasticity, there are
some studies that model the actuator and perform flutter analysis while considering
the actuator dynamics and structural nonlinearities. Yehezkely et al. [5] performed an
aeroelastic analysis of the missile fin with a nonlinear pneumatic actuator and proposed
a flutter suppression method. Paek and the team [8] analyzed the flutter characteristics
of the control fin of a rocket considering dynamic actuator characteristics. Shin et al. [6]
established a basic framework for obtaining the aeroelastic stability results of a fin–actuator
system considering the actuator’s dynamic characteristics. They found that the flutter
boundary could be increased in this way. In the same year, Shin et al. [9] investigated the
same system with the consideration of actuator nonlinearities, such as freeplay, backlash,
and transmission error. The results show that both the freeplay and backlash may influence
the actuator dynamic stiffness. They also found that the nonlinearity and gear reductions
can greatly affect the limit cycle oscillation (LCO) characteristics. Yang et al. [7] obtained
the aeroelastic characteristics of the fin–actuator system containing preload freeplay and
found that an appropriate preload angle can suppress LCOs. Zhang and his team [10]
analyzed the influence of actuator parameters on the dynamic stiffness. The results show
that factors such as inertia of the motor rotor, connection stiffness between different levels
of reducers, reduction ratio of each level of reducer, and the damping at the actuator fin
shaft have significant effects. It can be seen that the studies above only considered freeplay
or other nonlinearities in the actuator and rarely analyzed the friction. Friction actually
has a great influence on aeroelastic properties, which exists widely and can be used to
improve aeroelastic properties. Therefore, it was innovative and necessary to add a friction
nonlinearity module to the model in this paper. Moreover, the previous work was only for
a specific actuator, which is often too simplified, and the reliability of the model was not
easy to guarantee. Furthermore, they often used the dynamic differential equations of the
actuator to carry out modeling and analysis. The coupling between these equations often
makes the modeling process cumbersome and the solving process complex. Therefore, a
new actuator modeling method is needed. Based on modularization, a high-fidelity and
systematic modeling method for an actuator is formed that can ensure accuracy, ease of use,
and consider freeplay and friction at the same time. It can be easily extended to different
configurations of actuators. Using this model, the characteristics of the actuator can be
obtained directly for the analysis of aeroservoelasticity.

In addition to the natural friction at the joints of the system, engineers, based on expe-
rience, take measures to increase friction in order to suppress flutter. For example, friction
sheets [11] or friction rings [12] were added to some actuators to increase friction. Friction
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plays a positive role in the aeroelastic system, but friction in servomechanism systems
dissipates power [13] and may cause position signal steady-state errors or oscillations.
The added friction sheet is often set empirically. So far, the mechanism of friction on the
aeroelastic characteristics of the system is still unclear, and relevant research or analysis
has not been reported. How can we reduce friction while ensuring the effect of friction
on flutter stability? How can we achieve a balance between ensuring aeroelastic stability
and reducing power loss? These are the issues that this article explores in the study of the
friction influence mechanism.

Friction is a nonlinear and complex phenomenon that is determined by the relative
motion between the two contact surfaces. Friction is related to interface material and
operating conditions, such as loads acting on the contact [14]. Introducing nonlinearity
significantly complicates all aspects of already complicated aeroelastic equations of motion,
to the point that friction is typically omitted from a flutter-related analytical workflow or ap-
proximated by a constant value. Some researchers use simple friction models to analyze the
influence of friction on aeroelastic characteristics. Khalak [15] researched stability criteria
with consideration of mechanical damping, which was assumed constant. Griffin et al. [16]
considered friction as a hysteretic spring with damping to study the blade response. The
blade was simplified as a single degree of freedom system, and then the maximum response
amplitude of it was analyzed using the Ritz method. Whiteman and the team [17] studied
the possibility of dry friction for flutter suppression. The results showed that the aeroelastic
stability boundary can be enhanced by changing the position of friction and the geometry
of the interfaces. Mignolet et al. [18] validated for the first time that friction may play a
stabilizing role in LCOs that occur after flutter. Tan et al. [19] studied the stability of an
aeroelastic system with 1.5 degrees of freedom. The results showed that different fric-
tion stiffness has an influence on the critical aerodynamic damping ratio and the stability
boundary of the system, but it has little influence on the stability boundary. Lu et al. [20]
studied the effect of the Coulomb friction on airfoil aeroelastic stability by a numerical
method and the harmonic balance method. The results showed that Coulomb friction
can increase the flutter velocity, and it is affected by the initial condition. Wayhs-Lopes
et al. [21] regarded Coulomb friction as a linear damping ratio and analyzed the influence
of the Coulomb friction on LCOs caused by symmetric and asymmetric freeplay. The
results show that friction is dissipative, but it is not enough to restrain LCOs. The friction
model used in the above work is relatively simple and is a preliminary exploration of the
friction effect mechanism and cannot fully reflect the friction characteristics. Therefore, the
prediction of the stability boundary of a fin–actuator aeroelastic system is not enough. In
fact, in engineering, the friction can be changed by adjusting the preload, the roughness
of the friction surface, lubrication, material, temperature, and other factors that cannot be
represented fully by simple models. Therefore, a model that can more accurately reflect
the friction characteristics is introduced into the aeroelastic analysis model to improve
the model’s accuracy, study further the influence mechanism of the above factors on the
aeroelastic stability, and give some guidance suggestions.

