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Abstract: We propose the implementation of transfer learning from natural images to audio-based
images using self-supervised learning schemes. Through self-supervised learning, convolutional
neural networks (CNNs) can learn the general representation of natural images without labels. In
this study, a convolutional neural network was pre-trained with natural images (ImageNet) via
self-supervised learning; subsequently, it was fine-tuned on the target audio samples. Pre-training
with the self-supervised learning scheme significantly improved the sound classification performance
when validated on the following benchmarks: ESC-50, UrbanSound8k, and GTZAN. The network
pre-trained via self-supervised learning achieved a similar level of accuracy as those pre-trained
using a supervised method that require labels. Therefore, we demonstrated that transfer learning
from natural images contributes to improvements in audio-related tasks, and self-supervised learning
with natural images is adequate for pre-training scheme in terms of simplicity and effectiveness.

Keywords: deep learning; sound event detection; self-supervised learning; transfer learning; natu-
ral image

1. Introduction

Deep learning is neural networks that can learn and analyze the relationship among
the data and label inspired by the structure of a human brain. Recently, deep learning
has been widely applied in audio-related tasks and achieved superior performance com-
pared to traditional methods [1–4], especially in real-time smartphone-based voice activity
dectection [5], and typing software by recognizing voice [6], sound event classification
in noisy environment [7,8], environment sound classification, such as car horn and air
conditional sound [9], and speech emotion recognition [10–12]. Among the deep learning
methods, recurrent neural networks (RNNs) and convolutional neural networks (CNNs)
play an important role in audio tasks. RNNs is a network that process sequential inputs
by utilizing the output of the before layer as input for the successive layer. It can extract
temporal features from the 1-dimensional signals. CNNs is a network that process spatial
information by striding the kernels for successive layers. It can extract spatial features from
the 2-dimensional images. Yoshimura et al. [13] utilized an RNN to recognize speech from
a 1D waveform by extracting temporal information from time-series data. There are some
studies utilizing the 2D CNN for the audio related tasks. For the CNN, 1D audio signal
is required to be converted into 2D. The spectrogram is one of the visual representation
methods that indicates the frequencies of a signal along the time variations. In many
studies [5,14], spectrogram representation has been adopted for representing the sound.
Sehgal et al. [5] utilized a 2D CNN for speech recognition, which input a 2D spectrogram
converted from a 1D waveform. Instead of RNN, the CNN focused more on the spatial
features in the spectrogram images. Supervised deep learning-based methods require a
large set of labeled data since unsupervised learning does not have that issue.
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Although deep learning-based methods perform well on audio-related tasks, they
require a large set of labeled data to be appropriately generalized on the test data. To train
deep neural networks for new tasks, a large, labeled dataset must be constructed. However,
labeling a large set of data is labor intensive especially for the audio data. This drawback
has led to the determination of efficient learning schemes, such as transfer learning [15,16].
Transfer learning is a method that utilizes the network pre-trained with largely available
dataset on the other relevant tasks. Based on the ImageNet [17], which is the large size
image benchmark that consists of 14 million images, transfer learning achieved significant
improvements on many image related tasks [18,19]. However, in the audio domain, audio
benchmark which has enough number of samples for transfer learning does not available.
Instead, Palanisamy et al. [14] proposed to utilize the transfer learning from natural images
to audio-based images. They trained the CNN network using the images and corresponding
labels of ImageNet and fine-tuned on audio benchmark dataset. By achieving the state-of-
the-art results on three benchmarks (ESC-50 [20], GTZAN [21], and UrbanSound8K [22]),
they demonstrated that the network pre-trained with massive natural image dataset can be
utilized for improving the performance of other domain’s task.

