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Featured Application: The paper presents a use case of a robotic assistant for geriatric evaluation
procedure at the hospital. Design and evaluation of assistive social robots for clinical routine is
extensively discussed. The design and methodological questions raised include: human-robot
interaction, technology and older adults, accessibility and human-centered design, robot naviga-
tion, pilot experimentation, healthcare technology.

Abstract: Comprehensive geriatric assessment (CGA) is a multidimensional and multidisciplinary
diagnostic instrument that helps provide personalized care to older adults by evaluating their state
of health. This evaluation is based on extensive data collection in order to develop a coordinated
plan to maximize overall health with aging. In the social and economic context of growing ageing
populations, medical experts can save time and effort if provided with interactive tools to efficiently
assist them in doing CGAs, managing either standardized tests or data collection. Recent research
proposes the use of social robots as the central part of this optimization of clinicians’ time and effort.
This paper presents the first and last steps of the research made around the design and evaluation of
the CLARC robot: fieldwork (analysis of needs and practices concerning clinical data management)
and field trials (pilot experiment in real-life conditions in a rehab hospital). Based on an extensive
literature review of social robotics applications for health and ageing, it discusses the practical and
methodological questions raised around how to design and test assistive social robots for clinical
routine, and questions the feasibility of an automated CGA procedure.

Keywords: comprehensive geriatric assessment; social robotics; health data collection; clinical data
management; analysis of practice; real-life experimentation

1. Introduction

Comprehensive geriatric assessment (CGA) is a multidimensional and multidisciplinary
diagnostic instrument that helps provide personalized care to older adults, by evaluating
their state of health [1]. This evaluation is based on extensive data collection about the
frail older person’s medical, psychosocial, and functional limitations, in order to develop
a coordinated plan to maximize overall health with aging [2]. Being an interdisciplinary
effort, it requires the coordination of several clinical professionals [3]. This coordination
rests, for a large part, on patient data sharing. Improving the diagnosis, creating correct,
customized and proportional therapeutic plans, increasing functional autonomy, and also
reducing complications during hospitalizations and mortality, are some of CGA’s benefits.

In the social and economic context of growing ageing populations, CGA has the
potential to contribute efficiently to frailty prevention. However, the associated drawbacks
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are increased costs, resources and data management. The geriatrician from the University
hospital collaborating on the project explains: “The problem today, regardless of the country, is
that there is a lack of geriatricians in relation to the needs of the population, and that is a constant.
Geriatrics, or geriatricians, can absorb at best 10% of the entire body of older people. We should
be able to absorb a greater number of frail patients in order to try to render a service to a greater
number of people”.

CGA is usually carried out every 6 months and involves both patients and their rela-
tives. It comprises three different types of activities: clinical interview, multidimensional
assessment and customized care plan. First, a clinical interview allows the patient and
relatives to discuss the older adults’ health problems with the physician. Then, multidimen-
sional clinical tests are performed to evaluate the overall patient status. Finally, taking into
account the evidence gathered during the two previous phases and the patient’s evolution
since the last CGA session, physicians create a personalized care plan. A typical CGA
session takes about 3 h of a clinician’s time. Some of the activities require the clinical staff
to be present, but other ones, particularly the multidimensional assessment, are standard
tasks suitable for automation and/or parallelization (see [4,5] for more detail).

Indeed, medical experts can save time and effort if provided with interactive tools to
efficiently assist them in doing CGAs, managing either standardized tests or data collection.
On the basis of knowledge capitalized since the beginning of the project, the research
hypothesis was that a robotic solution would allow a gain in the efficiency of geriatric
follow-up: automated data collection, better backup and the sharing of secure data, better
management of caregivers’ time on high value-added activities, such as the development of
the personalized care plan. Discharging part of the CGA on a robot would allow clinicians
to focus on activities with more added value, such as deciding, together with the patient
and relatives, the appropriate care plan. This can be summarized as follows: clinicians’
activities are maximized on essential activities, while repetitive or standardized tasks
can be delegated to the robot. This division of tasks is in line with the ethical principles,
which have guided this research all the way through, and with the robotic principle [6],
which have been applied from the beginning of this research. The main principle is that
replacing clinicians and caretakers by robots is not an issue, because precisely, being given
the high added value of the activities that they keep, clinicians cannot be replaced by
the CLARC(CLARC is the name retained for the robot in line with the project’s name:
ECHORD++ CLARC (the European Clearing House for Open Robotics Development)
project (No. FP7-ICT-601116)”) robot. Instead, the activities—that are repetitive, time-
consuming and of low added value—are delegated to the robot. The issue is not about
“replacing humans” but simply about “delegating to the robot” (for the best). This gain
in efficiency would allow better care—which is currently insufficient—for the growing
elderly population.

Through the presentation of the first and last steps of the research made around the
design and evaluation of the CLARC robot, this paper looks into the feasibility of an
automated CGA procedure, and reflexively discusses the insights. It discusses the practical
and methodological questions raised around how to design and test assistive social robots
for clinical routine. The main insights are both (i) positive user feedback about the gain
in efficiency hypothesis or promising technical performance and (ii) a real complexity of
human–robot interaction, in terms of human interface experience.

