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Abstract: Background: This study investigated selenium nanoparticles’ protective effects (SE-NPs)
against carbon tetrachloride (CCl4)-induced hepatic injury in rats. Methods: Rats were divided
into four groups (n = 8). Group 1 rats received the vehicle solution only. Group 2 received a single
intraperitoneal injection of 1 mL/kg CCl4 in liquid paraffin (1:1 v/v). Group 3 was treated with SE-
NPs (2.5 mg/kg) twice a week for three weeks before receiving CCl4 challenge. Oxidative stress, liver
function, liver histopathology and serum lipid levels were evaluated. Results: Plasma concentrations
of aspartate transaminase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP),
urea, creatinine, malondialdehyde (MDA) and the toxicity marker, lactate dehydrogenase (LDH),
were significantly elevated in rats treated with CCl4 compared to the controls. CCl4 also caused
a significant decline in liver glutathione (GSH) concentration. SE-NP pretreatment significantly
improved the level of AST, urea, creatinine, MDA, LDH, and GSH in the CCl4-injected rats towards
the control levels. Conclusions: SE-NPs restored both liver function and hepatic structure in CCl4
treated rats. SE-NPs exhibit an ability to counter markers of liver injury induced by CCl4 and restore
oxidative stability to lipid profiles and liver structure and function.
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1. Introduction

Liver damage or hepatotoxicity is one of the most common side effects of any chemical
drug or medicine-based treatment. It can be caused by herbal medicines [1], chemicals,
metabolic intermediates and viruses. Despite a large body of research, hepatotoxicity still a
significant clinical challenge. Chemical-induced liver toxicity is attributed to the classical
mechanism, including apoptosis along with an upsurge in cytokine concentration and
oxidative stress [2]. Moreover, ROS (Reactive oxygen species)-mediated lipid peroxidation
also plays a part in various liver and kidney pathological conditions and injuries; it has
caused subsequent liver fibrogenesis in many in vivo studies [3]. Carbon tetrachloride
(CCl4) is a well-known hepatotoxicant [4]. This chemical is used in animal models to mimic
pathophysiological lesions observed in humans. CCl4 toxicity is mediated by metabo-
lites that react with antioxidant enzymes [5]. It also raises the extent of inflammatory
cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 β (IL-1β), nuclear
factor (NF-κB). It is well established that CCl4 elicits free radicals and causes macrophages’
activation, leading to the production of inflammatory and profibrogenic mediators [6].
Free radical production is the primary step in the sequence of events leading to membrane
lipid peroxidation, apoptosis, and necrosis [7]. Antioxidants provide substantial protec-
tion against CCl4-induced hepatic toxicity [8]. Previous studies show that folic acid and
melatonin are potent antioxidants in dealing with oxidative stress in vivo [9,10].
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Selenium is an essential element for living organisms. It affects the activity of glu-
tathione peroxidase and helps protect cells and tissues from oxidative damage. It is
used as a dietary supplement [11] and supports immune responses to prevent various
diseases [12,13]. Cancer and immune dysfunction are associated with modest selenium
deficiency and altered expression and single nucleotide polymorphisms of some selenopro-
teins [11,14]. The impact of selenium on health and disease, dietary selenium requirements
for support of cognitive and immune functions, and cancer prevention at the molecular
level is hot in contemporary research [15]. Cells of the immune system, especially T lym-
phocytes and macrophages, express most of the 25 genes encoding human selenoproteins,
with GPx isoenzymes, GPx1 and GPx4, exhibiting the highest expression levels in both cell
types [16]. Selenium derivatives are detoxifying agents toward mercury, cadmium, lead,
and many other elements [12]. The study on selenium interacting with other toxic elements
in vivo is a hot-spot of contemporary research [17]. The suitability of selenium nanoparti-
cles (SE-NPs) in such a study is attributed to their chemical stability, biocompatibility, and
low toxicity [18]. Thus, selenium may be useful against hepatotoxicity as demonstrated in
this study.