However, transfer learning method proposed by [14] require labels along with the
images for pre-training; usually transfer learning is utilized in the cases that the number
of labels appropriate for tasks are small; requiring the additional labels for the transfer
learning reduce the effectiveness of transfer learning. Additionally, there are extremely
large unlabeled image dataset, but they cannot be utilized for the transfer learning that
requires labels and only limited to the labeled dataset which has far fewer number of
samples compared to the unlabeled ones. To apply the transfer learning across domains
(natural images to audio domain), we proposed to utilize the self-supervised learning
methods for pre-training instead of supervised ones. Self-supervised learning is a method
for learning the general representation of images by learning dissimilarity among the
different images and similarity between the ame images without labels [23–28]. Therefore,
we pre-trained a large number of unlabeled natural images using self-supervised scheme
and fine-tuned on audio-based images. Through the experiments on sound classification
tasks, we demonstrated that the transfer learning from natural images to audio domain via
self-supervised learning scheme can significantly improve the performance with the similar
level of supervised ones. In addition, constructing an unlabeled dataset is significantly
easier than constructing a labeled dataset. Therefore, self-supervised transfer learning can
yield more successful results than supervised learning when a considerably large number
of unlabeled images are used.

In summary, our proposed training architecture comprises two steps. First, pre-
training a CNN with natural images via self-supervised learning. Second, fine-tuning
the CNN with labeled 2D-spectrogram audio samples. Our main contributions can be
summarized as follows:

• We demonstrated that pre-trained networks with natural images can improve the
performance of audio-related tasks with precise pre-training schemes.

• Networks pre-trained through self-supervised learning have similar effects on the
performance of audio tasks as those pre-trained through supervised methods.

• When the self-supervised transfer learning scheme was validated using general sound
classification datasets, such as (ESC-50, GTZAN, and UrbanSoun8K), the classification
accuracy was significantly improved.

We organized the rest of the paper as follows. In the following, Section 2, we intro-
duce the transfer learning and self-supervised learning methods related to our works. In
Section 3, we describe the method about pre-processing, self-supervised learning scheme,
and our training mechanism with transfer learning and self-supervised learning. Sec-
tion 4 presents the experimental results validated on the audio benchmarks and provides
discussion about the results. Finally, in Section 5, we report the conclusion.
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2. Related Works
2.1. Transfer Learning on Natural Image Domain

Transfer learning is a method that utilizes the network pre-trained with largely avail-
able dataset as a starting point [15,16]. After the pre-training, the network is trained using
the target dataset. This simple method can improve the performance in various cases,
especially in image-related tasks. For instance, Tajbakhsh et al. [15] demonstrated that
a CNN trained from scratch exhibits significantly inferior performance for medical im-
age analysis compared with that trained from pre-trained networks using ImageNet [17].
Marmanis et al. [16] showed that a fine-tuned network with a small fraction of target
samples outperforms networks trained from scratch with all samples. Other studies [18,19]
also showed that a pre-trained CNN can improve the discriminativeness of unsupervised
image clustering. These results reinforce the concept that CNNs pre-trained on large image
datasets can extract well-generalized features and can be transferred to other networks.

2.2. Transfer Learning on Audio Domain

Likewise, some studies used pre-trained CNN models to improve the performance of
audio-related tasks [29–31]. Choi et al. [29] proposed a transfer learning framework from
a network pre-trained for music tagging for general music-related tasks. It utilized the
concatenated feature maps of multiple layers in a pre-trained CNN as efficient transfer-
able knowledge and showed that transfer learning using concatenated features improved
the performance of various general music-related tasks. Lee et al. [31] proposed music
auto-tagging networks that used the aggregated features from pre-trained networks with
different shapes and types of audio features. Kong et al. [30] utilized transfer learning
by pre-training networks with large-scale audio data and achieved state-of-the-art perfor-
mance in several audio tasks. This indicates that transfer learning schemes are effective in
the audio domain.

However, there is a lack of large-scale public audio datasets for pre-training. Therefore,
new paradigms for transfer learning that utilize a network pre-trained with natural images
are transferred to audio-related tasks. Palanisamy et al. [14] showed that, even though
pre-trained networks are not designed for audio tasks, a fine-tuned network pre-trained
with ImageNet [17] can achieve state-of-the-art results in general sound classification tasks.
This result demonstrated that knowledge from natural images can help in audio-based
spectrogram analysis; moreover, it can be transferred to pre-training schemes.