This paper is organized as follows, structuring the discussion around the first and
last steps of this research: fieldwork and field trials. The extensive literature review of
previous work about social assistive robots is put in parallel with the research hypothesis
concerning the added value of such a robot for CGA in terms of efficiency. After the
methodological approach (Section 3) the fieldwork is presented (Section 4): the needs and
practices concerning clinical data management we analyzed to inform the design of such a
robot, that is able to interact efficiently with the patient to gather data and by the clinicians’
application, CGAMed, which allows clinical data management. The second main part of
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the paper presents the field trials (Section 5): the pilot experiment in real-life conditions in
a rehab hospital, which shows good acceptance of the robot and satisfaction from patients.

2. Literature Review

Recent research proposes the use of social robots as potential useful tools for CGAs.
Social robots are characterized as being able to understand and communicate in a human-
like way, allowing them to behave as social actors and be understood as such by their
users [7]. Knowledge capitalized since the beginning of the project, including the field
work observations presented in this paper about data work, allowed the formulation of
this research hypothesis: a robotic solution would allow a gain in efficiency in geriatric
follow-up. It would allow automated data collection, the better backup and sharing of
secure data, and better management of the caregivers’ time, allowing the optimization
of clinicians’ time and effort on high value-added activities, such as the development of
the personalized care plan. This hypothesis is in line with the literature review of social
robotics applications for health and ageing, and the evaluation factors that ensure efficient
human–robot interaction.

2.1. Socially Assistive Robots in Health System

The World Health Organization meeting in 2005 [8] adopted a resolution on e-Health,
recognizing the need for information and communication technologies (ICTs) in order
to improve the health monitoring and management of the health systems. Nowadays,
the use of ICTs and complex systems as robots are used in health centers and hospitals.
Assistive robotics (ARs) provide assistance to the patients. For instance, wearable robots or
exoskeletons are useful for patients with motor impairments [9]. Rehabilitation robots are
useful to patients with visual or motor disabilities, older adults, etc. [10]. Pulmonar lesion
diagnosis can now be performed by AR [11].

This paper presents a robotic solution integrated in the health systems which provides
assistance to the patients through social interaction. These kinds of robotic solutions are
called social assistive robots (SARs). Two categories of SARs can be found for health
purposes, providing different services to the users through social interaction: services
robots and companion robots [12]. For instance, in mental healthcare, SARs usually provide
the services of being a therapeutic play partner or being a coach or instructor, or simply
provide a companion to the patients [13]. Another example is the NaoTherapist SAR [14],
a rehabilitation instructor for patients with physical impairments.

In general, the morphologies or representation of the SARs usually vary depending
on the application domain where they are used [15]. For example, robots used in men-
tal healthcare applications vary their morphologies according to the required roles and
functions of the robots, including zoomorphic, mechanistic, cartoon-like or humanoid
representation among others.

2.1.1. Socially Assistive Robots for Older Adults

Concerning elderly care, the functionalities of SARs are related to the support of inde-
pendent living by supporting basic activities (eating, bathing, toileting and getting dressed)
and mobility (including navigation), providing household maintenance, monitoring of
those who need continuous attention and maintaining safety [16]. There is therefore this
dual use and perception: (i) social robots can be perceived as utilitarian systems: they
are able to perform tasks such as housekeeping; and (ii) social robots are recognized as
hedonic systems: they offer sociable interaction opportunities to be able to build long-term
relationships with their users [7].

Fong and al. [17] had extensively described “socially interactive robots”. They distin-
guish these robots—for which social interaction plays a key role [18]—from other robots
that involve “conventional” human–robot interaction, such as those used in teleoperation
scenarios. They can be useful for a variety of purposes: as research platforms, as toys,
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as educational tools, or as therapeutic aids. The common underlying assumption is that
humans prefer to interact with machines the same way they interact with other people.

This study focused on robots that exhibit the following “human social” characteristics:
express and/or perceive emotions; communicate with high-level dialogue; learn/recognize
models of other agents; establish/maintain social relationships; use natural cues (gaze,
gestures, etc.); exhibit distinctive personality and character; may learn/develop social
competencies. Their observation is that, although socially interactive robots have already
been used with success, much work remains in order to increase their effectiveness. For
example, in order for socially interactive robots to be accepted as “natural” interaction
partners, they need more sophisticated social skills, such as the ability to recognize social
context and convention. For them, the challenge is to build robots that have an intrinsic
notion of sociality, that develop social skills and bond with people, and that can show
empathy and true understanding. At present, such robots remain a distant goal, the
achievement of which will require contributions from other research areas such as artificial
life, developmental psychology and sociology.

Nearly twenty years after this survey [17], the challenge remains. In her article
promoting multidisciplinarity, this cognitive psychologist’s observation [19] was that
after years of research in artificial intelligence and robotics, endowing technical systems
with functionalities similar to human cognition and behavior still represents a scientific
challenge. A holistic, user-centered, autonomous, and fully functioning robotic system that
is capable of learning and of providing meaningful assistance and social companionship
remains difficult to spot.

2.1.2. Human-Centered Human–Robot Interaction Design

The approach associated with the terms “human-friendly robots” [20], “human-
friendly robot design” or “human-centred robotics” [21] appears to be being strongly
technology-driven, and not that human-centered. The International Workshop on Human-
Friendly Robotics defines it as “safe and dependable machines, operating in the close
vicinity to humans or directly interacting with them in a wide range of domains”. Devel-
oping human-friendly robots [20] rests on two key components: (i) smart interfaces and
(ii) safe mechanisms—to ensure that people are never harmed. The latter aspect—high
integrity safety systems that guarantee human safety by preventing dangerous impacts
with people and the environment—is definitely essential (even more so with older adults,
especially if the robot is intended to help mobility).

