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Abstract: With the increasing use of the tunnel boring machine (TBM), attempts have been made
to predict TBM operating parameters. Prediction of operating parameters is still an important
step in the adaptability of the TBM for the future. In this study, we employ a walk forward (WF)
prediction method based on ARIMAX, which can consider time-varying features and geological
conditions. This method is applied to two different TBM projects to evaluate its performance, and is
then compared with WF based on ordinary least squares (OLS). The simulation results show that the
ARIMAX predictor outperforms the OLS predictor in both projects. For practical applications, an
additional analysis is carried out according to the real-time prediction distance. The results show
that time series-based ARIMAX provides meaningful results in 8 rings (11 m) or less of real-time
prediction distance. The WF based on ARIMAX can provide reasonable TBM operating conditions
with time-varying data and can be utilized in decision-making to improve excavation performance.

Keywords: real-time prediction; operating parameter; TBM; ARIMAX; walk forward

1. Introduction

A tunnel boring machine (TBM) is a piece of equipment that mechanically excavates
a circular full face. Unlike the drilling and blasting method, use of a TBM for rock is
advantageous in preventing noise and disturbance of the surrounding rock mass because
of the use of a disc cutter attached to the TBM face, the cutterhead. Therefore, the TBM
method is widely used in areas with considerable urbanization for power supply, water
supply, and subway construction. However, the adaptability of the TBM for the future
environment is sometimes limited by geological conditions such as rock fracturing, faulting,
spalling, squeezing, and high water pressure [1,2]. To ensure lower construction cost
and higher project safety, it is necessary to adjust the operating parameters of the TBM
depending on the geological conditions. The method for improving the adaptability of the
TBM is to utilize TBM monitoring data in real time to predict the future operating values of
the TBM.

There have been several studies on the prediction of operating parameters. Among
them, prediction of the thrust has been considered one of the important research issues [3].
Wang et al. [4] and Zhang et al. [5] used rock mechanics-based methods to analyze the
thrust force of earth pressure balance (EPB) TBM. Gertsh [6] and Cho et al. [7] analyzed the
relationship between rock-related parameters and thrust per cutter using a linear cutting
test. Yagiz [8] and Hassnapour et al. [9] developed empirical models to predict parameters
related to thrust. Recently, some works using machine learning (ML) techniques have
been reported to effectively analyze complex field data. Based on data collected from
the field, Naghadehi et al. [10] employed gene expression programming (GEP) to predict
thrust-related parameters. Salimi et al. [11] used support vector regression (SVR) in hard
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rock conditions. A study applying random forest (RF) was also conducted based on
heterogeneous in situ data [12].

The aforementioned works based on experimental, numerical, and empirical methods
provide insights into the prediction of thrust, but these methods have limitations in terms
of field applicability because they provide thrust values in the form of a range. In addition,
operating parameters such as thrust are dependent on time-varying and non-stationary
features. For example, since non-time series methods such as GEP and RF only use the
current inputs without the aid of previous input information, they are not suitable for
thrust prediction in real time.

Recently, a time series-based method has been utilized for real-time prediction of
thrust [13]. Since this method considers both current inputs and previous input information,
it is suitable for application to non-stationary time series parameters, such as TBM thrust.
However, the inputs of the existing model include only operating parameters and not
geological conditions, which are known to be the main parameters related to TBM thrust.
For example, higher thrust is generally suitable for hard rock and non-discontinuity rock
conditions. The importance of geological conditions has been shown in several literature
works [5,14,15].

In this study, we simulate walk forward (WF) based on ARIMAX in consideration of
both geological parameters and TBM thrust. Two actual projects with different construc-
tion conditions are employed to obtain the data used for constructing empirical models,
respectively. For comparative analysis, the proposed method is compared with non-time
series WF based on ordinary least squares (OLS). Additionally, the thrust prediction is
examined according to the real-time prediction distance to validate the field applicability.

2. Methodology
2.1. ARIMAX

An autoregressive integrated moving average (ARIMA) developed from an ARMA
that considers the time series characteristics of output parameters was developed [16].
ARMA is a model that combines the autoregression (AR) proposed by Yule [17] and the
moving average (MA) proposed by Slutsky [18] (Equation (1)).

Yt = c + εt + ∑p
i=1φiYt−i + ∑q

j=1θjεt−j (1)

where c is constant, ε is error, and p and q are the order of AR and MA, respectively. ARMA
expresses the current time series using the previous time series of the output parameter
and error. This model is mainly applicable to stationary conditions where the mean and
variance of the time series are constant.

In social science, however, time series such as statistics, exchange rates, and prices
often take non-stationary patterns that are not constant in the mean and variance. If the
output parameter is non-stationary, ARIMA taking into account differences is generally
used (Equation (2)).

∆Yt = c + εt + ∑p
i=1φi∆Yt−i + ∑q

j=1θjεt−j (2)

where ∆Y is the differentiated output parameter. ARIMA considers not only the charac-
teristics of the ARMA, but also the trends and momentum of the previous time series. In
general, ARIMA is mainly used for short-term prediction problems.