2. Materials and Methods
2.1. Fabrication and Characterization of Stabilized Nano-Selenium

Analytical grade chemicals (Sigma Aldrich, St. Louis, MO, USA), including citric
acid, ascorbic acid, and selenium dioxide, were used to prepare the nano-selenium. The
selenium dioxide was used as a selenium precursor. In contrast, citric acid and ascorbic
acid were employed as stabilizing and reducing agents, respectively, during the nucleation
and formation of stabilized nano-selenium particles following the previously described
method [19,20]. For this, the selenium oxide and citric acid were mixed in an aqueous
medium to form a 200-mL homogenous solution under stirring with a magnetic stirrer at
room temperature for two hours. Then 25 mL of ascorbic acid (0.1M) was added to the
mixture dropwise in 2 h under vigorous magnetic stirring. The stirring was continued for
an additional 2 h at room temperature. In the final stage, the temperature was increased to
80 ◦C for 15 h. Finally, the mixture was centrifuged, and nano-selenium was collected after
drying at 80 ◦C. The surface morphology of the prepared nano-selenium was examined
by SEM, and EDS characterization was applied to identify the surface structural elements.
In addition, the size of the nano-selenium particles and the image of the whole formed
nano-selenium embedded citric acid were observed by TEM.

2.2. Animals and Experimental Design

Twenty-four male rats (Rattus norvegicus) weighing 150–170 g (20 ± 1 weeks) were
obtained from the College of Sciences, King Saud University. The rearing and caring of
the rats were conducted as per our previously published work [5]. The Animal Ethics
Committee approved the study protocol in the Zoology Department in the College of
Science at King Saud University (KSU-SE-20-38). Rats were divided into three groups
(n = 8). Rats from group 1 served as the control and only received the vehicle solution.
Group 2 received a single intraperitoneal (IP) injection of 1 mL/kg CCl4 in liquid paraffin
(1:1 v/v) [21]. Group 3 was treated with 2.5 mg/kg selenium nanoparticles (SE-NPs) twice
a week for three weeks [22] before receiving the CCl4 challenge.

2.2.1. Blood and Liver Samples

Two days after treatment, animals from all groups were necropsied under light anes-
thesia. Blood was drawn by puncturing the retro-orbital veins in capillary tubes (heparin-
coated) until the animals’ death. Plasma was separated after centrifugation at 200× g for
10 min in Eppendorf tubes and stored at −30 ◦C. The sample was used to determine levels
of liver enzymes and lipid profiling.

The liver was removed, washed with saline, and cut into two parts; one part was used
for the histological study and the other for assessing lipid peroxidation (malondialdehyde
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(MDA)) and glutathione (GSH). The samples were processed and prepared as homogenates
as done earlier [5].

2.2.2. Estimation of Lipid Peroxidation and an Assay of Reduced Glutathione

Lipid peroxidation was evaluated via measurements of the malondialdehyde
(MDA) [23]. The homogenized tissue was read at an absorbance of 532 nm. The stan-
dard, 1,1,3,3- tetra methoxy propane was applied to determine the concentration of TBARS
(Thiobarbituric acid reactive substances) (MDA per mg protein). An amount of 0.5 mL
supernatant with 0.5 mL TCA (Trichloroacetic acid) and 0.5 mL TBA were mixed. Samples
were incubated for 30 min in boiling water and then immediately cooled. Samples were
centrifuged at 4000 rpm for 10 min at 4 ◦C. Absorbance was measured at the wavelength
of 530 nm in 1 mL of the supernatant. According to the manufacturer, the protein concen-
tration was measured at 500 nm in tissue supernatant (Quimica, Clinica Aplicada S.A.,
Amposta, Spain).

The reduced glutathione was estimated as described previously [24]. A mixture of
1 mL of tissue supernatant and 1 mL of sulfosalicylic acid was incubated for one hour.
Then, it was centrifuged for two min at 1200 rpm. The supernatant was diluted with 1.1 mL
of PBS and 200 µL of 5,5-dithiobis-2-nitrobenzoic acid (DTNB). The protein concentration
was measured in 500 µL of the supernatant for each sample and at a wavelength of 412 nm,
according to the reagent manufacturer (Quimica, Clinica Aplicada S.A., Amposta, Spain).