The friction models that are currently used are mainly separated into two main types:
the static model and the dynamic model [22]. The static model may include different
components such as viscous friction, Coulomb friction, the Stribeck effect, and static
friction. However, the static friction model cannot describe the influence of friction when
the contact surfaces are relatively static. Some experiments show that some phenomena
of friction can only be reproduced by dynamic models with memory, such as hysteresis,
rate-dependence, and pre-displacement. The dynamic friction model can reflect the friction
phenomenon more accurately, and therefore has more application value. Many researchers
have developed a variety of dynamic models, mainly including the Dahl model [23], the
LuGre model [24,25], the Leuven model [26,27], the Generalized Maxwell-Slip (GMS)
model [28,29], and two-state friction model (2SEP) [30]. The Dahl model is not accurate
enough when the velocity is low, and it cannot capture stick-slip motion. The LuGre
friction model extends the Dahl model, which was proposed by Canudas de Wit and
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his companions [24,25,31–34]. It can reflect the complex processes of friction static and
dynamic characteristics, including viscous friction, Stribeck effect, variable static friction,
memorial friction, and pre-sliding displacement. The disadvantage of the LuGre model
is that the hysteresis behavior does not have nonlocal memory characteristics in the pre-
sliding regime, which has attracted some attention in the field of precise control. The
Leuven model can reflect this characteristic, but it is difficult to implement. The same
author also proposed the GMS model. Compared with the Leuven model, the GMS model
can more accurately reflect the physical mechanism of friction, but the model is also more
complex, which leads to difficulties in implementation or identification. The 2SEP model
considers to a greater extent the micro-scale elastoplasticity, which is not the focus of this
paper. A comparison of these models is shown in Table 1.

Table 1. Friction characteristics reflected by different models. Generalized Maxwell-Slip, GMS;
two-state friction model, 2SEP.

Viscous Stribeck Effect Pre-Sliding Hysteresis

Coulomb No No No No
Viscous Yes No No No
Stribeck Yes Yes No No

Dahl No No Yes Yes
LuGre Yes Yes Yes Yes
Leuven Yes Yes Yes Yes

GMS Yes Yes Yes Yes
2SEP Yes Yes Yes Yes

It is worth noting that when choosing a model, a proper trade-off must be made
between model fidelity and implementation. The accuracy of the LuGre model is sufficient
for the problem we want to study. The parameters’ physical meaning of the LuGre model is
clear, and thus can easily match experimental data. It is a first-order model, which is more
convenient to use and analyze than other second-order models [35]. Various benefits make
this model widely used in control systems [36–40], which means it is easy to integrate into
the actuator model based on SIMULINK, launched by MathWorks company, and it is also
convenient for subsequent work with which to perform active flutter suppression. Using
more complex models to consider the effect of friction in a more micro and accurate way
can be an open question for future investigations.

The LuGre model contains only six parameters, which are σ0, σ1, σ2, Fc, Fs, and
Vs. Many researchers have proposed effective LuGre parameters identification meth-
ods [31,41–43]. Based on interpreting the asperities contact, the LuGre model uses elastic
spring-like bristles with damping to accurately represent the asperities between two contact
surfaces. σ0 is the stiffness of the assumed elastic spring, and σ1 is the damping that is
associated with micro-displacement. The bristles deform because of the action of external
force, and the sum of the force generated by bristles’ deformation plus the viscous friction
represents the friction force [44]. The average deformation of the bristles reflects the charac-
teristics of dynamic friction. Once the bristles reach their maximum deformation, which
also means friction force has been larger than the maximum static friction force Fs, slip
starts, as illustrated by the schematic representation in Figure 2.

In this article, a high-fidelity simulation model of a typical electromechanical actuator
was established, considering its structural characteristics, details of servomechanism,
freeplay, and friction. The actuator was divided into modules to solve the problem that
the previous model was not universal and extensible. Then the fin–actuator system was
established by connecting the actuator with the fin using the branch mode method. The
unsteady aerodynamic force acted on the control fin. The influence on the system of freeplay
and friction was studied using numerical simulation. Compared with previous literature,
the friction model used in this paper could better reflect the real physical phenomenon, and
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the mechanism of friction effect on aeroelastic system was studied. Based on the results,
some guidelines applicable to engineering projects are put forward.

Figure 2. Schematic representation of the LuGre friction model.

This paper is organized as follows. Section 2 shows the study object of this arti-
cle, which is a typical fin–actuator system with a friction sheet. Section 3 presents the
high-fidelity modeling method of a fin–actuator system considering aerodynamics. The
frequency domain and time domain flutter analysis methods are established in Section 4.
Section 5 introduces the results and discussion of the stability analysis of the fin–actuator
system, considering freeplay and friction nonlinearity of the actuator, and proposes some
rules for the design reference of flutter suppression.

2. Study Object

The electromechanical actuator used in this paper was composed of a DC motor, a
primary gear reducer, a lead screw–nut pair, a fork, a controller, and a sensor. Figure 3a
shows the whole structure of the fin–actuator system. The fork between the screw and the
fin shaft drove the fin. A friction sheet was installed under the fork as shown in Figure 3b.
The mutual extrusion of the sheet and the fork produced the friction force, which caused
the friction torque relative to the center of the fin shaft. One bolt fastened one section of the
friction sheet, and the other bolt, which can provide a pressing force changed artificially,
pressed the other section. Adjusting the pressure applied by the screw to the friction sheet,
changing the materials in contact, or changing the roughness of the contact surface between
the sheet and the fork could regulate friction.

Figure 3. Schematic diagram of the fin–actuator system, where (a) is the whole system structure and (b) is the schematic
diagram of the friction sheet position.
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The MOI of the fin was 0.0105 kg·m2. A branch mode analysis of the fin was performed,
which was adopted for aeroelastic analysis, and the first two elastic natural frequencies
and the corresponding mode shapes of branch 1 are listed in Table 2.

Table 2. Elastic modal frequencies and modal shapes of the fin.