However, ARIMA only handles previous time series parameters, and it cannot con-
sider the influence of exogenous parameters. ARIMAX can improve ARIMA by combining
exogenous parameters with ARIMA (Equation (3)):

∆Yt = c + εt + ∑p
i=1φi∆Yt−i + ∑q

j=1θjεt−j + ∑r
k=1τkXt−k (3)

where X is the exogenous parameters, and r is the lagged order of the exogenous parameters.
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Operating parameters such as thrust are dependent on time-varying and non-stationary
features. For this reason, it is desirable to use ARIMAX to capture the prediction accuracy.
In addition, geological parameters affecting the thrust values [19,20] can be considered as
inputs, which are the exogenous parameters of ARIMAX.

2.2. Real-Time Prediction: Walk Forward

Walk forward (WF) is a real-time prediction method mainly used in the field of time
series prediction, such as real-time trading strategies, to optimize the coefficient of a model
in real time [21]. As shown in Figure 1, WF optimizes a predictive model using a previous
dataset called the “in-sample” and then tests it on a small period of the subsequent dataset
called the “out-of-sample”. This step is repeated whenever the “in-sample” is extended to
the future, and the outputs predicted in each step are sequentially stacked. In the final step,
all the predicted values are evaluated at once.
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Figure 1. Example of real-time prediction procedure for walk forward (WF) in project A-1.

WF optimizes the model’s structure or coefficients for the adaptability of the TBM
to the future environment. The previous data information for the tunnel sections, where
the TBM excavation is already completed, are regarded as the “in-sample”. On the other
hand, the sections ahead of the TBM face to predict the thrust are considered as the “out-of-
sample” (real-time prediction sections).

2.3. Algorithm for Real-Time Model Construction

The prediction model based on ARIMAX should be optimized automatically in every
WF step to implement the WF. In accordance with this need, we develop an algorithm for
model construction without the help of any human judgment (Figure 2). In the first stage,
the tuning space of hyperparameters p, d, q, and r pertaining to ARIMAX must be specified.
Giving a dataset to the algorithm, the i-th (i = 1, 2, . . . , N) hyperparameter set chosen from
grid-search is used for model training. This process is repeated until N candidate models
are built. Among N models, only the one with the lowest Akaike information criterion
(AIC) [22] is finally selected as the predictive model.
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3. Data Acquisition and Preprocessing
3.1. Brief Introduction to Projects A-1 and B-2

Project A, with a total length of 5.09 km, was constructed as a cable tunnel. The
tunnel is divided into four sections according to the construction method: section A-1
as shield TBM (2.26 km), sections A-2 and A-4 (0.74, 1.63 km) as open cut, and section
A-3 (0.46 km) as semi-shield TBM. The geological formation consists of predominantly
Precambrian biotite banded gneiss and some intrusive rocks. In particular, small amounts
of quartzite and limestone are interspersed in the metamorphic rock throughout the whole
area. Section A-1, considered in this study, is located at a depth of between 45.0 and
51.5 m from the ground surface. Since the fractured zone is distributed along the tunnel
alignment, an earth pressure balance (EPB) shield type was used to excavate the tunnel
more efficiently.

On the other hand, project B (tunnel length is 5.22 km) was built as a subsea tunnel to
supply power. The tunnel depth is 60 m from the seabed and passes through strata of soft
and hard rock. In section B-2, a slurry shield type was used to resist the high water inflow.
Details of equipment specifications are summarized in Table 1.

Table 1. Specifications of shield tunnel boring machine (TBM) applied to projects A-1 and B-2.

List
Project

A-1 B-2

TBM type EPB shield Slurry shield
Excavation diameter 3.40 m 353 m

Maximum thrust 9600 kN 12,000 kN
Maximum cutterhead revolution per minute 90 rev/min 4.6 rev/min

Maximum cutterhead power 630 kW 440 kW
Maximum cutterhead torque 1250 kN·m 1410 kN·m

3.2. Data Augmentation

The size of borehole datasets obtained from projects is considerably smaller than the
size of TBM operating datasets (Table 2). In other words, the tunnel sections positioned
between the boreholes have none of the borehole information. For this reason, the loss of
the TBM operating dataset between boreholes is inevitable due to the mismatch between
geological information and the TBM operating dataset. Therefore, additional processing is
a prerequisite to match the borehole and the TBM operating dataset.
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Table 2. The size of the dataset for borehole and TBM operating parameters.

Project
Number of Data

Borehole Dataset TBM Operating Dataset

A-1 41 1641
B-2 10 731

In this study, a weight parameter expressed by a distance for the n-th segmental
lining was introduced (Figure 3). The two weight parameters can be quantified as the
distance between two adjacent boreholes from the n-th segmental lining position. The
weight parameter makes it possible to retrieve both boreholes’ information for the n-th
segmental lining. Using this parameter, we augmented the dataset with output (thrust)
and input parameters, as summarized in Table 3.
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Table 3. Input parameters for predicting the current value of thrust.

