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Abstract: In geostationary orbit, long eclipses and the seasonal variations in the direction and
intensity of the solar input can cause damage to sensitive equipment during attitude maneuvers,
which may inadvertently point the equipment towards the Sun. The requirement that transmitting
and receiving antennae remain pointed towards the Earth creates further restrictions to pointing
directions. The aim of the study is to construct a novel geometric and reinforcement-learning-
based method to determine attitude guidance maneuvers that maintain the equipment in safe and
operational orientations throughout an attitude maneuver. The attitude trajectory is computed
numerically using the geometric framing of Pontryagin’s maximum principle applied to the vehicle
kinematics using the global matrix Lie group representation on SO(3), and the angular velocities are
shaped using free parameters. The values of these free parameters are determined by a reinforcement
learning algorithm to avoid the forbidden areas while maintaining the pointing in operational areas
(modeled as subsets of the two-sphere of all possible pointing directions of a particular axis). The
method is applied to a model geosynchronous satellite and demonstrated in a simulation.

Keywords: attitude control; satellites; geometric control; reinforcement learning; constrained motion
planning

1. Introduction

Earth-pointing satellites are sometimes required to perform attitude maneuvers from
one direction in space to another in such a way that, en route, payloads such as telescopes
do not see bright objects such as the Sun or Moon, while maintaining the communication
with the ground via the beam pencil of a communications antenna. To respect these
pointing constraints, we require the satellite orientation to respect a particular pointing
set. The pointing set is a subset of the satellite’s configuration set that guarantees safety
(in the case of bright spot avoidance) or achieves a mission outcome (in the case of the
pointing of communications antennae). The parallel concept of a safe set in robot guidance
traditionally implies solely the robot’s [x, y, z] position, but in this paper, we extend this
idea to orientation.

Several approaches to the overall constrained attitude motion planning problem are
developed. For instance, Reference [1] developed attitude commands from a geometrical
perspective, defining exclusion (or keep-out) zones on a unit sphere and determining ideal
tangential paths around these zones. In [2], the problem was approached by applying
the potential function method. Artificial potential functions guide the satellite during the
attitude maneuver and avoid the violation of pointing constraints by overlaying regions of
high potential around the forbidden regions. In [3], the unit sphere was discretized into a
graph, and an admissible path between attitude keep-out zones was found with the A*
pathfinding algorithm. Randomized path planning algorithms were used by [4]. Here,
solution paths were chosen in a random way, and a tree of possible paths was evaluated
in the target direction. The all-time low-cost admissible path was chosen. In contrast to
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most other methods in the literature, Reference [4] treated the matter directly on the special
orthogonal group SO(3). Using SO(3) to represent the spacecraft’s rotation allows pointing
constraints to be imposed on multiple body-fixed directions. Biggs [5] found reference
motions for reorienting a spinning satellite. The path-planning problem with pointing
constraints was addressed using optimization of an analytically defined cost function,
which includes these parameters. The analytical expression was expressed explicitly on the
special orthogonal group SO(3) (instead of employing a local parameterization like Euler
angles). However, no explicit way of determining the parameters to respect the pointing
constraints was presented.

One way of determining the parameters required is to preserve the pointing set is to
“teach” the satellite’s guidance system via a learning algorithm to respect the boundaries of
the pointing set. In reinforcement learning (RL), an agent (the vehicle) maps observations
(states) to actions via a policy function, which can generally be expressed as a neural
network to maximize its reward, a scalar feedback signal. The goal of RL is to determine
actions that generate a desired system behavior.