2.2.3. Liver Function Tests and Lipid Profile

Levels of aspartate transaminase (AST), lactate dehydrogenase (LDH), and protein
were measured in plasma samples. The measurements were performed with Bio Merieux
kits, France, following the manufacturer protocols. Their levels were measured kinetically
by the colorimetric method (UV/Visible-Model-80-2106-00 spectrophotometer, Pharmacia
Biotech, Cambridge, England).

Lipid profiling, including cholesterol, triglycerides, HDL (High density lipoproteins),
and LDL (Low density lipoproteins), were estimated in plasma samples by commercial
kits (Salucea Company, Etten-Leur, The Netherlands).

2.2.4. Histological Study

Tissues were fixed firstly in 10% neutral buffered formalin and then embedded in paraf-
fin. Their sections were prepared and stained with hematoxylin–eosin (H&E). Moreover,
Mallory trichrome was used for staining collagen deposits in separate slides. The sections
were analyzed blind using a Leica DMRB/E light microscope (Heerbrugg, Switzerland).

2.3. Statistical Analysis

MINITAB software (MINITAB, State College, PA, USA, Version 13.1, 2002) was em-
ployed for statistical analysis. Data were treated with Anderson–Darling tests and for
variance homogeneity. Furthermore, one-way ANOVA and Tukey’s method for pairwise
comparisons were implemented to determine the overall effects of each treatment. Results
were expressed as arithmetic mean (M) ± standard deviation (SD). Only statistically sig-
nificant differences, with p < 0.05, found between a treatment group and the control or
between a treatment group and the CCl4 group were considered.

3. Results
3.1. Characteristics of Fabricated Nano-Selenium

The SEM noticed the morphology and shapes of the prepared nano-selenium parti-
cles with a magnification of 6000 (Figure 1A) and 10,000 (Figure 1B), which indicate the
formation of the nano-selenium with uniform particles with edges and that the forms are
not entirely spherical forms. The EDS analysis (Figure 2 upper) showed the elemental
nano-selenium surface composition formed from approximately 64.79% selenium and
35.21% carbon, which is indication of formation of stabilized nano-selenium combination
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with an organic matrix. The nano-selenium particles were formed with sizes of about
100–150 nm and embedded in the organic matrix to create structures of sizes between 200
and 300 nm with different shapes, as shown in Figure 2 lower.
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3.2. Bioactivity of SE-NPs
3.2.1. Stress Markers

(a) MDA

Free radical production is the primary step in the sequence of events leading to mem-
brane lipid peroxidation, apoptosis as well as necrosis. MDA is an indicative parameter
of the lipid peroxidation. Here, the MDA was dramatically increased in the CCl4 group
rats in comparison to the control GSHs. CCl4 group rats exhibited a 176.92% increase in
MDA levels over controls, and CCl4 + SE-NP group animals showed MDA levels 63.71%
lower than CCl4 group rats (Figure 3). Thus, SE-NPs were found to restore the MDA
concentration CCl4 group in comparison to the controls.

(b) GSHs

Antioxidants provide substantial protection against CCl4-induced hepatic toxicity. The
GSHs declined in the CCl4 group rats in comparison to the control GSHs. CCl4 rats showed
a 63.55% reduction in GSHs compared to controls. SE-NPs was found to significantly
restore the GSHs in CCl4 animals in comparison to the control GSHs. The GSHs showed a
73.84% increase in CCl4-SE-NPs over levels in the CCl4 group (Figure 3).
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3.2.2. Liver Function Tests

After evaluating oxidative stress, the hepatic function parameters (plasma aspartate
aminotransferase and lactate dehydrogenase, gamma-glutamyltransferase and alkaline
phosphatase) in different rat groups were estimated.

(a) AST

The AST is one of the strong biomarkers determining the liver function and structure.
Here, we found a remarkably very significant (p value < 0.01) increase in the AST concen-
tration of CCl4 rats in comparison to control rats. Plasma levels of AST in CCl4 treated rats
were 804.40% higher than controls, and Se-NP treatment reduced this increase to 421.43%
as compared to controls. Pre-administration of Se-NP treatment before CCl4 challenge
decreased AST activity by 27.29% compared to CCl4 treatment alone (Figure 4).