The main study of robots for older adults, which appears to be the most interesting as
regards our own research interests (functions, use, robot’s appearance, interaction modali-
ties), is the Nursebot project [22,23]. Nursebot is a mobile robotic assistant, developed to
assist older adults with mild cognitive and physical impairments, as well as support nurses
in their daily activities. This nursing-assistant robot, named Pearl and its predecessor Flo,
could provide many services, aiming at improving residents’ quality of life. The two main
researched services were: the task of reminding people of events, guiding them through
their environment (accompanying residents is usually achieved by nurses, and this task is
time-consuming).

The research team were aware of the necessity for the robot to adapt to the individual,
an aspect of interaction that, then, had been poorly explored in AI and robotics. Aiming
to address these challenges, three relevant software modules were developed to ensure
successful human–robot interaction: an automated reminder system; a people-tracking
and detection system; and finally, a high-level robot controller which performs planning
under uncertainty by incorporating knowledge from low-level modules, and selecting
appropriate courses of action. Systematic experiments—whether at the retirement home
or in-lab—focusing on the robot’s effectiveness from these software perspectives revealed
successful tasks’ performance. The tests and experiments adopting a quantitative approach,
even when evaluating HRI (completion, error rate), not much is said about older adults
except that the experiments allowed the authors “to gauge people’s initial reactions to
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the robot” [23] or that “Post-experimental debriefings illustrated a uniform high level of
excitement on the side of the elderly” [22,23].

2.1.3. Contribution Linked to Literature Review

In their review of the studies of social robots [16], the robots examined in these
studies range from “service type robots” providing functional assistance, to “companion
type robots” providing affective assistance, with sometimes crosschecks between the
two categories [16]. One of the failings pointed by this review is the methodological
shortcomings. However, the limits are that the majority of studies (i) were performed
with Aibo and Paro robots, and no other type of assistive robot, considering that form
and material does matter a lot to the acceptance and effects of assistive social robots;
(ii) were conducted in Japan: robot perception is culturally dependent, therefore results
should not be simply generalized to other cultures; (iii) were done in nursing homes,
preventing the generalizability to older persons living independently at home; and (iv)
lacked methodological rigor: the research designs were considered as insufficiently robust,
usually not described in enough detail to repeat, and confounding causal variables which
could not be excluded [16].

On the contrary, analyzing the social acceptance of social robots in the home con-
text, [7] point to the necessity of long-term studies (to prevent the novelty effect—which
ends around two months of use—and because people’s perceptions towards robots, their
behaviors and their experiences are likely to change over time), in real environments,
with a sufficient number of users. This is what the authors did in this research around
co-designing a social assistive robot to support comprehensive geriatric assessment in a
hospital. Taking all these previous work into consideration, and advocating for a human-
centered approach, our use case of a robotic assistant for CGA procedure, which is a very
pragmatic task-oriented type of human–robot interaction, is presented next.

2.2. CLARC Robotic Framework: Robot + Application

CLARC is an autonomous robotic solution to support CGA that is able to efficiently
interact with the patient to gather data. During the tests, the CLARC robot collects, saves
and displays the responses. It offers four interaction modes—vocal, tactile, gestural,
physical buttons—thus adapting to the needs and preferences of each user. The CLARC
robot is associated with a clinicians’ application called CGAMed, that allows the physician
to monitor the tests online or to access their results once the test is finished. Two geriatric
tests were implemented: the Barthel test and the get-up-and-go test.

From a conceptual perspective, CLARC can be divided into two differentiated sub-
systems [24]. First, the cognitive subsystem is mainly focused on the robot’s autonomy and
its interaction with the patient. Our research, to date, has focused on designing efficient
and acceptable human–robot interaction, by involving users in the design process [5], or
understanding if and to what degree patient–robot interaction may influence the accuracy
of robotized geriatric assessments (submitted), or the automation of one of the motion
tests—the get-up-and-go test [25].

The second subsystem, the CGAMed subsystem (Figure 1a), focuses on the interface
with the clinicians and the Clinical Data Management System (CDMS). In a typical CGA
session, the clinician uses the CGAMed interface to setup the tests to be performed. Then,
the robot conducts the tests autonomously and will store the results in the CGAMed
database. Finally, the clinician uses the CGAMed interface again to review the session
outcomes in order to create a new care plan.
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3. Methodological Approach of Fieldwork

Aiming at empowering the older adult, the approach adopted throughout this project
is a Living Lab approach, combining iterative, human-centered and participatory design:
users—both older patients and professionals—were involved throughout the iterative
design and evaluation phase (of which two steps are described in this paper). “Living lab”
is a concept created to support user-centric information and communication technology
development processes. A living lab is defined both as a physical environment and an
approach. This approach is useful in an innovation process towards the development of
use scenarios in lab conditions, and real-life experiments in real-life homes, workplaces
or healthcare settings. The approach consists of involving users in the design of future
technological tools and services (Figure 1b). Its purpose is to design a simple implementa-
tion of the technology and ensure its usability and acceptability, considering not only the
human–computer interaction but also the environment and context of use in which this
interaction takes place [26].