The application of RL in obstacle avoidance is not new; the study [6] used an artificial
potential field to design the positive rewards of the RL algorithm. According to the
different requirements of the task, rewards were modified in the training process to obtain
different paths. A control strategy with learning capabilities for unknown environments
was demonstrated in [7] using RL with only sparse reward information. A discrete coding
of the input space using a neural network structure was presented, which enabled a
faster and more efficient convergence of the RL process. Preservation of a safe set is
the fundamental concept of motion planning, which avoids catastrophic outcomes by
maintaining motion within certain constraints defined by safety. Collision avoidance is
the most commonly applied example of this kind of motion planning. A method was
described for generating plan-like, reflexive obstacle avoidance behavior in a mobile robot
in [8]. The paper showed experiments using a simulated vehicle with a primitive range
sensor. As the vehicle explored its surroundings, it adapted its responses to sensory stimuli
so as to minimize the negative reinforcement arising from collisions. The problem of a
mobile robot learning to navigate an unknown environment while avoiding collisions was
considered in [9]: an uncertainty-aware model-based learning algorithm that estimates
the probability of collision together with a statistical estimate of uncertainty. In order to
learn collision avoidance, the robot must experience collisions at training time. The vehicle
accelerates in velocity in settings where it has high confidence. In [10], a tailored design of
state and action spaces and a dueling deep Q-network (a deep RL network for autonomous
navigation and obstacle avoidance) were proposed for unmanned surface vehicles. In [11],
a method for enabling a quadrotor equipped with a monocular camera to autonomously
avoid collisions with obstacles in unstructured environments was given. They proposed a
deep RL-based method for obstacle avoidance that uses recurrent neural networks with
temporal attention and provides better results compared to prior works in terms of distance
covered without collisions. The paper [12] focused on the application of RL to obstacle
avoidance in dynamic environments for the control of a mobile robot. An intelligent
controller was proposed by integrating RL with the behavior-based control architecture
and applied to the obstacle avoidance. The problem in which many autonomous systems
are designed with a strong reliance on black box predictions from deep neural networks,
which tend to be overconfident about unseen data, was considered in [13]. The importance
of predictions that are robust to this is evident for safety-critical applications, such as
collisions. The paper used an RL framework to form uncertainty-aware navigation around
pedestrians.

Our aim in this paper is to use RL in the planning layer of the architecture, to produce
a trajectory between two orientations that maintains the spacecraft in the pointing set
throughout the maneuver. The approach combines and extends that described in [5]; we
describe the system kinematics on SO(3), and then formulate the problem as an optimal
kinematic control problem on a matrix Lie group. An application of Pontryagin’s maximum
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principle (PMP) gives the necessary conditions for optimality in the form of extremal
equations, which as in [5] contain a number of unknown parameters. RL is applied to
augment the shape of the curve to avoid a forbidden region, by selecting the value of the
parameter such that the path remains in the pointing set. These amended parameter values
are then used to construct a new trajectory that maintains the satellite in the pointing set.

2. Methods

We considered the case of a satellite in geostationary orbit equipped with a communi-
cations antenna with a relatively small beam pencil that needed to be pointed towards the
communications ground-station at all times and a sensitive on-board telescope that needed
to avoid a bright celestial object. Expressing the attitude kinematics as R(t) € SO(3),
we have:

dR(t
BRI — R(1)(con (1) A1 + won(8) Az + (1) ) <1>
where R(t) € SO(3), and:
0 0 1 0o 0 O 0 -1 0
Ai=10 0 0|, Ap=1]0 0 1|, As=|1 0 o0 @)
-1 0 0 0 -1 0 0 0 O

is the standard basis of the Lie algebra so0(3). We developed a three-step method that
solves the attitude guidance problem of determining the desired wj, w;, w3 and solving
Equation (1) numerically such that the boundary conditions:

R(0) =Ry R(t) = R, @)
(where Ry is the prescribed initial attitude and R; the desired final attitude) are satisfied.

2.1. Bright Spot Avoidance

Figure 1 shows the local vertical and local horizontal (LVLH) reference frame, which
has its origin at the satellite center of mass and has orthogonal axes (denoted by x,y, z),
with the z-axis from the origin of the frame towards the Earth center, the x-axis in the orbital
plane in the direction of orbital motion and perpendicular to the z-axis, and the y-axis
completing the frame by the right-hand rule. A second, body-fixed, set of axes (denoted
by X,Y, Z) and also centered at the satellite center of mass move with the body, and the
spacecraft attitude is then defined as the relative angle from the local-level coordinates to
the body frame.

Figure 1. The inertial LVLH frame (X,Y,Z) and the body fixed frame ((x,y,z) shown in grey) with the
telescope boresight initial and final directions £y and £;.

The line-of-sight unit vector ¢y is along the initial direction of the boresight, and ¢
denotes its final desired direction. The figure depicts a bright object to be avoided by
the telescope. The centroid of the bright point, s (from the Sun), is specified by an angle
(azimuth) a* in the slew-plane {y — /¢ and an elevation angle €* that measures its angle
from the Y-axis. Although the Sun is moving with respect to the Earth-centered frame, we
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may assume for our purposes that since the maneuver time is significantly shorter than
a solar day, the Sun’s position is fixed in this frame. The celestial object is avoided by a
minimum specified angle denoted €spec; that is, the dot product of the Sun’s position vector
s with the boresight axis position a must fall within the set:

S ={ve R3 | s e v <sinespe, ||V]| =1} 4)

This set describes a region bounded by a cone in R3, and the intersection of this cone
with the sphere S! describes the boundary of the forbidden region of the orientation of the
boresight axis. In this paper, the boresight axis is denoted by a = [2,2,1], and the trajectory
traced by the boresight is then be given by:

a(t) =R(t) - a. )
This trajectory a(t) must lie within the set S; at all times.