Elastic Branch Frequency Modal Shape

1st mode 50.3 Hz
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3. Modeling of the System

The electromechanical actuator installed on a missile provides sufficient torque to
rotate the control fin against aerodynamic loads and allows the fin to follow guidance
commands. The actuator must have appropriate stiffness to offset the disturbance to meet
the stability and accuracy requirements. Different support stiffnesses will change the
natural mode of the fin. Therefore, the normal mode cannot effectively represent the fin.
To model the motion of the system, the substructure technique was introduced.

3.1. Modeling of the Fin Structure

Here, the Gladwell branch modal synthesis method was applied and used to model
the fin structure. This method divides the modes into two branches—namely, the elastic
branch and the rotational rigid branch [10,45,46], as illustrated by the schematic diagram
in Figure 4. Note that the elastic modal branch, which is branch 1, was obtained by adding
a spring to the root of the fin shaft in the direction of the x axis and the fin was clamped in
the y and z directions.

Figure 4. The modal synthesis method was used to build the structure model of the fin, where (a) is
the elastic branch and (b) is the rotational rigid branch.

The dynamic equation of the fin structure is [47]:

M
..
x+C

.
x+Kx=F (1)
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for which the details of matrix M, C, K, and F are shown in Appendix A. Moreover,
the generalized coordinates vector is xT= [qe, δ

]
, where qe is the displacement vector

in generalized coordinates of elastic modes, and δ is the rotation angle of the actuator
output shaft.

3.2. Modeling of the Unsteady Aerodynamics

The aerodynamic forces were calculated by the panel method. The reference Mach
number was 2.5, and the air density was 1.225 kg/m3 The aerodynamic influence coefficient
(AIC) matrix was generated using ZONA7 [48]. Figure 5 shows the aerodynamic model of
the fin.

Figure 5. Aerodynamic model of the fin.

The generalized aerodynamic forces in frequency domain can be written as follows:

faero = q∞Ax (2)

The details of q∞, A, and x are shown in Appendix A.

3.3. State-Space Form of the Fin Model

Combining Equations (1) and (2), yields:

M
..
x+C

.
x+Kx=faero + f (3)

where fT= [0,Mt] = [0, 1
]

Mt.
The fin model in state-space form is:

.
xs=Asxs+Bsus
ys=Csxs+Dsus

(4)

where the state vector is xs
T= [x,

.
x, xa

]
, xa is the vector of m augmented states. Input

vector is us = Mt, and output vector is ys
T = [δ,

.
δ]. The size of x is (r + 1 + m)× 1, where

r represents the number of elastic natural modes of branch 1. Other matrices can be found
in Appendix A.
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3.4. Modeling of the Electromechanical Actuator

To model the actuator, some generally accepted simplifications are used concerning
power supplies, electromagnetic circuits, machine structures, and physical properties. The
motor model directly relates the current and the output torque. The gearing mechanism
and the lead screw–nut pair can be treated as mass-damping-spring systems to study
their properties.

3.4.1. Model of DC Motor

Modeling of a DC motor ignores the details of the three-phase electromagnetic field
and establishes the relationship between current and torque directly. The Lorentz force of
the motor is given by:

Tm = iKm (5)

where Km is the torque coefficient.
The motor winding voltage balance equation is given by:

iR + L
di
dt

= um − Ce
.
θ0 − Kii (6)

where L is the inductance, R is the resistance, Ce is the back electromotive force (EMF)
coefficient, um is the driving voltage, Ki is the current feedback coefficient, θ0 is the angle
of motor shaft.

The dynamic equation of motor rotor is given by

Jm
..
θ0 = Tm − bm

.
θ0 + T0 (7)

where Jm is the MOI of the rotor, bm is the viscous damping coefficient of the rotor, T0 is
the load torque acting on the motor shaft, and its sign is defined as positive in the same
direction as θ0.

3.4.2. Model of the Gear Pair

What is connected to the DC motor is the gear pair. It should be noticed that the
connection stiffness km exists between the motor and the gear pair.

The force diagram of gears is shown in Figure 6.

Figure 6. Force diagram of the gears.

The dynamic equations of gears are given by:

J1
..
θ1 + b1

.
θ1 = T1 − Fr1 (8)

J2
..
θ2 + b2

.
θ2 = T2 + Fr2 (9)
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where θ1 and θ2 are the rotation angles of the two gears, respectively; J1 and J2 are the
MOIs of the two gears, respectively; b1 and b2 are the viscous damping coefficients of
the two gears, respectively; T1 and T2 are the external moments acting on gears 1 and
2, respectively; r1 and r2 are the radii of the two gears, respectively; and F is the force
between gears 1 and 2. The meshing stiffness between gears is kg. The equation reflecting
the relationship is given by:

F = kg(θ1r1 − θ2r2) (10)

3.4.3. Model of the Screw–Nut Pair and Fork

The structure of the screw–nut pair which is connected to the gear pair is shown in
Figure 7. The force of the screw–nut pair and fork model was complicated. Freeplay existed
in the entire actuator. The screw–nut pair and fork model was the section closest to the
actuator output shaft, with dynamic characteristics that will have a huge impact on the
dynamic stiffness of the actuator. Therefore, in this paper freeplay was considered here as
the comprehensive freeplay of the whole actuator. The friction produced by the friction
sheet is described in this section, compared with the friction in other parts of the actuator,
which was negligible.

Figure 7. Schematic diagram of the screw–nut pair and fork model.