2.3. Self-Supervised Learning

Pre-training with natural images can improve the performance of audio tasks; thus, we
designed transfer learning schemes based on self-supervised learning instead of supervised
learning. Through self-supervised learning, the useful representations of images can be
learnt without their corresponding labels; this does not require additional human labor
for pre-training. Early studies on self-supervised learning relied on heuristic pretext
tasks [32–35]. For example, Zhang et al. [33] proposed a training framework that estimated
the two associated color channels of images using the given single-channel images in the
CIE lab color space. Noroozi et al. [34] proposed a self-supervised learning method in which
the networks were trained to solve jigsaw puzzle-like problems that predicted the manually
occluded parts of images. Recently, Gidaris et al. [35] pre-trained networks for predicting
the angles of images, which were randomly rotated in advance. Although these studies
suggested that pre-training for heuristics pretext tasks can help in learning the general
representation of images, their methods require well-defined pretext tasks and do not
always work. Recently, contrastive learning-based self-supervised learning demonstrated
superior performance in numerous tasks (significantly improved performance compared to
previous state-of-the-art methods) [23–28]. Contrastive learning that learns the similarity
between images were proposed by the siamese network [36] for one shot classification.
However, it requires label indicating that whether the given images are the same objects.
To utilize the contrastive learning in the self-supervised learning, augmentations was
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adopted for generating positive samples that denote same-class samples without manually
annotated labels. Dosovitskiy et al. [24] proposed an automated self-supervised learning
scheme without pretext tasks by training a network to estimate the number of original
images from the given augmented images. The network could learn the similarity between
samples to count the original images from augmented samples. Bachman et al. [26]
developed a self-supervised learning scheme that maximized the mutual information in
the features extracted from cropped images from multiple locations of an original image.
Recently, Chen et al. [28] proposed semi-supervised learning schemes that used a pre-
trained network with self-supervised learning as a teacher and fine-tuned the teacher
network using a small fraction of target samples; then, the logit from the fine-tuned teacher
network was distilled into the target network using a large number of unlabeled samples
and small number of labeled samples. This procedure achieved a top-1 accuracy of 73.9%
in ImageNet using only 1% of the labeled ImageNet data [37], while standard supervised
ResNet-50 achieved an accuracy of 25.4% under the same conditions. Self-supervised
learning can be utilized for pre-training without labels.

3. Method
3.1. Data Pre-Processing

We used a 2D CNN for audio classification; therefore, the 1D waveform was converted
into a 2D waveform. Previous studies found that mel-spectrograms are suitable for 2D
representation of sound for the benchmarks we used for this study [14]. Therefore, we
transformed the audio clips into a mel-spectrogram by applying short-time Fourier trans-
form (STFT) and mel-filters. STFT is a Fourier-related transform used to determine the sine
wave frequency and phase content of a local cross-section of a signal across time.

STFT(x) =
N−1

∑
n=0

x[n] ·W[t] (1)

xspec = STFT(xraw), xraw ∈ R1×T . (2)

xraw and xspec denote the 1D raw waveform and 2D spectrogram, respectively. When a
raw discrete digital signal is input to STFT function, part of raw signal x[n] and window
function (W[t] = e(−j2 f n)) was utilized to calculate spectrum, where t and f indicates time
and frequency, respectively. N, which is number of bins for STFT, was set to 4410 for
ESC-50, and 2205 for others.

After STFT, mel-filter banks generated by the function of mel-filters (Hm(k)) were
applied to extract features from the frequency domain by focusing more on low-frequency
regions. Here, f (m) indicates Hertz function calculated from the mel (m) and the mel-
filter banks are the collections of mel-filters for the various k. As illustrated in Figure 1,
filters are located in the low-frequency region more densely than the high-frequency
regions to emphasize the differences in low-frequency region inspired by the human
auditorium system.