3.1. Living Lab Approach

In our understanding and practice of the living lab approach, there are three impor-
tant aspects:

3.1.1. Human-Centered Design

Human-centered interaction design would be the human–computer interaction cen-
tered on the exploration of new forms of living in and through technologies that give
primacy to human actors, their values and their activities. The older adults and their needs
are at the center of all research and design considerations. Human-centered design takes
human (older adults) capabilities as a starting point, with a focus on how to support, de-
velop and extend people’s capabilities through the latest technological developments, in the
domain of assistive technologies [27]. Moreover, following this approach, the traditional
user-centered, four-stage design/research model—study–design–build–evaluate—was
extended. A new fifth stage, which integrates at any point in the iterative design process,
provides a framework to guide design and research. It entails conceptual analysis or
“understanding” at the very beginning (Figure 2).

The extended approach to HCI (Human Computer Interaction) research and design
is intended to enable human values to be folded into the mix at all the various stages.
Harper et al. [28] give this example to explain what is meant by “values”: one might be
interested in developing new digital tabletop applications. This phase of work would
involve clarifying what kinds of human values might be made possible through such
interactions. Is it about supporting social connectivity and togetherness? Is it about play
and creativity? Is it about archiving photographs and other materials to preserve and honor
family history? Is it about allowing people to reminisce or reflect on their personal past? Or
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perhaps is it about supporting collaborative tasks in domestic situations? Ultimately, this
new stage of the cycle therefore results in making choices. It will also involve specifying
what kinds of people are the focus of this particular project, and in what kinds of domains
of activity, environments or cultures. In other words, it will involve choosing the kinds
of value systems we are interested in. In the fieldwork described in this paper, it was
about understanding the value systems of CGA in a healthcare setting, starting with basic
research questions: who is involved in CGA, how is it organized, what data are being
collected, why are the data important in the follow-up and when are they mobilized?
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Together with the “study” stage, this understanding stage allows a relevant user
study, using ethnography. The difference between this kind of analysis compared with
the canonical HCI approach is that while a typical HCI project might only look at an
individual’s interaction or set of tasks or practices around a particular technology, the
extended study stage can be much broader. This begins by considering the details of
particular tasks or practices, but then asks how those mechanics of interaction help people
achieve long-lasting value through and beyond the interaction. Research might look at
current shopping practices, for example, and focus on how they enforce social connections
to other people, or help people acquire new objects to bolster their identity, or how the
shopping experience provides distraction and disengagement from the world of work (ibid)
(p 31). It is precisely this kind of holistic understanding of organizational practices and
culture in healthcare settings around data work for CGA that was aimed at the analysis of
practices done in this fieldwork. As the authors explained, this extended approach also
means talking to stakeholders—including users as well as those involved in developing
or designing the technology in question—to ascertain what kinds of enduring value they
believe their users will get from their technology; and what kinds of users and what
domains are of interest. This is where this focus, on putting the human users and their
values at the center of the design process, meets the principles of participatory design.

3.1.2. Participatory Design

Participatory design is a cooperative design process, with a focus on enabling different
stakeholders with different perspectives and competencies to cooperate. It comprises active
user involvement and participation in the design of IT artefacts and systems they will use,
including in professional settings, where it is largely and increasingly used. Designers
invite future users to participate in all phases of the design process [29]. Participatory
design is generally united by an ethos of empowerment and ”meaningful” involvement
for stakeholders in the design of the systems they will use.

Participatory design has traditionally been useful in the design of technology applica-
tions or the co-realization of a more holistic socio–technical bricolage of new and existing
technologies and practices. Moving away from the traditional computer and “user” notion,
e.g., with ambient assisted living technologies [26] or social robots, there is indeed the
need for participatory design. This co-design approach is useful in the ageing context to
adapt solutions to the real-life situations of seniors. Indeed, it is often difficult for users,
especially for seniors, to express their expectations and needs just by imagining them
during interviews. Co-design, for example in dedicated workshops, provides a framework
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and methodology for the emergence, expression and collection of these needs [29]. In
addition to the pragmatic dimension (achieving an adequate design), the socio–political
dimension is also important: the “voice” of future users, who are at the center of design
concerns, is heard and taken into account and they have real decision-making power in
the design and evaluation that is made of this technology. The notion of empowerment is
therefore both an object of reflection, and also an objective to be achieved. It has guided
the development of the AUSUS framework [paper submitted]—comprising the criteria
Accessibility, Usability, Social acceptance, User experience, Societal impact—which has
been used for the evaluation during the field trials (described in the field trials section,
Section 6.1).

3.1.3. Practice Based: Ethnography

By “design”, we do not only mean the design of human–robot interaction, but a
global reflection about the work and organization in which this robot would be introduced.
Central to this study is the notion that the design, use and evaluation of a mobile social robot
for doing CGA cannot be done without serious attention being given to the organizational
and work context [30].

Ethnography, performed as part of this fieldwork, has this ability to describe a social
setting as it is perceived by those involved in the setting. In particular, it offers the
opportunity to reveal needs or practices of users, which they themselves may not attend to,
because they take them so much for granted that they do not think about them. In other
words, these ‘needs’ cannot be articulated by the users themselves, because of either the
bureaucratic or power relationships within which they are placed, or simply because they
are too busy. This inability to articulate “needs” is, from the authors’ experience, even
more true of dependent older adults, especially those suffering from cognitive impairment.
Instead of doing traditional in-depth interviews, which could prove dangerously unreliable,
doing an ethnography allowed to gain an in-depth understanding of the “constitutive
practices of how people do what they do, the ‘interactional what’ of their activities” [31].