The dynamic equations of the screw–nut pair and fork are given by:

Jsg
..
θ3 + b3

.
θ3 = T3 − F tan λrsg/η

F = kc∆x

∆x = xn − xf

xn = θ3rsg tan λ

xf = Lbc tan δe

δe =

{
(|δ| − e)sgn(δ)

0
|δ| > e
|δ| ≤ e

Td = LbcF

(11)

where θ3 is the screw rotation angular displacement, b3 is the viscous damping coefficient
of the screw, η is the efficiency of the screw–nut pair, λ is the helix angle of the lead screw,
rsg is the radius of the screw, kc is the comprehensive stiffness between the screw–nut pair,
xn is the displacement of the nut, xf is the displacement of the fork, e is half the width of
symmetrical freeplay at the fin shaft, Lbc is the length of the fork, δe is the effective rotation
angle of the actuator output shaft, and Td is the output torque of the fork.
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Notice that the connection stiffness between the gear pair and the screw–nut pair and
fork is kz. Therefore T3 is given by

T3 = −T2= kz(θ2 − θ3) (12)

As described in Section 1 (Introduction), a friction sheet is installed on the fork. Before
the actuator starts to work, a certain pressure is applied to the friction sheet. The friction
torque of the LuGre model is [49]:

.
z =

.
δ−

σ0

∣∣∣ .
δ
∣∣∣

g(
.
δ)

z

g(
.
δ) = Fc + (Fs − Fc)e

−(
.
δ

Vs )
2

Tf = σ0z + σ1
.
z + σ2

.
δ

(13)

where Tf is the friction torque; σ0 and σ1 have been explained in Section 1. σ2 is the viscous
damping coefficient, and z is an internal state variable that is introduced to represent the
average deflection of all the bristles. The positive function g(

.
δ) represents the Stribeck

effect and Coulomb friction, which is related to several factors, such as temperature and
material. Fc is Coulomb friction, and Fs corresponds to the maximum static friction. Vs is
the Stribeck velocity, which reflects how fast friction approaches Fc.

The torque of the actuator to the fin is given by

Tfin= Td − Tf (14)

3.4.4. Model of the Controller and Sensor

The fin deflection angle is measured with an angular displacement sensor that gives
position feedback to the controller. The transfer function of the sensor can be considered as
a second-order element, which is given by:

G(s) =
ω2

s2 + 2ξωs + ω2 (15)

The controller is used to adjust the input signal so that the output signal of the actuator
can keep the track of the command signal. The most commonly used control law is to
control the error between the command signal and the measured signal using proportional
(P), integral (I), and derivative (D) terms [50]. The conventional actuator is a closed-loop
system, and its controller usually includes amplification, filtering, and a PID control. The
principle diagram of a PID control is shown in Figure 8, where δcmd is the command signal.

Figure 8. The controller and sensor model of the actuator.
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3.4.5. Model of the System

The actuator drives the fin to rotate and provides support stiffness for the fin in the
meantime. The output of the actuator is the input of the fin and vice versa. Therefore,
Mt = Tfin. A schematic diagram of the fin–actuator system is presented in Figure 9.

Figure 9. Schematic diagram of the system model.

4. Flutter Analysis Method
4.1. Frequency Domain Method
4.1.1. Dynamic Stiffness

The describing function (DF) method is widely used in control engineering. Nikolay
Mitrofanovich Krylov and Bogoliubov developed the DF method in the 1930s [51,52]. They
used the average method and introduced the concept of equivalent linearization. Ralph
Kochenburger extended the DF method [53]. When using the DF method, the Fourier
coefficients of the nonlinear term need to be calculated and divided into two terms, which
are respectively interpreted as the equivalent stiffness and damping terms related to the
excitation signal. In order to ensure the quasi-linearity of the actuator, the excitation signal
amplitude needs to be small enough. The actuator dynamic stiffness is essentially the
transfer function of the quasi-linear actuator model obtained by the DF method when the
input amplitude is small. Dynamic stiffness performance reflects the robustness of the
actuator to disturbance. It refers to the dynamic torque required to be applied to produce a
unit angle at the output shaft of the actuator. Dynamic stiffness reflects the characteristic
that the support stiffness provided by the actuator to the fin will change with the frequency
of the external load. As shown in Figure 10, the dynamic stiffness of the actuator is given by:

kδδ(ω) =
Tload(ω)

θout(ω)
= kδδeiϕ (16)

where Tload(ω) = Tloadeiωt is the external load on the actuator output shaft, and θout(ω) =
θoutei(ωt−ϕ) is the rotation angle of the actuator output shaft. The dynamic stiffness can
be expressed by the amplitude phase curve varying with the input frequency ω; kδδ is the
amplitude and ϕ is the phase.

According to the relationship between the output and input power spectral densities
(PSDs), the actuator dynamic stiffness can be calculated [6]. Taking the external load as the
input signal x(t) and the deflection angle as the output signal y(t), the transfer function is:

kδδ(ω) =
Pxy(ω)

Pxx(ω)
(17)

where Pxy(ω) is cross PSD of x(t) and y(t), and Pxx(ω) is auto PSD of x(t).
In numerical simulation, the excitation signal is a constant-amplitude sweep frequency

signal, and the sweep frequency range should include the frequency range of interest.
Another method to obtain dynamic stiffness is to combine a step sine sweep (SSS) signal
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with a least square (LS) frequency response function (FRF) estimation algorithm. The
SSS signal contains considerable energy to excite out all the characteristics of the actuator,
and the LS algorithm is an averaging process in a sense and essentially plays an effective
filtering role, but this method is time-consuming.

Figure 10. Schematic diagram of the actuator dynamic stiffness model.