2.2. Communications Pointing Maintenance

In addition to the telescope in the previous section, we considered that the spacecraft
has a communications antenna with a beam pencil centered on the Z-axis with pitch ¢. We
wished to ensure that the beam pencil does not pass out of contact with a ground station
directly at the nadir; i.e., the z-axis in the body-fixed frame must remain within sin2¢ of
the Z-axis in the LVLH frame. This criterion requires that the dot product of the antenna
axis must fall within the set defined by the inequality:

S, ={veR3|[0,0,1]ev <sin2g, ||v] =1}, (6)

The boundary of this region is a cone in R3, and the intersection of this cone with the
sphere S? describes the boundary of the region in which the antenna axis must remain.
In this paper, the antenna axis is denoted by b = [0, 0, 1], and the trajectory traced by the
antenna is then given by:

b(t) = R(t) - b. (7)

This trajectory b(t) must lie within the set S, at all times.

In what follows, the maintenance of the pointing set means that:

b(H)eS, A a(t) ¢S ®)

forallt € [0,1].
The boundaries of these two sets are shown on the sphere in Figure 2.

Figure 2. The boundaries of the pointing set. The bright spot set that needs to be avoided (Sy) is the
interior of the sphere with the dashed boundary, while the set where the antenna needs to remain
(&81) is the interior of the sphere with the solid boundary.
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2.3. Trajectory Generation

We determined the solution g(t) € G of the left-invariant differential system (1) that
satisfies the boundary conditions:

R(0) =Ry, R(Ty) =Rp ©)

while minimizing the expression:

1 Tr
J = 5/0 (c10? 4 cow3 + c3w?)dt. (10)

This cost J in Equation (10) allows one to define a large class of trajectories where
the weights of the cost function can be chosen to alter the shape of the path between two
prescribed boundary configurations. A standard geometric control theory approach was
used to generate these trajectories to minimize a cost .J; for context, as for the nomenclature
used in this section, the reader is directed to Appendix A, as well as any reader unfamiliar
with geometric control theory.

As stated in Appendix A, to determine the optimal trajectory minimizing the cost
J, we required integrating the kinematic equations (Equation (1)) and the extremal equa-
tions (Equation (A2)) simultaneously in the real-time interval [0, Tf]. To do this, we used
numerical integration in the following way: setting:

Py =M, P, = M, P3 = M3 (11)
then by the PMP, the optimal values of the velocities are given by:
wy =P /c1, wr=P/c, w3=P/c3 (12)
and for g in SO(3), the solution of the kinematic equation, we may assign:

Py Ps P 811 812 812
P; Pg Py| = |81 82 83| (13)
Py P Pr2 831 832 833
Using the fact that from (1):
R = R(LllAl + leAz + M3A3), (14)

(where R(t) denotes the desired trajectory), we may express the kinematic and extremal
equations together in vector form:

P,
dar
P,
dr
dps
dr
P,
dr

= —DPP3/co+ PyP3/c3

= PP3/ci — PPs/cs

= —PP/ci+PP/cy (15)

= P

dPyy
dt

The initial value is given by:

Py = [Ao, R, R, ..., RE)T (16)
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where Rg are the i, j components of the matrix Ry in Equation (9), and Ay = [p(l), e, pg, M?,
..., M), the unknown initial vector for the extremal equations. Integrating (15) starting
from Py with an initial guess for Ay and rearranging the solution P, ..., P» using the
function:

X1 X3 Xy
] 17)

b Rlé — R4X4, d>([x1,x2, .. .,X16D = [xg X5 X§

X3 X X9

we then obtained the ®([Py(t),...,P12(t)]) = R(t), the matrix that gives the optimal
solution in the configuration space.