Hm(k) =



0 k < f (m− 1)
k− f (m−1)

f (m)− f (m−1) f (m− 1) < k < f (m)

1 k = f (m)
f (m+1)−k

f (m+1)− f (m)
f (m) < k < f (m + 1)

0 k > f (m + 1)

, (3)

xmel = Hm(k) ∗ xspec, xspec ∈ RF×T . (4)
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Figure 1. Visualization of mel-filter bank through the frequency range between 300–8000 Hz. Mel-
filter banks are collections of filters with different bandwidths. Filters in the low-frequency region are
denser than the high-frequency region. It is inspired by the human auditory system for emphasizing
the low-frequency differences.

Mel-spectrogram, shown in Figure 2, is generated by passing the input spectrogram
into the mel-filters calculated by Equation (4). Here, xmel indicates mel-spectrogram; T and
F denote the time scale and number of frequency bins, respectively.

Figure 2. Outline of the pre-processing method that converts the 1D waveform into 2D mel-spectrum. Because we utilized a
2D convolutional neural network (CNN) pre-trained for ImageNet, three different mel-spectrograms with a single channel
were concatenated to generate the 3-channel format.

Through mel-spectrogram generation, 1D audio signal expands its dimension into two
(time and frequency domain). As a result, spectrogram and mel-spectrogram has single
channel in the sense of image dimensions. However, natural images have three channels
for each pixel; therefore, spectrogram and mel-spectrogram must be converted into three
channels for the transfer learning. As proposed in a previous study [14], we generated
three different mel-spectrograms from a single mel-spectrogram by applying three filters
with different window sizes and hop lengths into the same signal (Figure 2). For the first,
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second, and third channels, mel-spectrograms generated with a window size and hop
length of 25 and 10 ms, 50 and 10 ms, and 100 and 50 ms, respectively, were used. Owing to
the differences in window size and hop length, all mel-spectrograms were of different size.
Therefore, all mel-spectrograms were resized into size of the largest one. Subsequently,
the mel-spectrogram used in ESC-50 and UrbanSound8k had an input size of 3 × 128 × 250.
In addition, GTZAN had an input size of 3 × 128 × 1500, which was significantly larger
than the size of usual images.

3.2. Deep Convolutional Neural Network for Sound Event Detection

We utilized ResNet-50 [37], which has widely been used in many studies [14,38],
as a baseline network to perform our classification task. ResNet includes several residual
blocks that consist of convolutional layers, batch normalization layers, and ReLU activation
functions. They are used to extract useful features through repetitive filters and stabilize the
training process. In addition, ResNet has skip connections that merge the input and output
of the residual block to prevent gradient forgetting when the network goes deeper. Owing
to the skip connections, ResNet architectures can be expanded to more deeper networks
and achieved significant improvements by extracting the more precise features using the
series of convolutional filters. Additionally, the overall architectures can be separated into
two parts: encoder ( f (·)) and linear projection head (g(·)). Encoder is the part for extracting
the 2-dimensional features from the 2D input by striding the convolutional filters with
the learnable parameters. Linear projection head is the part for projecting the embedded
features into the target domain, in Figure 3, classification.

Figure 3. Overall architecture of ResNet-50 that inputs the mel-spectrogram. ResNet includes several residual blocks that
consist of convolutional layers, batch normalization layers, and ReLU activation function. They are used for extracting
the spatial features from the input mel-spectrogram by striding the convolutional kernels in the convolutional blocks.
The extracted features are categorized into target classes by the classification layers, which consists of the linear layers and
ReLU activation function.

3.3. Self-Supervised Learning for Pre-Training

In comparison to image datasets, there is a lack of public audio datasets. Therefore,
we developed a transfer learning scheme from natural images to the audio domain to
deliver well-tuned representations. As a pre-training method, we utilized a self-supervised
learning scheme that does not require additional labels for extracting useful representations
from samples. We conducted an experiment using the SimCLR framework [27] as a self-
supervised learning method (Figure 4).