4. Fieldwork: Analyzing Practices and Needs to Inform Design

Since its early days, CSCW (Computer-Supported Cooperative Work) has been con-
cerned with healthcare, studying how healthcare work is collaboratively and practically
achieved, and designing systems to support that work. The field has contributed to pro-
viding rich insights about healthcare practices, the use of paper- and electronic-based
documentation, and the pinpointed implications for how to design collaborative systems.
In their review of 25 years of CSCW research in healthcare, [32] argue that output from this
research suggests that, apart from being complex and diverse, the challenges of implement-
ing new technology in healthcare settings is locally situated. It is precisely this situated
character of work that, following [33], we were interested in understanding.

4.1. Analyzing Practices

The main insights relate to the extent to which the creation, accumulation, manage-
ment, and communication of data is central to patient work and to clinical work, but also
to the management and governance of healthcare providers. Indeed, our research and
design objective was not limited to the design of human–robot interaction, but was to
achieve an in-depth understanding of the work and organization setting in which this robot
would be introduced [4]. As explained earlier, central to this study is the notion that the
design, use and evaluation of a mobile social robot (as for computer systems traditionally
in CSCW), cannot be done without serious attention being given to the organizational and
work context [30]. Therefore, the ethnography allowed to gain an in-depth understanding
of the constitutive practices of data work based on the authors’ conviction that “appro-
priate design” rests on an interest for the real needs and concerns of the central people
involved [27]. Participant observation of CGAs and situated interviews of clinicians at
their workplace were combined to understand work practices. The concept of practice [34]
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refers to a regularly recurring activity, as actually unfolding, but also the “skills and com-
petencies required to perform the activity in an accountable manner under conditions of
contingency”. Part of the professional skills and competencies, which emerge as important,
are related to patient data management (detailed infra) and served as important insights to
inform the robot’s design and check the adequacy of the robot’s functionalities with the
organizational context and existing practices.

4.2. Skills and Competencies of Data Work

Part of the skills and competencies, which emerge out of our observations as important,
are related to:

• Patient data requesting—in and through interaction with the patient;
• Patient data collection—as information are written down, either on paper or on

the computer;
• Patient data retrieval—from the system, which reveals essential in the follow-up

involved in CGA;
• Patient data interpretation—based on professional knowledge, but also knowledge of

the organizational practices of the hospital, or usual personal practices of doctor X or
doctor Y;

• Patient data sharing, either in a written form or to support in situ face-to-face collabo-
ration between different clinicians involved in CGA.

Therefore, we see in the case of CGA in this day care center, how the creation, ac-
cumulation, management, and communication of data is central to patient work, clinical
work, but also to the management and governance of healthcare providers. Explaining her
practices to the ethnographer, the geriatric nurse naturally mentions that she inputs all the
information “in the computer” as part of an organizational requirement. The main insight
is the omnipresence of paper-based, together with electronic-based documentation. Is the
“Paperless Office” [35] still a “myth” in the contemporary e-health context?

4.3. Insight: Paper- and Electronic-Based Documentation

Often, information appears on both paper- and electronic-based documentation. How-
ever, the nurse explains that the CGA tests themselves, i.e., the paper form with the coded
information written on it, only appear in paper patient record. Depending on the test, e.g.,
a Barthel test which is questionnaire-based, it is only the result, most often a score and
a simple comment, which is inputted in the system. For an MMSE (Mini Mental Score
Evaluation), the psychologist writes a letter-like report, which is inputted in the system in
pdf form. This pdf form is also printed and filed in the patient record.

Complementary Uses and Collaboration Practices

The nurse explains that the paper- and electronic- based information are complemen-
tary in their uses (Figure 3). She only has access to patients’ paper files when the patient is
admitted to the hospital for the day. Before the patient arrives, she makes the request for
the patient file to the archives. When the patient leaves, she sends the record back to the
archives. Therefore, in the patient’s absence, the clinicians do not have access to the paper
record. Whereas the electronic record can be accessed anytime, anywhere in the hospital,
by any authorized clinician. The nurse explains that this allows her a quick and efficient
patient information consultation. However, the limitation is that a paper patient record
is internal to the hospital. If the patient has been admitted in another hospital, there is
not only, no information, but no knowledge at all about the possible existence of another
record in another hospital.

The practice of follow-up is also made easier by the affordance of paper. For comparing
two CGAs made at different moments, the clinician can hold two sheets of paper and make
an efficient comparison. Unless one has two screens or one very large screen, it is more
difficult to compare two documents on screen. Moreover, since CGA is an interdisciplinary
effort requiring the coordination of several clinical professionals, defining the appropriate
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care plan is often a collaborative process. During the meeting, the referring doctor presents
the case, and their colleagues can consult the record by reading the relevant document,
which can pass from hand to hand. The observations are full of occurrences of collaboration
between two or three clinicians standing in the consultation room around one sheet of
paper, which supported the impromptu collaboration.
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4.4. Insights for Design

This detailed analysis of data work has been useful to check the adequacy of the
envisaged CGAmed—the clinician’s application for data saving and data management—
as regards existing practices of CGA, and the needs for data management in healthcare
settings. Our research and design objective not being limited to the design of human–robot
interaction (HRI), but to achieve a holistic adequate design of the robotic solution though
an in-depth understanding of the work and organization in which this robot would be
introduced [30]. The hypothesis underlying this fieldwork is that “adequate design” can
only be achieved through considering the real needs and concerns of the central people
involved. The participant observation of CGAs made by clinicians in the hospital context,
as well as the situated interviews of clinicians at their workplace (hospital day care centers)
were combined to understand work practices.