(b) Lactate DH

Lactate dehydrogenase (LDH) is expressed extensively in body tissues, in particular
liver cells. It is released during hepatic damage, making it a marker of common tissue
injuries and diseases involving hepatic toxicity. LDH is a bioindicator for necrotic progres-
sion in the living tissue. As expected, LDH was dramatically increased in the CCl4 rats due
to the toxicity compared to the control rats. LDH activity was enhanced by 68.16% in CCl4
group animals compared to controls, and CCl4 + Se-NP treated reduced this increase by
19.52% compared to CCl4 group animals (Figure 4).

(c) Gamma-glutamyltransferase

In the cell membranes of many tissues, gamma-glutamyl transferase (GGT) transfers
amino acids and the glutamyl moiety of the glutathione across the cell membrane to various
acceptor molecules including water, and peptides, leaving the cysteine product to preserve
oxidative stability inside the cell. The concentration of GGT was shown to be significantly
(p-value < 0.05) increased due to CCl4 toxicity in comparison to the control rats. On the
contrary, the GGT level was restored approximately to normal levels in the CCl4 rats treated
with Se-NPs in comparison to the control (Figure 4).

(d) Alkaline phosphatase

Alkaline phosphatase (ALP) is of the critical indicators on liver health. Its concentra-
tion was found to behave like that of the GGT level in the CCl4 group. Because of the CCl4
toxicity, ALP level was significantly (p-value < 0.05) elevated in the CCl4 rats compared to
the control level. Se-NPs were found to partially but not significantly restore the ALP level
in CCl4 rats (Figure 4).
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animals. # (p-value < 0.05) reveals significant differences in different rat groups compared to CCl4
group animals. Also ** and ## indicate p ≤ 0.005 while *** and ### indicate p ≤ 0.001.

3.2.3. Lipid Profiling and Glucose Concentration

(a) Cholesterol

CCl4 group showed a 17.53% increase in cholesterol levels, and CCl4 + Se-NP treated
rats exhibited a decrease of 7.18% (Figure 5).

(b) TAGs

CCl4 displayed a 6.69% increase in TAG (Triglycerides) level, and CCl4 + Se-NP
treatment produced a decrease of 0.96% compared to the CCl4 group (Figure 5).

(c) Glucose

CCl4 treated rats showed a 28.21% increase in glucose levels, and Se-NP treatment
reduced this increase by 27.36% compared to controls (Figure 5).

3.3. Liver Histology

Examination of histopathological sections revealed that CCl4 challenge caused severe
hepatic damage. Injuries included disturbed hepatic structure, narrow hepatic sinusoids,
infiltration with inflammatory cells, and eosinophilic hepatocytes. Unlike renal tissues,
selenium NPs did not produce any apparent improvement in histopathology of hepatic
tissues in CCl4 treated rats (Figure 6).
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Figure 6. Representative microscopic images from control, CCl4 and CCl4 + selenium nanoparticles
(SE-NPs) hepatic tissues. (A–C): Control hepatic tissues (×200, ×400, and ×1000, respectively). (D–G)
CCl4 hepatic tissues (×200, ×400, ×400, and ×1000, respectively). (H–N) CCl4 + SE-NPs hepatic
tissues (×200, ×400, ×400, and ×1000, respectively). Hepatocytes (yellow arrows), inflammatory
cells (blue arrows) and hemorrhage (red arrow) are shown (hematoxylin–eosin (H&E)).
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3.4. Effect of Se-NP on CCl4-Induced Damage to Nuclear DNA

Comet assay is a reliable method for measuring damage to nuclear DNA in the
targeted tissues. DNA in liver tissue in CCl4 treated rats showed a 133.33% increase in
tail-length of nuclear DNA as compared with controls. CCl4 + Se-NP reduced this increase
by 38.29% compared to CCl4 (Figure 7).
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4. Discussion