In the SimCLR framework, each image sample is randomly augmented into two new
images via crop and resizing, color distortions, and Gaussian blur (Figure 5). After the
augmentation, two images are input to the encoder ( f (·)) and linear projection head (g(·)).
And the output (zi) of the self-supervised network is defined as g( f (xi)). Contrastive loss
(Lcontrast) is constructed to minimize the distance between the output features (zi and zj in
Equation (6)) from the same images and maximize the distance between the output features
from different images. The contrastive loss [27] is defined as follows.
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Lcontrast =
1

2N

N

∑
k=1

[l(2k− 1, 2k) + l(2k, 2k− 1)], (5)

l(i, j) = − log
exp

(
sim
(
zi, zj

)
/τ
)

∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

, (6)

In Equation (6), 1[k 6=i] ∈ {0, 1} is an indicator function and sim(u, v) = uTv/‖u‖‖v‖
is l2 normalized between u and v that indicates the similarity between two input vectors.
The pre-trained weights and models of SimCLR are available in the google’s official github
(https://github.com/google-research/simclr, accessed on 29 March 2021).

The main difference between supervised learning and self-supervised learning is that
labels are required for training the supervised learning schemes, but they are not required
for the self-supervised learning. Following Equation (7) is the cross entropy loss which is
the most widely used training objective for supervised learning. In Equation (7), xi and
yi denotes input data and target label, respectively. For training the network using cross
entropy loss (LCE), target label (yi) that corresponds to the input data (xi) must be given.
However, in the self-supervised learning framework, only the pairs of images (xi and xj)
generated by augmentations are required to calculate the output vectors (zi and zj); and
contrastive loss (Lcontrast) in Equations (5) and (6) can be trained using those output vectors
by measuring the similarity between those outputs without any labels.

LCE = −
C

∑
i

yilog( f (xi)). (7)

3.4. Transfer Learning from Natural Images to Audio Domain

To transfer the knowledge learned from the massive natural images without labels,
first, we trained the encoder ( f (·)) and linear projection head (g(·)) using the contrastive
loss described in Equations (5) and (6). Encoder network consists of the series of convolu-
tional layers to fully extract the image representations, and linear projection head consists
of a single fully connected layer to transform the extracted representations into target
domains. When the pre-trained network was transferred into audio domain, the encoder
network with pre-trained weights is fine-tuned on the target spectrogram data and linear
projection head is trained from the scratch for mapping the newly learned representations
into target domain. Figure 4 illustrates our self-supervised transfer learning scheme that
has two stages: a pre-training stage using the unlabeled natural images and a fine-tuning
stage using the target domain’s data.

https://github.com/google-research/simclr
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Figure 4. Proposed architecture of self-supervised transfer learning from natural images to the audio
domain. The convolutional neural network (CNN) was pre-trained via self-supervised learning with
unlabeled image data. After pre-training, the CNN was fine-tuned on 2D spectrogram samples of the
target audio-related task.

Figure 5. Transfer learning from natural images to the audio domain. (a) The supervised pre-training scheme that requires a
natural image with corresponding labels. (b) The self-supervised pre-training scheme that does not require additional labels
and learns the well-tuned representations from self-augmented images.

3.5. t-Stochastic Neighbor Embedding Analysis

The t-Stochastic Neighbor Embedding (t-SNE) is one of the non-linear dimension
reduction techniques that extracts the high-dimensional features into the low-dimensional
ones [39]. Usually in deep learning, t-SNE is utilized for visualizing the embedded features
to check whether the network is well-trained for the classification; if the network is well-
trained, embedded features from the same class samples are located in the near place; the
features from the different class samples are located in the far place each other. t-SNE
reduce the dimension of vectors by assigning a high probability to the points located in near
to a reference point. After assigning the probability based on distances, it defines a similar
probability distribution over the points in the low-dimensional space, by minimizing the
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Kullback–Leibler divergence (KL divergence) between the two distributions in the high-
and low-dimensional space.

4. Experiments
4.1. Datasets

We conducted experiments to validate self-supervised transfer learning using the fol-
lowing three general audio benchmark datasets: ESC-50, UrbanSound8k, and GTZAN Dataset;
they are constructed for environmental sound classification, noise-like urban sound classi-
fication, and music genre classification, respectively.

(1) ESC-50: It [20] is composed of 2000 audio clips (duration = 5 s) that are labeled into
40 classes of environmental sound, such as door knock, dog, and rain. Each class has
40 audio clips, and each sample was sampled at 44.1 kHz.