The main insight is the centrality of data work, and its complexity. The subsection
above has described the advantages and drawbacks of paper-documentation. While paper
documents afford in situ co-present collaboration, e.g., during collaborative diagnoses,
where sheets can be passed from hand to hand, placed side-by-side for comparison, pa-
per documentation can also seriously limit collaboration between healthcare providers.
Therefore, as regards the current existing practices that have been observed in this organi-
zational context and of the understanding of their complexity, the digitalization of data
with CGAmed raises important and complex questions.

5. Methodological Approach to Field Trials

After several iterative loops of evaluation and improvements (Figure 4), the robot
of level TRL8 (technology readiness level, meaning the system is complete and qualified)
was tested in real-world conditions, in a rehabilitation hospital. This experiment combines
the characteristics and objectives of both field trials [36,37], as practiced in the field of
human–computer interaction, and those of pilot studies in health research [38,39]. Thus, it
was possible to test this experimental system “in the wild”, i.e., in uncontrolled real-life
situations, in a complementary manner to the usability tests carried out in the previous
stages [4,40], while evaluating the feasibility of the study in view of the next longitudinal
study of the robot in a nursing home [41].
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Figure 4. Iterative phases of robot evaluation and improvements.

These hypotheses, in terms of organizational objectives, were combined with the more
practical evaluation aspects of human–robot interaction. Indeed, in order to be able to
conduct these tests in an autonomous way, the CLARC robot must present itself to the
older patient as an assistant that is accessible and useful. Older adults undergoing geriatric
assessment, more than anyone else, are certainly not familiar with robotic technologies. In
addition, age implies declines in motor, visual, hearing, and/or cognitive abilities. It is
therefore crucial for the CLARC robot to be able to put them at ease and reassure them,
and to offer them natural, intuitive, but also accessible modes of interaction [41].

5.1. Empowerment in and through Interaction

As in the methodological approach, the issue of empowerment, linked to the inter-
action of older users with the CLARC geriatric assistant robot, was taken into account in
the design through two aspects. The first one was the interaction design. As described
above, the CLARC robot offers flexibility in the interaction modes in order to adapt to the
user’s needs (according to their abilities/disabilities or use characteristics) and/or their
interaction preferences.

Four different interaction modes were implemented in the CLARC robot—vocal,
tactile, gestural, physical buttons—thus adapting to the needs and preferences of each user
in an intuitive and accessible way [42]:

• The vocal mode was implemented through a text-to-speech (TTS) system, where the
robot was able to talk to the patients, explaining what to do, making questions, etc.
and the patients were able to talk to the robot and their speech was recognized by an
Automatic Speech Recognition (ASR) system. This interaction mode implemented
was one of the most natural ones in the robot. However, it was the least preferred by
the patients [5].

• The tactile mode was implementing through the use of a touch-screen tablet situated
in the torso of the robot. The different CGA tests were implemented in the tablet with
questions to be answered by the patients and cognitive tasks to be performed, as the
task of writing their name, memorizing terms or calculating among others.

• The gestural mode was implemented through the use of the touch-screen tablet, but
also with the use of a video camera which detected the position of the patients in front.
The video camera was able to detect, for instance, whether the patient was sitting,
standing, walking, or even swaying too much and was in danger of falling.



Appl. Sci. 2021, 11, 3046 12 of 19

• The physical button was implemented through a device external to the robot: a
remote control that integrates a tablet and big physical buttons to help the patients
complete the CGA tests from a more comfortable position than approaching the
robot to press his tablet on his torso. They could do it from further away, sitting
and without forcing their posture. Indeed, the remote control was developed during
Phase 2 (see Figure 1b), based on the observation (results of successive user tests in
France and Spain) that many users had significant difficulties with voice or touch
control. In addition, the CLARC robot communicates verbally by programming the
instructions of the synthetic voice so as to mimic a human attitude of benevolence
towards its interlocutor: the least directive possible, allowing the necessary time of
comprehension on the part of the user. In this way, the hypothesis examined is that the
CLARC assistance robot would manage to put at ease users unfamiliar with robotic
technologies, and to reassure them.

In addition to multimodality, the second aspect related to the empowerment of users in
the interaction with the CLARC robot is the accessibility criterion. As previously discussed,
age implies decreases in motor, visual, hearing, and/or cognitive abilities. The modes
of interaction must therefore be natural, intuitive (aspect 1) but also accessible (aspect 2).
The patients with hearing impairments, for instance, could not hear the robot’s voice
properly, but the multimodal interface allowed them to see the subtitles of everything
the robots was speaking and moreover, the touchscreen in the robot’s torso shows the
task to do next or questions to answer next, so patients with hearing impairments could
interact with the robots. Another example is that of patients with motor disabilities, e.g.,
patients with voice or hand tremors. The multimodality allowed them the use of the
remote control with big and physical buttons to interact with. Moreover, the time to
answer was extended according to the users’ needs. Patients with visual impairments
could use the voice to communicate with the robot. Moreover, they could use their own
devices to connect to the robot (keyboard or mouse) and use Screen Readers to interact
with the application because it was constructed as an accessible application following the
recommendations of the WCAG 2.0 (Web Content Accessibility Guidelines) from the World
Wide Web Consortium [43]. Finally, the cognitive disabilities and the impairments related
to a lack of short-term memory were also taken into account, building the remote control in
line with the touch-screen application (using icons, same shapes, colors, look and feel, etc.)
and using simple sentences to communicate with the users during the whole interaction.