This study is to investigate the effectiveness of SE-NPs in protection against CCl4-
induced hepatotoxicity. CCl4, an established hepatotoxicant, is converted to various
metabolites, including radicals like CCl3. They are involved in liver disease, cirrhosis, and
hepatic carcinoma [25]. Its exposure to rats causes hepatic injuries due to the generated
free radicals. It also significantly enhances the release of ALT (alanine transaminase) and
AST (aspartate transaminase) to plasma and prominent alteration in lipid profiles [26].
Selenium, as an antioxidant, is a necessary trace element in humans and is suggested
as a dietary supplement for its health benefits [27]. Nanotechnology is developed as an
amalgamation of chemistry, engineering, biology, and medicine. Nanoparticles have proven
useful for the early detection of tumors and the development of novel treatments [28]. We
have previously found that Se-NPs have strong anti-diabetic and anti-oxidant properties
in gestational diabetic mothers in rat models [29]. The Se-NPs regulated inflammation-
mediated complications in diabetic mothers and pups. Ag-NPs showed a potential role in
preventing the deleterious effects on DNA in nephrotoxicity [30].

Our findings show that administration of SE-NPs significantly counters hepatotoxic-
ity caused by CCl4, which might be due to antioxidant activity. SE-NPs might scavenge
free radicals as reported in other investigations, which in turn lowers serum cholesterol,
triglycerides and lipid peroxide [31]. The CCl4 rats exhibited a profound elevation in total
cholesterol and triglycerides levels. Hyperlipidemia was detected due to the hepatotoxic
effects of CCl4. Hyperlipidemia is a common feature in patients with liver disease. Thus,
the cardiovascular risk indices may also be increased. It has been observed that hyperc-
holesterolemia is associated with disturbed angiogenesis, which delayed the tissue healing
process [32]. SE-NPs treatment of CCL4 rats produced marked amelioration of the tested
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lipids. Thus, it can be suggested that the alleviation of lipids may be involved, at least in
part, in the enhanced tissue healing observed in CCL4 rats treated with SE-NPs.

Hyperlipidemia interferes with liver functions. Oxidative stress damages the stability
and integrity of biological membranes and increases permeability, resulting in the outflow
of cytoplasm enzymes such as ALT, ALP, and AST into the blood [33]. Thus, the ALT, ALP
and AST activities in the serum are essential indices for evaluating liver injury. In the
current experiment, serum ALT activity, ALP, and AST in the CCL4 group were significantly
higher than that in the normal rats, suggesting that CCL4 exerted a toxic effect on CCl4-
injected rats. Recent results indicated that oxidative stress and lipid peroxidation elevated
inflammation and enzyme and GGT activity [34].

On the other hand, breaking down extracellular glutathione and making GGT compo-
nent amino acids available to the cells has an essential physiological role in counteracting
oxidative stress [35]. Indeed, conditions that increase serum GGT lead to increased free
radical production and the threat of glutathione depletion [35]. It is more likely that CCL4
increased GGT in a similar mechanism in the CCl4-injected rats. The antioxidant treatment
may inhibit disease progression. Therefore, treatment of CCl4-injected rats with SE-NPs
restored the liver function-enzyme concentration with the GGT level.

The hepatotoxicity of CCl4 is attributed to the generation of free radicals. They
activate the Kupffer cells and macrophages that further elicit inflammatory mediators
causing fibrosis. The heightened release of free radicals is the first step in a chain of events
leading to lipid peroxidation of membraned cell organelles, resulting in apoptosis and
necrosis [6]. The elevation in cytokine concentrations and oxidative stress might be the
possible chemically-induced liver apoptosis mechanisms [7]. In addition, ROS-mediated
lipid peroxidation is the main reason behind the pathogenesis of various liver toxicity and
liver fibrosis followed by histological distortion and DNA damage in the target tissues in
the experimental animals [8].