Note: we are aware that for integrating Equation (1) developed on a matrix Lie
group, symplectic integration is preferred over a numerical integration of (15). However,
we calculated the deviation from the Lie group over the time interval [0, T¢] used in the
simulations presented in Section 2 by calculating the norm of the difference of R(t)R(t)T
and the identity matrix over the whole of the trajectory to determine if the structure of
SO(3) was preserved. Figure 3 shows that the difference is of the order of magnitude of
1013, while Figures 4 and 5 also strongly suggest this result since the curves remain on the
surface of the sphere throughout the maneuver.

%1078
1.4
12}
1 L
—
= 08}
0.6 0
0.4} ]
02} T
0 r‘”’r L L n
0 0.2 0.4 0.6 0.8 1

time [s]

Figure 3. Frobenius norm of the difference between R(t)R(t)T and the identity matrix for the
trajectories shown in Figure 4a (dashed) and Figure 5a (solid).

05

-0.5

(b)

Figure 4. Correcting for a bright spot. The initial trajectories constructed between the points (a)

in determining the pointing-constraint trajectory described by the parameters in Path 1 and the
same trajectories after choosing the c; values using reinforcement learning (b). The initial points are
indicted by + and the final points by * (initial and final points from Equation (22).
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(b)

Figure 5. Correcting for antenna pointing. The initial trajectories constructed between the points

(a) and the same trajectories after choosing the c; values using reinforcement learning (b). The initial
points are indicated by + and the final points by * (initial and final points from Equation (23)).

The following steps were then used to solve the optimal control problem of moving
the vehicle from the initial to the final configuration:

e Step 1: Determine the solution R(1, A, C?) of (1) that minimizes the cost (10) by
integrating the equations using (15) in terms of a chosen value c? = [1, 1, 1] the
unknown boundary conditions A on the (imaginary) time domain [0, 1].

e Step 2: Construct the “error matrix” R(1, Ay, ) = R(1, Ag,?) — Rp and the function:

S(A0) = [R(Ao, )|

for the fixed choice of c?.
e Step 3: Find A( that minimizes S(Ag) for the particular choice of C?, Tr =1, usinga
local minimizer.

After Step 3 was completed, an initial trajectory was determined in terms of the
particular choice of variables c?. We went on to apply RL to allow the vehicle to reactively
choose a new optimal path that avoided the obstacles by adapting the c; values away
from the chosen initial values C?. The initial choice of one for each ¢; value was made,
which corresponded in the case that energy was being evaluated to equal inertia values for
each axis.

2.4. Reinforcement Learning

In this subsection, we specify the observation and reward functions that we used in
conjunction with MATLAB'’s Reinforcement Learning Toolbox software. In this software,
the policy that selects the best action to take is represented in the form of a neural network.
In this case, the action is an amendment of the values c(l), cg, cg ; the action output is added
to the ¢ values selected in Step 1 in order to choose a new path such that the obstacle
is avoided.

The observation sent to the RL block consists of detecting the boundary of the sets S;
and S, and the reward function r(t) is set up in order to ensure that the condition in (8) is
maintained. In particular, when the antenna intersects the boundary of the pointing set Sy,
the condition (denoting b = [x}, 13, zp]) is expressed by a logical value:
obsy (1) = {(1) if x2 + y2 >=1r3 and z, >=0.791 (18)

where r, = sin(2¢) and ¢ = 0.175. Since the antenna axis is taken as [0, 0, 1], the boundary
of the region is clearly a plane parallel to the x-y-axis, and z; = 0.791 where it intersects the
z-axis arises by choosing ¢ = 0.174; therefore, the coordinates of the boundary projected
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on the plane) are given by X, = sin(2¢) cos(0), Y}, = sin(2¢) sin(6) (for 6 € [0,27]), and
zp, can be calculated from the inverse stereographic projection through the south pole,

2 2
_1-X-Y

Zy = — 5 -
T 1e X242

To determine the boundary of the set &1, we used the projection from sphere to plane,

X, Y] = <1fz'lzz>

to map the vector a = [x4, Y4, Z4| to the plane where it has the form [X;, Y;| and the Sun
vector s = [xs, s, 25| to the plane where it has the form [X, Y], and we calculated the value:

A= (X, — X2+ (Yo — Ys)2.

The intersection of a with the boundary of the set S is then described by:

. < 2
obsq(t) = {é fAsn (19)

where r; = 0.25. The reward is correspondingly calculated as:
—10 ifobsi(t) =1 V obsy(t) =1
V(t) _ 1 Y Sl( ) Y SZ( ) (20)
10 if obsi(t) =0 A obsy(t) = 0.