Input Category Contents

Geological parameter UCS, RQD, RMR, Pw, Sw, De, Ab
Weight parameter W

Operating parameter Thrust (previous)
W, weight parameter; UCS, uniaxial compressive strength; RQD, rock quality designation; RMR, rock mass rating;
Pw, P-wave velocity; Sw, S-wave velocity; De, deformation modulus; Ab, absorption ratio.

4. Prediction Results
4.1. Initial Conditions and Prediction Procedure

To simulate tunneling, 30% of the entire dataset is assumed as the initial “in-sample”.
The tuning spaces of the hyperparameter set concerning ARIMAX were specified by trial
and error and by referring to the literature (Table 4) [23].

Table 4. Hyperparameter tuning space related to ARIMAX.

Hyperparameter Range Sampling Method

p and r 1–5
Grid searchd 0–2

q 0–2

As mentioned in Section 2.2, prediction values for current thrust were sequentially
stacked step by step until the WF’s final step is achieved, and then all of the predicted
values were evaluated at once using a validation index, mean absolute percentage error
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(MAPE) (Equation (4)), which is a kind of indicator expressing the TBM penetration error
as a percentage in reference to the actual value:

MAPE (%) =
1
n
×

n

∑
i=1

∣∣∣∣actual valuei − predicted valuei
actual valuei

∣∣∣∣× 100 (4)

4.2. Prediction Analysis

Figures 4 and 5 show the prediction results in projects A-1 and B-2, respectively.
As shown in Figure 4, the ARIMAX predictor outperformed the non-time series-based
ordinary least squares (OLS) predictor in project A-1. This phenomenon can also be seen in
project B-2 (Figure 5). These results imply that the previous input values used in ARIMAX
provide meaningful information for predicting the values of current thrust, and that the
thrust has time-varying features.

Figures 4 and 5 are the prediction results under the condition that the real-time predic-
tion distance (out-of-sample size) is one segmental lining. For practical applications, an
additional analysis was performed according to the real-time prediction distance (Figure 6).
As the real-time prediction distance increases, the MAPE (%) also increased logarithmically
in both ARIMAX and OLS. As for the comparison between the two predictors, the ARIMAX
outperforms OLS regardless of the real-time prediction distance in project A-1. The result in
project B-2 also showed a similar trend, but when the real-time prediction distance is more
than 8 rings, the performance for the ARIMAX began to be lower than the performance of
OLS. The output of the ARIMAX predictor is dependent on time series, whereas OLS is
not. If the real-time prediction distance increases, that of the future period to be predicted
will also increase, which means ARIMAX does not guarantee a higher prediction accuracy
in a longer future period. Based on the experimental tests with the two projects, it can
be interpreted that time series-based ARIMAX provides meaningful results where the
real-time prediction distance is under 8 rings for practical application.
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To compare the relative performance between WF based on ARIMAX and OLS, we
calculated the difference in error in the unit of times (Figure 7). When the real-time
prediction distance is 8 rings, the ARIMAX outperformed OLS by approximately 1.3 times
in project A-1, and 1.1 times in project B-2. As the real-time prediction distance gradually
decreased from 8 rings, the difference in error showed increasing patterns in both projects.
The distance of 8 rings corresponds to about 10 m (1.2 m/ring), and such a time interval
gives enough time for TBM operators to make a decision. However, a universal value for
allowable real-time prediction distance cannot been specified because it varies with the
project’s conditions. Accordingly, this value (11 m) can be used only as a reference, and
application to more projects would be needed to approximate the universal value.
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Figure 7. Difference in error (mean absolute percentage error (MAPE)) of ordinary least squares
(OLS) with reference to ARIMAX in projects A-1 and B-2.

4.3. Contributions and Limitations

The WF based on ARIMAX can provide reasonable TBM operating conditions with
time-varying data if a reliable dataset can be secured in the TBM project. This method can
be utilized in decision-making to improve the excavation performance of TBM. As for the
optimum real-time prediction distance, more application to various sites will be required
to determine this.

5. Conclusions

We simulated WF based on ARIMAX in consideration of both geological parameters
and previous TBM operating parameters. Two actual projects with different construction
conditions were selected to test the performance of the method. For comparative analysis,
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the proposed method was compared with non-time series OLS. Additionally, the prediction
of current thrust was examined depending on the real-time prediction distance to validate
the practical applicability. The simulation results showed that the ARIMAX outperforms
the OLS predictor in both projects. As for the analysis according to the real-time prediction
distance, the results showed that time series-based ARIMAX provides meaningful results
where the real-time prediction distance is under 8 rings (11 m) or less. Such a time interval
gives enough time for TBM operators to make decisions. The WF based on ARIMAX can
provide reasonable TBM operating conditions with time-varying data. Of course, there
remain several challenges such as outlier processing for in situ data and consideration of
the operator’s driving skills. Nevertheless, this study is expected to be used as an important
reference for the development of predicting various operating parameters in the future.
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