CCl4 causes ROS-mediated biotransformation leading to moderate-to-severe toxicity
that disturbs cellular redox balance and compromises structural settings in the target
tissues [36]. ROS increases lipid peroxidation (MDA levels) and compromises levels of
GSH [9] in the target tissues. The histological evaluation of kidney sections further agrees
with these conclusions. Results are consistent with the nephrotoxic effect of potassium
bromate [37]. Furthermore, CCl4 is converted to highly reactive metabolites that can
affect the cellular components (proteins, enzymes, lipids, and nucleic acids) and cellular
structures. Moreover, free radicals generated during metabolism and biotransformation of
CCl4 cause chromosomal aberrations, DNA-base transversions, DNA adduct formation,
and 8-OH dG. Administration of CCl4 caused genotoxicity and DNA fragmentation in
hepatic tissues in the male Sprague–Dawley rats [38]. This activity can explain the present
study results, in which comet assays show a noticeable increase in DNA tail length in CCl4-
treated rats. Hence, CCl4 damages the biological functions of critical biomolecules that
disrupt cellular structure and function [39]. The elevated concentration of MDA is a strong
index of oxidative stress in CCl4-challenged rats. However, its decreased concentration
was observed in the CCl4 administered rats treated with SE-NPs. Thus, the SE-NPs can
effectively protect against lipid peroxidation.

SE-NPs have shown antioxidant protection in vitro and in vivo studies [29,31]. All the
organisms have effective defense mechanisms that prevent and neutralize damage incurred
by free radicals. The NPs restore the activity of GSH and catalase significantly. GSH
acts as a non-enzymatic antioxidant that reduces H2O2, hydroperoxides, and xenobiotic
toxicity [40]. In contrast, a significant decrease in MDA in hepatic tissues is confirmed after
pretreatment with SE-NPs and hence protects against hepatic lipid peroxidation incurred
by CCl4. Antioxidant activity and antilipidemic effects of SE-NPs have been reported to
modulate blood pressure and alleviate the damage to target organs [41]. GSH is an essential
determinant for cell survival or death during disturbed oxidative stress [42].

Inflammatory macrophages and dendritic cells are a physiological defense mechanism
for injury and toxicity that are still inadequately addressed by the immune system [43].
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Infiltration of inflammatory cells, if prolonged, can exacerbate fibrosis [44]. We previously
found that carcinogens trigger all critical pro-inflammatory cytokines (IL-1, 2, 6, and 7) as
well as transcription factors (NF-kB and TNF-α) in target organs [45]. Immune cells then
become aggressive, causing extensive inflammation and fibrosis in the liver, as evidenced
in histopathological findings. SE-NPs were found to remarkably ameliorate inflammatory
infiltration with the immune cells in the hepatic tissues (Figure 6).

NF-kB might be downregulated by SE-NPs that induce oxidative stability, although
this activity was not addressed in the present study. This amelioration of hepatic seems
to be mediated by the ceasing of oxidative stress and suppression of NF-κB, the critical
regulator of inflammatory response. Downregulation of NF-κB would exert diminishing
production of pro-inflammatory cytokines.

Hepatic injury markers are significantly low in the animals treated with any antioxi-
dant treatment. SE-NPs also noticeably attenuated the plasma liver enzymes induced by
CCl4, which led to the restoration of the key enzymes’ activities to normal activity. The
effect of SE-NPs was further confirmed through histopathological examinations. Hence,
pretreatment with SE-NPs has broad anti-inflammatory effects that can attenuate the
allergies and inflammation in CCl4-challenged rats.

This study, hence, confirms the hypolipidemic effect of SE-NPs in CCl4-treated rats.
It is evident from the low concentrations of cholesterol and triglycerides after the NPs
treatment. Similar findings have been reported in many animal model studies [5]. This
effect of NPs may be attributed to the enhanced catabolism of cholesterol to bile acids [46]
and suppressing cholesterol synthesis and LDL receptor activity.

5. Conclusions

Use of nanotechnology may allow the development of novel therapeutic strategies.
Our findings provide evidence of possible antioxidant and anti-inflammatory effects of
SE-NPs. This combination restored normal oxidative stress balance, perhaps by inducing
oxidative stability and reducing tissue damage. SE-NPs treatment produced significant
improvement in liver function and histological architecture after CCl4 challenge. The size
of NPs, only several hundred nanometers, may allow close and frequent interaction with
biomolecules present both on cell surfaces and inside cells. Currently, no data exist to
determine if SE-NPs’ activity toward CCl4-induced hepatic injury might be clinically useful.
The present study establishes a possible use of SE-NPs to treat CCl4-induced hepatic toxicity
in vivo. However, further research is warranted to elucidate the in-depth mechanisms.
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