The RL-block then uses a neural network to calculate the three action outputs based
on the values of the reward and observation functions. We chose the simple reward
function (20) to avoid the issues of “reward shaping”, which may lead the agent to make
unnecessarily elaborate maneuvers to increase the reward. A drawback of the Reinforce-
ment Learning Toolbox is that the neural network defining the policy function component
is a “black box”, and so, we had no real insight into the scaling involved. In this case, it
was noticed that the policy was outputting actions to the order of 1073, so it was required
to introduce a scaling of the actions to produce reasonable results. After trial and error,
we determined that a scaling of 100 was efficient. Some further insight into the neural
networks used in the policy function could have assisted in choosing a scaling term less
heuristically.

2.5. Choosing a New Optimal Path Using Reinforcement Learning

After the initial guess c;, the values ¢? were amended to the obstacle-avoidance values
chosen by RL (which we denote by c!!, which as we noted in the previous section was
determined by clﬂ = ¢¥ + action), and we constructed a new trajectory that avoided the
obstacle. We followed Steps (1)—(3)with the following amendments in order to construct
the final trajectory:

e  Step (1a): Determine the solution R(1, A, clﬂ) of (1) that minimizes the cost (10) using
(15) in terms of the unknown boundary conditions A on the imaginary time domain
[0,1].

e Step (2a): Construct the “error matrix” R(1, Ao, c') = R(1,Aq,cl) — Rr, and the
function: B

S(Ao) = IR(L, Ao, ). (21)

e  Step (3a): Find Ay that minimizes S(A) using a local minimizer.
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3. Results

We applied the steps described in Section 2 to create attitude maneuvers for a geosta-
tionary satellite from initial configuration Ry to final configuration Rp. We show two ex-

amples:
[—0.9933  0.0997 —0.0584 0.5817  0.6517  0.4868
Path1: Rp= | 0.0998 0.9950 0 , Rp= {08134 —0.4660 —0.3481 (22)
| 0.0581 —0.0058 —0.9983 0 0.5985 —0.8011
[—0.6504 0.0653 —0.7568 0.21078  0.9761 0.0525
Path2: Rop= | 00998  0.9950 0 |, Rp=|02947 —00123 —09555| (23)
| 0.7530  —0.0756 —0.6536 —-0.9320 0.2170  —0.2903

Rather than simply plotting these two maneuvers, we ran a series of simulations on
an incremented set of the final position of Paths 1 and 2 to create a class of curves starting
from the initial point Ry and going to a set of perturbations of the end point Rp. This
showed that the method successfully adjusted each curve in the class to remain within the
pointing set, rather than showing a single curve from Ry to Rp, which could represent an
exceptional case.

The incremented sets of the final positions for Paths 1 and 2 are given by:

R1= {exp(Azpi)RD | pi=—05+1i/18,i € [0,1,. . .,9”’,

1 T . .
Ry = {exp(—2A43) exp(§A1)exp(§A2) exp(A1p))Rp | pi = —02+i/225,i€[0,1,...,9]}

where the rotation matrix used to determine the iterations was chosen such that the curves
in the set from the initial point Ry to the final points in the sets R; would violate the
conditions stated for each path.

The plots of the maneuvers can be seen in Figures 4a,b and 5a,b. Running 10 examples
also allowed us to calculate the average CPU time for each of the two cases: for Path 1,
the average CPU time was 1.437 s, and for Path 2, the average CPU time was 2.113 s. The
CPU time was calculated as the sum of the CPU time for the MATLAB script used to
calculate the curves in Figures 4a and 5a (using Steps 1-3), the Simulink run to determine
the new c; values, and then, the second MATLAB script used to calculate the curves in
Figures 4b and 5b (using Steps 1a—3a).

We chose Path 1 where the original optimal trajectory could be seen to cause the
telescope to pass across the bright spot S, while in Path 2, the original optimal trajectory
designed for the antenna did not fall in the desired pointing region. One can see from
the adapted trajectories in Figures 4b and 5b that the c? values were successfully updated
in order to point the telescope a(t) away from the forbidden region at all times while
maintaining the communications antenna curve b(t) in the desired region.