4.1.2. Flutter Analysis with V–g Method

Using dynamic stiffness to conduct the frequency-domain flutter analysis. The force
in Equation (1) is the aerodynamic force in Equation (2), and ignoring C yields:

(−ω2M + K)x=q∞Ax (18)

The generalized stiffness matrix K is a complex matrix due to the dynamic stiffness.
Therefore, the equation above using the V–g method [54] is:

[−ω2M + (1 + ig)K(ω)]x=q∞Ax (19)

where ig is the added artificial complex structural damping.
Let the eigenvalue of Equation (19) be λ = ω2/(1 + ig), and substituting λ and

k = ωb/V into Equation (19) yields:

K(ω)x = λ(M +
ρb2

2k2 )Ax (20)

In Equation (20), both k and K(ω) are related to the oscillation frequency ω. Therefore,
an iterative solution is required for this eigenvalue problem (see Figure 11).

4.2. Time Domain Method

The whole time domain mathematical fin–actuator model was integrated into SIMULINK,
and the in-built “ode23s” was used for numerical simulation. When the time domain simula-
tion starts, release the fin from an initial angular position, then change the flight speed, and
the angular position response of the fin can be seen. Flutter has occurred when the oscillation
is diverging. The fin may maintain a certain angle of oscillation with constant frequency
before large-angle divergence occurs. This phenomenon is called LCO. Although the time
domain method is time-consuming for nonlinear problems, the results are more accurate than
the frequency domain method. Therefore, the subsequent analysis mainly focuses on the time
domain. The frequency domain is used as a comparative verification.
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Figure 11. Flow chart for calculating flutter speed and frequency using dynamic stiffness.

5. Aeroelastic Analysis Results and Discussion

In this article, the impact of the actuator structural nonlinearities such as freeplay and
friction on the fin–actuator aeroelastic characteristics were studied, and other nonlinearities
were excluded.

5.1. Identification of Actuator Parameters

The actuator parameters are listed in Table 3. The parameters of the friction model are
identified according to the method in Reference [41]. Several constant velocity experiments
were carried out to obtain the static parameters of the model. The dynamic parameters are
obtained during the pre-sliding process.
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Table 3. Simulation parameters of the actuator. Electromotive force, EMF.

Description Symbol Value Unit

Inductance L 6.53× 10−4 mH
Resistance R 1.1 Ω

Rotor inertia Jm 1.094× 10−6 kg ·m2

Torque coefficient Km 0.0238 Nm/A
Back EMF coefficient Ce 0.034 V/(rad/s)
Connection stiffness km 1000 Nm/rad

Moment of inertia of gear 1 J1 2.4× 10−8 kg ·m2

Radius of gear 1 r1 0.005 m
Moment of inertia of gear 2 J2 4× 10−6 kg ·m2

Radius of gear 2 r2 0.0225 m
Meshing stiffness kg 108 kg · s2/rad

Connection stiffness kz 1000 Nm/rad
Screw inertia Jsg 3.98× 10−5 kg ·m2

Radius of screw rsg 0.006 m
Screw efficiency η 0.85

Fork length Lbc 0.0285 m
Comprehensive stiffness kc 2.27× 106 kg/s2

Bristle stiffness σ0 300 Nm/rad
Bristle damping σ1 2.5 Nm/(rad/s)

Viscous damping σ2 0.02 Nm/(rad/s)
Coulomb friction Fc 1.2565 Nm

Maximum static friction force Fs 0.774 Nm
Stribeck velocity Vs 1 rad/s

5.2. Preliminary Flutter Results for No-Freeplay Gap (e = 0) and No-Friction

The fin was released from the initial fin shaft deflection angle of 1◦. Figure 12 shows
the time domain response of the fin under aerodynamic force. Comparison has been made
between the responses of the fin shaft angle at two flight velocities. Flutter occurred at
765 m/s, and when the flight velocity was lower than 765 m/s, the fin shaft angle response
was convergent.
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Figure 12. The time domain flutter results of the system without freeplay and friction, where (a) is the response of the fin
shaft angle at 760 m/s, and (b) is at 765 m/s.

The flutter results in frequency domain are shown in Figure 13. Eighty-two frequency
points were selected from 40 Hz to 120 Hz. The corresponding dynamic stiffness was
adopted to obtain the flutter frequency and velocity of the system at each frequency point.
Then a line was drawn with slope 1 that indicated the frequencies of abscissa and ordinate
were equal. The frequency corresponding to the intersection of the flutter frequency line
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and the line with slope 1 was the real flutter frequency, which was 55.1077 Hz. The
velocity corresponding to the real flutter frequency was the real flutter velocity, which was
769.2596 m/s. The frequency-domain and time-domain results were in good agreement;
the discrepancy between which was of the order of 0.5%. This result shows that the
calculation method of dynamic stiffness was correct and the flutter result of fin–actuator
system calculated using dynamic stiffness was accurate enough.

Figure 13. The frequency domain flutter results of the system without freeplay and friction.

5.3. Aeroelastic Characteristics of the Fin–Actuator System with Freeplay
5.3.1. Influence of Different Initial Deflection Angle with e = 0.2◦

The initial conditions will affect the stability of nonlinear systems. The half width of
freeplay at the fin shaft was 0.2◦, and the initial fin shaft deflection angles δ0 were 0.5◦, 1◦,
and 2◦, respectively. The corresponding actuator dynamic stiffness under different δ0 was
calculated, and the results are shown in Figure 14.
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Figure 14. The influence of δ0 with e = 0.2◦, where (a) was the influence of δ0 on the actuator dynamic stiffness and (b) was
the influence of δ0 on the response of the fin deflection angle at different flight speeds.