5.2. Contribution: New Analytical Framework

Following the multimodal interaction design, an analysis framework was specifically
developed for this research project (Iglesias et al., forthcoming b.). In order to address
the specific characteristics of geriatric patients, the accessibility criterion was found to be
complementary to the other usual assessment factors. Accessibility, linked to the concepts
of “universal design” or “design for all” [44] in HCI, has the main objective of producing
systems that can be used by all, without discrimination, regardless of their physical or
cognitive abilities [45].

The usability, social acceptance, user experience, societal impact (USUS) framework [46],
a commonly accepted existing framework, allows the evaluation of humanoid robots used
in collaborative tasks. The acronym corresponds to the following factors— usability, social
acceptance, user experience, societal impact. Although representing a useful basis, the
USUS framework proved to be insufficient for this study, due to the profile of users and
the context of use (one-shot test). We therefore expanded the existing USUS framework to
include the Accessibility criterion. Our contribution is the AUSUS analysis framework, a
mixed methodological framework combining qualitative and quantitative approaches to
evaluate human–robot interaction for older adults. In this pilot evaluation, AUSUS thus
allowed us to assess the performance of the robot in performing the two tests—Barthel
and get-up-and-go—while examining the effectiveness of the human–robot interaction (see
details below, Section 6.2 Results of Field trials).
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5.3. Mixed Methods Approach

This experiment combined the characteristics and objectives of both field trials [36,37],
as practiced in the field of human–computer interaction, and those of pilot studies in
health research [38,39]. Thus, it has been possible to test this experimental system in an
uncontrolled real situation, in a functional re-education and rehabilitation hospital, in a
complementary way to the laboratory usability tests carried out in the previous stages.
Thus, the duration of the study—3 months (May to July 2019)—made it possible to prevent
the novelty effect [6]. Analyzing social acceptance of social robots in the home context (ibid)
point to the necessity of long-term studies, in real environments, with a sufficient number
of users, to prevent the novelty effect. This novelty effect, they explain, ends around two
months of use, because people’s perceptions towards robots, their behaviors and their
experiences are likely to change over time. Moreover, this pilot study allowed to evaluate
the feasibility of the study for another longitudinal study, in continuity with this research,
which started in November 2019 in Andalusia [41].

Aiming at the complementarity of approaches, the authors adopted a mixed method-
ological approach [47] in the research protocol. Defined as integrating the collection and
analysis of quantitative and qualitative data in a single study or program [48], the com-
plementarity it brings is advocated [49]. The objective of using this mixed methodological
framework is two-fold: on the one hand, triangulation, which ensures the validity of
quantitative analyses [50], and on the other hand, the complementarity of quantitative and
qualitative methods, the latter allowing for a more refined and contextualized understand-
ing of quantitative results [49]. The objective is to produce results that combine credibility
and meaning [51].

Mixed methods research has been of interest to health researchers for many years.
Various combinations of methods have been used in health research in the context of
service evaluation, the exploration of health issues, and the development of research
instruments [47]. They are coming into health research practice at the same time as more
and more professionals and researchers are convinced of the usefulness of qualitative
methods [51], including in France.

Thus, the AUSUS analysis framework, developed specifically for this research, is
mixed quantitative (durations, measurement of criteria according to a Likert scale) and
qualitative, combining an interest for what people say (interview) and for what people do
(ethnographic observation, analysis of activity by video recordings), throughout the course
of the test.

6. Field Trials: The Pilot Evaluation

The results presented briefly in this paper are based on the Barthel test with a cohort
of 25 patients. As defined by our consortium partners in the ECHORD++ CLARC (the
European Clearing House for Open Robotics Development) project (No. FP7-ICT-601116),
the University Hospital of Seville, the inclusion criteria were: aged 65 years or older; MMSE
test score ≥ 23. Exclusion criteria were: hearing impairment; visual impairment. The
hypothesis was that cognitive, hearing and visual abilities are the necessary conditions for
human–robot interaction. Indeed, in order to interact efficiently with the robot, the patient
should have the cognitive abilities to adapt to the robot and understand the instructions,
and should be able to read the written text on the screen and hear the text-to-speech from
the robot’s speakers.

The Barthel test is a 10-question questionnaire on functional abilities. For this test,
the patient-user can answer using three different modalities: vocal interaction, tactile
interaction with the screen or by pressing the buttons on the remote control. While the
movement recognition is important for the other test implemented on the robot, the get-up-
and-go test, the gesture modality was not used for this specific test described in this paper.
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6.1. Test Procedure and Protocol

The test is organized as follows. First, the study is presented by the investigator:
the patient signs the informed consent after being fully informed. Then, a short pre-test
questionnaire is used to determine the level of use of technology by the patient-testers, their
impressions of robots, and their experience with the geriatric evaluation, in particular the
Barthel test. The test itself is videorecorded (three complementary angles, see Figure 5)),
following video ethnography principles [52], for a detailed a posteriori activity analysis, and
observed in real time by the investigator, who remains in the room with the patient and the
robot (without intervening).
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After the test with the robot, the AUSUS questionnaire guides a semi-structured
interview, during which the investigator can deepen certain aspects of interaction in a way
that is relevant to the in situ observation he has just carried out.

6.2. Results

The main insights presented in this section relate to: performance, interaction factors,
test duration, interaction mode.