(2) UrbanSound8K: It [22] is composed of 8732 audio clips of urban sound. They are
labeled into 10 classes, namely, air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gun shot, jackhammer, sire, and street music. Each class has
800–1000 clips; each sample was sampled at a rate of 16–44.1 kHz. To use the audio
samples as input for deep learning, we fixed their length to 4 s by resizing.

(3) GTZAN Dataset: It [21] is composed of 1000 music clips labeled with 10 classes of
music genres. Each class has 100 clips and each clip was sampled at 22.5 kHz. All
clips comprised 30 s-long music files.

4.2. Experiments Settings

ResNet-50 [37] was set as the baseline network; parameters in the same settings as a
previous study [14] were used. Adam optimizer with a learning rate and weight decay
of 1e-4 and 1e-3, respectively, was used. In addition, the batch size was set to 32 and
the networks were trained using a NVIDIA TITAN-Xp GPU for 70 epochs. For the pre-
trained networks, we used ResNet-50 pre-trained with ImageNet via supervised [17] and
self-supervised [27] methods. Furthermore, we validated the results through k-fold cross-
validation using the predefined training/validation folds for three benchmarks, namely,
GTZAN, ESC-50, and UrbanSound8K. The number of folds (k) was defined as 1 for GTZAN,
10 for ESC-50, and 5 for UrbanSound8K.

4.3. Evaluation Results on GTZAN, ESC-50, and UrbanSound8K

It is evident from Table 1 that the pre-trained networks achieved superior classification
performance in comparison to the vanilla network. Well-learned features from natural
images improve the performance of audio-related tasks [14]. However, the previous study
used supervised transfer learning, which pre-trained the networks with a massive image
dataset with corresponding labels. Unlike supervised transfer learning, our self-supervised
transfer learning scheme does not require any additional label for pre-training and achieves
a similar level of accuracy as supervised learning. For ESC-50 and UrbanSound8K, the accu-
racy of the supervised method was slightly higher than that of the self-supervised method
(0.40%p and 0.04%p increase in average accuracy, respectively). Both pre-trained networks
demonstrated the same accuracy for GTZAN on average.

In addition, the loss convergence in the pre-trained networks was faster than that in
the vanilla network (almost 10 epochs). The training loss between the pre-trained networks
with supervised and self-supervised learning showed similar patterns, which denotes
the similarity between the supervised and self-supervised pre-training mechanisms with
respect to transfer learning from natural images to the audio domain (Figure 6). In these
experiments, both pre-trained networks were trained with the same number of natural
images (ImageNet). Annotating the numerous labels in an image requires significant
human labor, which limits the construction of massive pre-training image datasets [17,27].
However, self-supervised learning does not require labels and it can utilize considerably
large image datasets [27]. Although the network trained with self-supervised learning in
Reference [27] showed lower performance on ImageNet classification tasks than the one
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trained with supervised learning methods, it was the first report that the self-supervised
pre-training scheme can achieve above 70% accuracy on ImageNet. From our results,
we further demonstrated that the transfer learning across domains using self-supervised
pre-training could achieve similar performance with the supervised pre-training scheme.
Therefore, pre-training with self-supervised learning is simpler and more efficient for
transfer learning from natural images to the audio domain.

Table 1. Accuracy comparison between the vanilla network, pre-trained network with supervised
learning, and pre-trained network with self-supervised learning.

Model
Accuracy (%)