Appl. Sci. 2021, 11, 3057 16 of 26

It can be discovered from Figure 14a that as δ0 increases, the gain of the dynamic
stiffness also increased greatly, but it was not proportional to the increase in δ0, and the
increase in phase was very small. In Reference [55], the actuator dynamic stiffness was
obtained by experiments and simulations in a series of cases including changing the initial
preload. The conclusion was consistent with the change of the initial angle in this paper.
However, flutter analysis was not carried out in Reference [55]. Actually, δ0 will also affect
the aeroelastic characteristics of the system, which can be seen in Figure 15b. δ0 will affect
the speed at which the fin begins to oscillate. As δ0 increases, the oscillation occurs at
smaller flight speed, and the oscillation amplitude becomes larger. However, different δ0
have little effect on A/e—namely, the ratio of oscillation amplitude of the fin to the width
of freeplay at the same flight speed. It only has some influence on A/e at the beginning
of oscillation.

Figure 15. Comparison of the results of the flutter analysis in the time domain and frequency domain with δ0 = 1◦ and
e = 0.2◦, where (a) is the flight speed–A/e curve and (b) is the flight speed–oscillation frequency curve.

When δ0 is 1◦, the comparison of the frequency domain and time domain results is
shown in Figure 15, which shows that these results were highly consistent and the maxi-
mum error did not exceed 1.2%. As the flight speed increased, the oscillation amplitude
suddenly increased at a certain speed, which means that flutter occurred. The oscillation
frequency increased slowly within a small range with the increase in flight speed.

5.3.2. Influence of Different Freeplay with δ0 = 1◦

Keep δ0 at 1◦ and change the freeplay. When the half-widths of freeplay are 0.1◦, 0.2◦,
and 0.5◦, calculate the corresponding actuator dynamic stiffness as shown in Figure 16.

The experimental results in Reference [55] showed that the dynamic stiffness of the
actuator with a smaller freeplay gap will reach a larger value. What is not mentioned in the
conclusion of Reference [55] is that the phase was not affected much by the freeplay gap,
although it can be seen from the experimental results. Freeplay is symmetrical nonlinearity;
thus, the phase of its describing function was zero. Figure 16a also confirms that the smaller
the freeplay is, the larger the amplitude is, while the phase changes little.

Figure 16b shows the time domain results of aeroelastic analysis. The torsional
response amplitude increases as the flight velocity increases, and the oscillation amplitude
increases as the width of freeplay increases, which are mentioned in Reference [56] too.
Moreover, different widths of freeplay also have an influence on the velocity at which the
fin begins to oscillate. It should be noted that the ratio of oscillation amplitude of the fin to
e was almost not affected by e just after reaching the oscillating velocity. However, as the
flight speed increased, the smaller the freeplay width, the larger the ratio.
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Figure 16. The influence of e with δ0 = 1◦, where (a) is the influence of e on the dynamic stiffness of the actuator and (b) is
the influence of e on the response of the fin deflection angle at different flight speeds.

5.4. Aeroelastic Characteristics of the System with Freeplay and Friction

The LuGre model is represented by several nonlinear functional equations, including
six parameters in which σ0 and σ1 are two dynamic parameters, and σ2, Fc, Fs, and Vs
are four static parameters. Analyzing the effect of friction on the flutter characteristics
is challenging since coupling exists among the six parameters [57,58]. However, it is
undoubtedly an effective way to analyze the aeroelastic characteristics with the help of
the concept of dynamic stiffness and the physical meaning of the parameters. σ0 and σ1
are related to material properties. If a lubricant exists, σ2 indicates the viscous properties
of the lubricant. For dry friction, σ2 is pretty small and close to zero [26]. The pressure
influences on Fs, Fc, and Vs [59]. The variable–parameter analysis is conducted to evaluate
the influence of each parameter. Table 4 summarizes the range of friction parameters
and the factors that parameter depends principally upon. As can be seen, lubricant is
an important factor, but there is no lubricant added to the friction sheet of the actuator
generally. Since the LuGre parameters depend on the material properties and working
conditions, when the parameters are changed for stability analysis, they cannot be divorced
from reality. Here, the upper and lower bounds of the parameters were derived from the
literature [26,41,60–62]. For comparison, the standard value of each friction parameter in
Table 3 was multiplied by factors of 0.1 and 10, after which the parameter values were still
in the range of Table 4.

Table 4. Approximate ranges and influence factors for the parameters of the LuGre model.

Description Symbol PARAMETER
RANGE Unit Parameter Depends

Principally upon [26,59,63]

Bristle stiffness σ0 10.23~6.5× 104 Nm/rad Material properties
Bristle damping σ1 2.719× 10−3~45.2 Nm/(rad/s) Contact geometry and lubricant

Viscous damping σ2 9.216× 10−6~1.819 Nm/(rad/s) Lubricant

Coulomb friction Fc 1.895× 10−3~2646.856 Nm Lubricant, contact geometry, and
pressure

Maximum static friction
force Fs 3.124× 10−3~8.558 Nm Boundary lubrication and pressure

Stribeck velocity Vs 6.109× 10−2~88.1 rad/s Lubricant and pressure

Figure 17 shows the impact of the variation of six friction parameters on the actuator
dynamic stiffness when δ0 is 1◦ and e is 0.2◦. It was discovered that changing σ2, Fs, or Vs
had little effect on the dynamic stiffness, while changes in σ0, σ1, and Fc had a greater effect.
It can be observed that, generally, friction had a huge influence on both gain and phase of
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actuator dynamic stiffness. This is because the friction model used in this paper is complex
and highly nonlinear. Friction has been oversimplified in some literatures. The actuator in
Reference [64] was equivalent to a spring with friction nonlinearity, and the relationship
between displacement and restoring force is given by:

F(x) =
{

Kx + Ff at x > 0
Kx− Ff at x < 0

(21)

Figure 17. Influence of the parameters of the LuGre model on the dynamic stiffness of the actuator, where (a–f), respectively,
show the effects of σ0, σ1, σ2, Fc, Fs, and Vs.