The system proved to be robust, with an acceptable technical performance rate: 24 pa-
tients out of 25 completed the test, which means that there was one failure out of the 25
tests made. Moreover, as explained above, the AUSUS analytical framework was used
for the evaluation of performance indicators. After the robot interaction session, during a
semi-structured interview based on a questionnaire, patients were asked to evaluate the
interaction aspects on a 5-point Likert scale ranging from 1 (strongly disagree, lowest score)
to 5 (strongly agree, highest score).

The different aspects of interaction that were evaluated received encouraging scores
(Figure 6): an average above 4 out of a total of 5 (learning; flexibility; perceived usefulness;
social acceptability; robot physical aspect; robot perception; safety), and above 3 out of 5
for the more complex aspects of human–robot interaction (concentration; emotions).

With the exception of three patients, whose test durations were below or above average
(9 min 10, 15 min 35 and 14 min 21), the average duration of the tests was 10 min (12 tests)
or 11 min (10 tests) (Figure 7).

Concerning the interaction mode, the remote control emerges as the preferred mode of
interaction (Figure 8). This preference confirms the intermediate hypothesis that emerged
from the user tests in phase 2 of the project, namely the need for an interaction mode, other
than voice and touch, that would be easier and more accessible for older users.

Finally, all patients reported being satisfied by having participated in this study. In line
with the living lab approach adopted throughout this project, especially the participatory
dimension, this feedback is insightful for our future research.
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7. Discussion

The knowledge gained—first from this field work to understand current data work
practices, and second from this real-life pilot evaluation—has been used to inform the
design of the robot. It is part of an iterative improvement concerning the interface, voice
interaction, intelligibility of instructions, and motion detection.

More specifically, from a pragmatic perspective, the field trials allowed to check the ad-
equacy between existing workplace practices and the functionalities of this new technology
that would be introduced in the healthcare settings. The ethnographic observations allowed
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to understand the organizational context of data work—collection, saving, sharing in CGA
patients’ follow-up. The utility of such a robotic solution and the functions of CGAmed
application was confirmed. From a reflexive perspective, CGA proves to be an interesting
case study for a global reflection about the place and role of data work in supporting
collaboration between people, and among different healthcare organizations. The relevance
of information collected in CGA within the global objective of ageing well and autonomous
living at home, questions the types of data that need to be collected, e.g., in the design of
Ambient Assisted Living technologies, and how robotics and Artificial Intelligence can
contribute to it. Our study is also an interesting case study to advance social robotics appli-
cations in healthcare settings for older adults, where the applications so far (cf. literature
review section) have mainly focused on nursing homes and domestic environments.

Concerning the field trials, thanks to the duration of the experiment (3 months), the
novelty effect (2 months) [6] was avoided. Even if the actual use during the test was
one-shot, the regular presence of the robot at the rehabilitation center allowed a certain
degree of familiarization. Moreover, a form of social acceptability seemed to appear in the
ethnographic data through the positive attitude of most of the patients and staff of this
hospital center, regarding the presence of the CLARC robot, and concerning the hypothesis
of a gain in efficiency for CGA procedure. From a pragmatic and design-oriented perspec-
tive, the knowledge gained allowed to inform the continuous improvements of the robot
in terms of movement detection, human–robot interface, and voice recognition. Indeed,
despite the promising evaluation results succinctly presented in this paper, human–robot
interaction remains a complex question. Its use and interaction design—and certainly
acceptability—reveals to be much more complex than other ambient assisted living tech-
nologies in which we have been involved in to date, be it connected balance scales to detect
physical frailty [53], a falls detection device [54] or virtual personal assistants to prevent
older adults’ social isolation [55]. For example, voice interaction, despite its theoretical
“naturalness”, is the least preferred by the patients. The system was not robust enough, cer-
tainly due to the increased difficulties of recognition of older adults’ speech [56] and we are
trying to improve it with other text-to-speech and automatic speech recognition systems.

Knowledge gained from these field trials was also used to evaluate and improve
the AUSUS framework, which was used in this pilot evaluation, with a view towards its
generalization. In particular, this experimentation confirms the value of a mixed methods
approach, combining a quantitative approach, allowing an objectivization of the results,
and a qualitative approach, allowing the results to be fully meaningful. The interest of
this approach is confirmed in health research, in HCI, and all the more so, for an object
as complex and new as human–robot Interaction. From a methodological and reflexive
perspective, the knowledge generated by this pilot experiment also serves to feed the
reflection on the future deployment of such a fully functional technological tool in a
longitudinal clinical study (ROSI and ITERA projects which constitute the follow-up work
to ECHORD++ CLARC, cf. [41]. ROSI: Robotic assistants for nursing homes; ITERA:
Integration of Assistive Robotics Technologies in residences for the elderly). The difficulties
observed linked to the complexity of this “one-off use” situation suggests the hypothesis
that further familiarization (with actual use) is key to efficient human–robot interaction,
especially for older adults. The next step of our research, in line with some of the authors’
previous work with another robot [18], is to examine the use and appropriation of a social
robot in nursing homes.

8. Conclusions

Based on an extensive literature review of social robotics applications for health
and ageing, this paper has discussed the practical and methodological questions raised
around how to design and test assistive social robots for clinical routine. These field trials
demonstrate that an automated CGA procedure is actually feasible, with promising results
in terms of performance and user satisfaction. However, the real efficiency of an automating
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CGA procedure, including in terms of data collection, test duration and user experience,
needs to be further examined in a longitudinal study in actual use (v/s pilot studies).
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