GTZAN ESC-50 UrbanSound8K

Vanilla 86.50 78.25 76.11
Pre-trained (supervised) [14] 90.50 90.55 83.34

Pre-trained (self-supervised) (Ours) 90.50 90.15 83.30

4.4. Linear Evaluation of Self-Supervised Learning Model in Audio Domain

To measure the effectiveness of pre-training with self-supervised learning, we froze the
encoder trained by self-supervised learning and only fine-tuned the single fully-connected
(FC) layer that was attached to the encoder. The accuracy of linear evaluation was 77.00%
and 63.40% for GTZAN and ESC-50, which was 89.02% and 81.02% of the accuracy of
the vanilla network for each dataset, respectively (Table 2). For UrbanSound8K, linear
evaluations achieved an accuracy of 74.24%, which is only 1.87%p less than that of the
vanilla network. As illustrated in Figure 6, the training loss in the linear evaluation
network also decreased and converged at a similar time as the vanilla network, especially
in UrbanSound8K. These results demonstrated that the pre-trained network with natural
images could perform the sound classification task by simply fine-tuning the FC layer.
The backbone network, ResNet-50, is comprised of 35,318,034 parameters and the FC
layer has 102,450 parameters, which is 0.3% of the total network. By fine-tuning the FC
layer’s weights in self-supervised pre-trained network, it achieved an 80–90% level of the
vanilla network; 0.3% of the total network, FC layer, was fine-tuned using the target mel-
spectrogram images with labels, and the remaining 99.7% parameters of the total network,
namely encoder, was pre-trained using the natural images without labels and fixed during
the transfer learning. This result implies that the encoded features of natural images helped
sound classification tasks and can be utilized for transfer learning across domains.

Table 2. Linear evaluation for the pre-trained network with self-supervised learning.

Model
Accuracy (%)

GTZAN ESC-50 UrbanSound8K

Vanilla 86.50 78.25 76.11
Linear evaluation 77.00 63.40 74.24

4.5. t-SNE Analysis

Using t-SNE [39], we visualized the output features of the residual block 4 of the vanilla
network, a pre-trained network with supervised learning, and a pre-trained network with
self-supervised learning. t-SNE captures the relevant structures of high-dimensional fea-
tures and projects them into a low-dimensional space considering that the neighboring
points in the high dimension tend to be neighbors in the low-dimensional space. As il-
lustrated in Figure 7, the features from the pre-trained networks gathered closely for the
samples with the same class in comparison to the vanilla network. Samples from classes
1 and 4 (colored dark blue and red, respectively) showed more remarkable differences
between the vanilla and pre-trained networks. In addition, both pre-trained networks
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exhibited similar patterns in the t-SNE results, which indicates that pre-training with the
self-supervised scheme has similar effects on enhancing the network representations as the
supervised schemes without labels.

Figure 6. Visualization of training loss for ESC-50, GTZAN, and UrbanSound8K. For visualization, the networks were
trained with the training set of the first fold for each dataset. The losses of supervised and self-supervised transfer learning
schemes are lower than the loss of the vanilla network, which means that pre-trained networks can boost the training
process with performance improvement. The losses of supervised and self-supervised transfer learning schemes do not
have significant differences.

Figure 7. Visualization of embedded features of the vanilla and pre-trained networks which were trained with the
UrbanSound8K using t-Stochastic Neighbor Embedding (t-SNE). For visualization, the networks were trained with the
training set of the first fold, and the samples of four classes were visualized.

5. Conclusions

We studied the self-supervised transfer learning from natural images to audio im-
ages based on the assumption that well-tuned features learned from a large number of
natural images with self-supervised learning can be transferred to others across the do-
mains. For extracting the well-tuned features, we pre-trained the CNN network using
self-supervised learning methods that learn the similarity between images without labels;
after, they are fine-tuned using the target audio mel-spectrograms. The CNN trained
with natural images using the self-supervised scheme achieved high performance in the
similar level of supervised scheme without the corresponding labels. And both pre-trained
schemes outperform the vanilla network with the large margin. Therefore, our research
can be applied to general tasks in the audio domain to achieve significant performance
improvements by simply training the target networks from pre-trained networks; addi-
tional labeling or computational resources, similar to ImageNet pre-training in the image
domain, are not required. In addition, this can considerably benefit the construction of
large pre-training datasets without labels; we will validate our self-supervised pre-training
scheme using the larger unsupervised natural image datasets, such as imagenet-21K. We
believe that our self-supervised transfer learning across domains can be generalized to
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other tasks, such as medical imaging analysis and spectral imaging analysis, which are the
fields in which it is hard to get a sufficient amount of data.
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