Appl. Sci. 2021, 11, 3057 19 of 26

The equivalent stiffness of this nonlinear spring is calculated by the describing function
method. The results in Reference [64] show that friction only affects the amplitude of
actuator stiffness, which has been modified in this paper according to Figure 17.

Figure 18 shows the comparison of the frequency-domain and time-domain results.
The friction parameters are standard values in Table 3 and keep e at 0.2◦. Due to the
nonlinearity of the friction model, as the oscillation amplitude increased, the difference
between the time-domain and frequency-domain results became larger, but it did not
exceed 4.4%. The oscillation frequency increased slightly as the flight speed increased. It
is mentioned in Reference [21] that adding friction makes the frequency of LCO decrease
slightly. Figure 19 compares time-domain frequencies in Figures 15b and 18b, which
confirms this conclusion.

Figure 18. Comparison of the results of flutter analysis in time domain and frequency domain with friction, when δ0 = 1◦

and e = 0.2◦, where (a) is the flight speed–A/e curve and (b) is the flight speed–oscillation frequency curve.

Figure 19. Comparison of time-domain frequencies for freeplay only and freeplay with friction.

Figure 20 shows the time-domain results, which also confirm that the six parameters
had different effects on the system’s stability.
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Figure 20. Influence of the parameters of the LuGre model on the response of the fin deflection angle at different flight
speeds with δ0 = 1◦ and e = 0.2◦, where (a–f), respectively, show the effects of σ0, σ1, σ2, Fc, Fs, and Vs.

In Figure 20, we can draw a conclusion that Fs and Vs have little influence on the
aeroelastic characteristics. This corresponds to the fact that they have little effect on
dynamic stiffness. As Fs increases, the flight speed at which the fin begins to oscillate first
increases and then decreases slightly, while the oscillation amplitude at the same flight
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speed remains almost unchanged. As Vs increases, the flight speed at which the fin begins
to oscillate also increases slightly, while the oscillation amplitude at the same flight speed
is almost unchanged.

σ1 seems to be the parameter that has the greatest influence on the aeroelastic charac-
teristics in the variable–parameter analysis. It can be seen that increasing σ1 can greatly
improve the stability of the system. When σ1 is 10 times the standard value, the fin de-
flection angle always converges within the flight speed range of interest. This parameter
is difficult to quantify in actual engineering. It can be increased by changing the contact
surface geometry, that is, increasing the roughness of the contact surface. More work is
needed to quantify and standardize σ1 in the future.

Fc, which stands for Coulomb friction, can be studied as a separate friction model.
Compared with what is mentioned in Reference [20]—that increasing the maximum friction
torque of Coulomb friction can increase the flutter speed and reduce the amplitude of the
pitch response—we discover that the influence of Fc on system stability is complicated. As
Fc increases, the speed at which the fin starts to oscillate first increases and then decreases,
while the oscillation amplitude at the same flight speed increases. Therefore, Fc is not the
larger the better. An optimal Fc can be obtained by appropriately designing the lubrication,
pressure, and the geometry of the contact surface between the friction sheet and fork, so
that the system is stable and friction is reduced.

In addition to σ1 and Fc, σ0 and σ2 also have a non-negligible effect on the aeroelastic
characteristics. The smaller the σ0, the greater the flight speed at which the fin starts to
oscillate, which is the desired effect. However, once the oscillation starts in this case, the
amplitude will increase sharply. As mentioned earlier, σ2 is related to lubricants, so it is not
the focus of this study. It can be seen that larger σ2 will slightly increase the speed at which
the fin starts to oscillate, but it will also cause the amplitude of oscillation to increase at the
same flight speed.

As mentioned earlier, a large number of studies have used the Coulomb model. Some
researchers have discovered the limitations of Coulomb friction. They have noticed that
with the increase of friction, the stable region increased, but the stable boundary changed
little [19]. Wayhs-Lopes et al. studied the effects of both freeplay and Coulomb friction last
year, pointed out that although friction is dissipative, it is not enough to restrain LCO [21].
However, the analysis in this article is sufficient to show that a single factor may have
limitations. The synergistic effect of multiple parameters can suppress the LCO in the
low-speed range, and it is also effective in increasing the flutter velocity and reducing the
oscillation amplitude.

6. Conclusions

In this article, a high-fidelity model of a fin–actuator system with a typical configu-
ration was established based on modularization, in which a friction sheet was modeled
utilizing the LuGre model, which can better reflect the friction characteristics. The whole
modeling method can be used for dynamic analysis and aeroelastic analysis.

The aeroelastic characteristics of the system were analyzed using frequency-domain
and time-domain methods. The results of the two methods were highly consistent. The
time-domain method can deal with highly nonlinear situations, while the frequency-
domain method based on the DF method is suitable for weak nonlinear systems.