4. Discussion and Conclusions

This paper presented a method to obtain optimal attitude guidance controls for a
spacecraft in geostationary orbit, avoiding pointing sensitive instrumentation towards
the Sun during an attitude maneuver while maintaining the direction of a beam pencil.
This method used RL to produce an optimal trajectory that reacted to the presence of
obstacles to maintain the configuration in the pointing set. The simulations carried out
demonstrated that the trajectory that we designed avoided the forbidden pointing direction
while maintaining the antenna in the operational pointing direction for two classes of paths,
one that violated the bright-spot condition and a second that violated the antenna-pointing
condition. When comparing the average CPU times for the two classes of solutions shown
here (Path 1, 1.437 s, and Path 2, 2.113 s) with those determined in [5], which perform
Lie group-based pointing while avoiding a bright spot (between 0.36 and 0.406 s), the
comparison seems unfavorable: however, in their method, the user is required to first
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run the program with a “guessed” c; value and then increment the c; values manually,
each time running and then visually confirming that the trajectory avoids the forbidden
region, a process that is certainly less efficient even if it is less computationally demanding.
Therefore, a comparison of CPU times between the two papers is not entirely meaningful,
and in terms of the ease of operation, ours is certainly preferable.

A possible drawback of our method is that we assumed the attitude to be precisely
known. However, in a real mission, there will be delays in the pose estimation. We also
assumed that the initial and final orientations were chosen such that the Sun-avoidant
and beam pencil vectors fell in the pointing set at the initial and final position, which is
reasonable, but a refinement could be to select a suitable orientation to replace the initial
and final orientations if they are chosen to fall outside of the pointing set. Another weakness
is the “black box” nature of the policy function neural network; also, we constructed a
simple reward function and did not perform any reward shaping: it was seen as preferable
since a poorly shaped reward function can cause a solution that is not ideal even if it
provides the highest reward. This can be seen particularly in the fact that the vehicle passes
the obstacle relatively closely and then overcompensates through the rest of the trajectory.
Refining of the reward function and the inclusion of time and sensor delays are areas to be
addressed in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

RL Reinforcement learning
PMP Pontryagin’s Maximum Principle
LVLH Local horizontal-local vertical

Appendix A. Optimal Control Approach

PMP [14] is a necessary condition for optimality, which is most naturally expressed in
the language of the geometry of the cotangent bundle T*G of a matrix Lie group G, where
G is the configuration space of a particular motion (in this paper, G = SO(3)) [15]. The
cotangent bundle T*G can be trivialized (from the left) such that T*G = G x g*, where g*
is the dual space of the Lie algebra g. PMP is associated with the system Equation (1) with
the cost J in (10) an optimal Hamiltonian function H on T*G = G x g*. It follows that the
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cotangent bundle of any manifold G is endowed with a canonical symplectic two-form xz

that associates to each function H on T*G a vector field H defined through the relation:
dH; (0) = xz(He, 0)

and each tangent vector v € T¢(T*G).

Since in the case of SO(3), s0(3)* can be identified with so0(3) [15], in this case, the
Hamiltonian function is a function on SO(3) x so(3). It follows that the Hamiltonian vector
fields are given by the equation H[-,-] = {.,.}, where {.,.} denotes the right Poisson
bracket. Let p denote an element of s0(3)*. Then, denoting the lift of the basis A1, Ay, A3 as
M; = p(A;), an optimal trajectory R() : [0,t] — SO(3) is a projection of an integral curve
(R(-), M(-)) of the time-varying Hamiltonian vector field H that satisfies the boundary
conditions given in (1) and (10). This is called the projection “downstairs”, and M(-) is
the extremal curve, or the projection “upstairs” of (R(-), M(-)). The projection downstairs
satisfies the differential equation:

R71(t) (‘Zf) = dH, (A1)

(where dH = Y3, g—gAi, the unique vector field satisfying dH(v) = X(ﬁ, v)), while the
projection upstairs can be determined by solving the extremal equations given in the
following theorem.

Theorem [16]: The non-canonical Hamiltonian vector fields that are necessary condi-
tions for optimality under the PMP are defined by:

dM; MyM;  MyM;

7. = - + A
dt Cy C3

dM, MMz MM, (A2)
dt C1 C3 !

dMs MiM, M;M,

- = e e
dt 1 cr

While in our particular case, optimality was used to produce a certain class of useful
trajectories, we note that from [16], when the weights c; are fixed to the values ¢; = I; where
I; represents inertia about the i-th axis, the trajectory (R(-), M(-)) is an energy-minimal
trajectory. Here, however, we used the optimization process to access a class of smooth
trajectories described using a global representation of the attitude on the matrix Lie group

SO(3).
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