Initial conditions, freeplay, and friction will all affect the stability of the nonlinear
system. As the initial deflection angle δ0 increases, the gain of the dynamic stiffness will
be larger, but the increase was not proportional, and the increase of the phase was minor.
The oscillation occurred at smaller flight speed, and the oscillation amplitude A became
larger. Different δ0 have little effect on the ratio of A to the half width of freeplay e at the
same flight speed. Dynamic stiffness of the actuator with a smaller freeplay gap will reach
a larger value, while the phase was not affected much by freeplay gap. The oscillation
amplitude increased as the width of freeplay increased.
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Friction affects the amplitude and phase of actuator dynamic stiffness greatly. Adding
friction makes the frequency of LCO decrease slightly. The LuGre friction model has
six parameters. Friction sheets that do not use lubricant, σ2, which reflects the viscosity
of the lubricant, were not the focus of this study. Fs and Vs have little influence on the
aeroelastic characteristics, which corresponds to the fact that they have little effect on
dynamic stiffness. σ1 is the parameter that has the greatest influence on the aeroelastic
characteristics. Increasing σ1 can greatly improve the stability of the system. However,
σ1 is difficult to quantify in actual engineering. The influence of Fc on system stability is
complicated. As Fc increased, the speed at which the fin started to oscillate first increased
and then decreased, while the oscillation amplitude at the same flight speed increased.
Therefore, Fc was not better when larger. An optimal Fc can be obtained by appropriately
designing the lubrication, pressure, and the geometry of the contact surface between the
friction sheet and fork, so that the system is stable and friction is reduced. The smaller the
σ0, the greater the flight speed at which the fin starts to oscillate, which was the desired
effect. However, once the oscillation started in this case, the amplitude increased sharply.
A single factor may have limitations. The synergistic effect of multiple parameters can
suppress the LCO in the low-speed range, and it is also effective in increasing the flutter
velocity as well as reducing the oscillation amplitude.
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Appendix A. Matrices and Vectors

This appendix provides the matrices and vectors of the fin model, unsteady aerody-
namics, and state-space form of the fin model in Section 3.1, Section 3.2, Section 3.3.

The dynamic equation of the fin structure is [47]:

M
..
x+C

.
x+Kx=F (A1)

where x =

[
qe
δ

]
, M =

[
Mqq Mqδ

Mδq Mδδ

]
, C =

[
Cqq 0

0 0

]
, K =

[
Kqq 0

0 kδδ(ω)

]
, F =[

fq
fδ

]
, Mqq, Mqδ, Mδδ are the generalized mass matrix of the elastic modes, the coupling

mass vector between the elastic modes and rigid mode, and the rotational inertia of the
fin, respectively. Kqq is the generalized stiffness matrix and corresponds to the elastic
modes. Cqq is the generalized damping matrix and corresponds to the elastic modes. ω is
the oscillation frequency; kδδ(ω) is the supporting stiffness provided by the actuator. The
external load is FT= [fq, fδ

]
, where fq is the generalized force vector corresponding to qe,

and fδ is the generalized force corresponding to δ.
The generalized coordinates selected in this way decouples the stiffness of the actuator

from the structural stiffness of the fin, according to the inertia-coupling method, making
the stiffness matrix K a diagonal matrix, which is beneficial to the study of actuator
dynamics [65].
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M in Equation (A1) is obtained by Equation (A2) to Equation (A4):

Mqq = ΦT
qMsΦq (A2)

Mqδ = MT
δq = ΦT

qMsΦδ (A3)

Mδδ = ΦT
δ MsΦδ (A4)

where Φq is the modal matrix of the elastic branch. Φδ is the modal matrix of the rotational
rigid branch. Ms is the discrete mass matrix.

Equation (A1) can be written as:

[
Mqq Mqδ

Mδq Mδδ

][ ..
qe..
δ

]
+

[
Cqq 0

0 0

][ ..
qe..
δ

]
+

[
Kqq 0

0 kδδ(ω)

][
qe
δ

]
=

[
fq
fδ

]
(A5)

The stiffness term can be expanded as:

[
Kqq 0

0 kδδ(ω)

][
qe
δ

]
=

[
Kqq 0

0 0

][
qe
δ

]
+

[
0 0
0 kδδ(ω)

][
qe
δ

]
=

[
Kqq 0

0 0

][
qe
δ

]
+

[
0

kδδ(ω)δ

] (A6)

the torque of the actuator on the fin is:

Mt = −kδδ(ω)δ (A7)

therefore, Equation (5) can be written as[
Mqq Mqδ

Mδq Mδδ

][ ..
qe..
δ

]
+
[

Cqq 0
0 0

][ .
qe.
δ

]
+
[

Kqq 0
0 0

][
qe
δ

]
=
[

0
Mt

]
+

[
fq
fδ

]
(A8)

FT= [fq, fδ

]
is the aerodynamic force or external exciting force on the fin.

The generalized aerodynamic forces in frequency domain can be written as follows:

faero = q∞Ax (A9)

where q∞= 1/2ρV2 is the dynamic pressure, V is the flight speed, ρ is the air density, and

x is the generalized coordinates. A =

[
Aqq Aqδ

Aδq Aδδ

]
is the AIC matrix, which is a function

of k = ωb/V—namely, the reduced frequency, where b is the half of the length of the
fin chord.

The aerodynamic influence coefficient matrix is approximated by [66]:

Aap(s) = A0 + A1s + A2s2 + D(sI−R)−1Es (A10)

where s = ik, D and E are unknown, which can be calculated through a nonlinear least-
squares iteration. R is a diagonal matrix, representing aerodynamic lag roots, which is
initially user defined and can be updated according to D and E, once determined.

The fin model in state-space form is given by:

.
xs=Asxs+Bsus

ys=Csxs+Dsus
(A11)
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The matrices are given by:

As =

 0 I 0
−[M + Ma]

−1[K + Ka] −[M + Ma]
−1[C + Ca] [M + Ma]

−1D
0 E R

 (A12)

Bs =

[
0

[M + Ma]
−1

]
·
[

0
1

]
(A13)

Cs =


0 · · · 0︸ ︷︷ ︸

r

1
01×(r+1) 01×m

01×(r+1)
0 · · · 0︸ ︷︷ ︸

r

1
01×m

 (A14)

Ds = 0(r+2)×1 (A15)

Ma = −
1
2

ρb2A2 (A16)

Ca = −
1
2

ρVbA1 (A17)

Ka = −
1
2

ρV2A0 (A18)

D =
1
2

ρV2D (A19)

R =
V
b

R (A20)
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