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Abstract: In this paper, we present an adaptive modeling and linearization algorithm using the
weighted memory polynomial model (W-MPM) implemented in a chain involving the indirect learn-
ing approach (ILA) as a linearization technique. The main aim of this paper is to offer an alternative
to correcting the undesirable effect of spectral regrowth based on modeling and linearization stages,
where the 1-dB compression point (P1dB) of a nonlinear device caused by memory effects within
a short time is considered. The obtained accuracy is tested for a highly nonlinear behavior power
amplifier (PA) properly measured using a field-programmable gate array (FPGA) system. The adap-
tive modeling stage shows, for the two PAs under test, performances with accuracies of −32.72 dB
normalized mean square error (NMSE) using the memory polynomial model (MPM) compared with
−38.03 dB NMSE using the W-MPM for the (i) 10 W gallium nitride (GaN) high-electron-mobility
transistor (HEMT) radio frequency power amplifier (RF-PA) and of −44.34 dB NMSE based on the
MPM and−44.90 dB NMSE using the W-MPM for (ii) a ZHL-42W+ at 2000 MHz. The modeling stage
and algorithm are suitably implemented in an FPGA testbed. Furthermore, the methodology for
measuring the RF-PA under test is discussed. The whole algorithm is able to adapt both stages due
to the flexibility of the W-MPM model. The results prove that the W-MPM requires less coefficients
compared with a static model. The error vector magnitude (EVM) is estimated for both the static
and adaptive schemes, obtaining a considerable reduction in the transmitter chain. The development
of an adaptive stage such as the W-MPM is ideal for digital predistortion (DPD) systems where the
devices under test vary their electrical characteristics due to use or aging degradation.

Keywords: FPGA; memory effects; nonlinear modeling; power amplifiers; W-MPM

1. Introduction

The choice of the compression region for operation near saturation, thus avoiding
the back-off driving of a power amplifier (PA), poses a transcendental challenge in terms
of the search for a tradeoff between efficiency and linearity. This fact combined with
addressing design issues and solutions in PAs adapted to the 5G mobile requirements,
together with using new digital modulations for mobile applications and the high demand
for applications, services, and mobile devices, becomes even more critical. Thus, to meet
user capacity requirements, higher data rates, and additional bandwidth that exceeds
1 GBit/s for mobile access are required to reach this arrangement [1]. It will be extremely
challenging to achieve those aggressive 5G performance metrics all at once, and thus, the
5G revolution is expected to occur in stages [2]. In contrast, base stations capable of dealing
with multi-band signals have gained widespread popularity, which leads to new research
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trends in the linearlization of power amplifiers (PAs) [3–5]. Additionally, bandwidth
requirements in conventional radio frequency (RF) paths for multi-band transmission
systems involve high nonlinearities and memory effects added by the device under test [4].
In recent years, the cutting-edge development to provide innovative integrated circuits (ICs)
integrated along with foundry/technology selection through complementary metal-oxide
semiconductor CMOS, gallium arsenide (GaAs), and GaN PA designs have demonstrated
an improvement in performance, cost reduction, and digital functionality. Therefore,
optimal solutions are conducted to guarantee 5G wireless communications systems with
antenna array design integration such as those for massive multiple input/multiple output
(MIMO) realizations [2]. It is well-known that the radio frequency power amplifier (RF-PA)
performance can often dominate the overall transmitter (TX) behavior, such as the power-
added efficiency (PAE), which impacts the power and heat dissipation for the TX chain. The
focal point of the RF-PAs is to boost the signal level in order to reach in the receiver chain
a signal with suitable power levels to allow for the detection and demodulation process.
However, it is the device in the transmission chain that adds most of the nonlinearities and
short–term memory effects, which generate the undesirable effect of spectral regrowth and
second- and third-order intermodulation (IMD3) products. As it is well known, single-
band RF-PAs generate intermodulation, which increases the interference to neighboring
channels and the transmission quality [5]. Therefore, special techniques and proposals
for corrections during a wireless transmission are required in order to avoid penalties
by the telecommunications regulatory entities in each country. To achieve this objective,
linearization adaptive techniques and schemes consider the electrical factor of the chain to
properly correct short-term memory effects [6].

Models derived from the Volterra Series estimation have been proven to have appro-
priate accuracy in modeling stages for nonlinear systems. Alternative techniques such as
Wiener, Hammerstein, and serial or parallel configurations consider the nonlinear (NL)
and linear time invariant (LTI) stages as a suitable strategy in the modeling of nonlinear de-
vices [7,8]. Additionally, memory polynomial model (MPM) and the generalized memory
polynomial (GMP) model are related works that make important approximations in this
area. A novel output generalized memory polynomial (OGMP) behavioral model based
on the previous output signal for linearization of PA was proposed in [9]. Conventional
MP or GMP models use polynomials of the previous input signal to characterize memory
effects [8]. The behavioral models for PAs devices driven with single and multiband signals
have been designed to mimic the nonlinear regimes and to provide a useful approximation
of its nonlinear response under several stimuli. Additionally, it is proposed to model a dig-
ital predistorter generalized parallel two-box (GPTB) based on hybrid memory polynomial
since it consists of a hybrid memory polynomial and a memoryless nonlinear function [10].

Regarding this nonlinear aspect, special efforts are needed to investigate the effects
of nonlinear distortion produced by RF-PAs, which include amplitude distortion, phase
distortion [11], and the spread of signal constellations based on the quasi-memoryless
Saleh model when passed through the additive white gaussian noise (AWGN) channel.
This model was chosen because it involves the amplitude-to-amplitude (AM/AM) and
amplitude-to-phase (AM/PM) conversion curves [12]. Additionally, the need to establish
methodologies for transmitting and modeling data primarily with digital multiplexing
such as long-term evolution (LTE) and wideband code division multiple access (WCDMA)
are of current interest [13], even implementing a two-chain amplifying structure in parallel
for the 2.5 GHz band [14]. However, some linearization techniques for RF-PAs have low
performance and limited adaptability regarging data variations due to short-term memory
effects [15]. The 1-dB compression point (P1dB) is one of the main electrical characteristics
that represents the change between the linear and compression sections of any RF-PA
device. The P1dB makes a comparative performance in the linear region and the saturation
zone of the nonlinear device [16,17]. In this work, the weighted memory polynomial
model (W-MPM) is proposed as an adaptive technique that takes into account the electrical
variation of a nonlinear device under test corrected by a indirect learning approach (ILA)
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linearization scheme [18]. The variations in time of a device as RF-PA are generated by
the impedances and parasitic capacitances within the device; unfortunately, during the
amplification process, the devices are brought to the saturation zone, and it is precisely in
this region where it behaves as highly nonlinear. A device in this region produces not only
in-band distortion but also spectral regrowth. The amplification process after the P1dB
generates a low efficiency of the used power; this condition is increased in high frequencies.
The state-of-the-art reports different linearization methods that can be developed in the
simulation stage prior to implementation; one of them is related to fixed data, where the
best correlation data is sought in the output of the system, techniques such as look-up table
(LUT) based ones [19]. Other methods based on the data variation are indirect learning
approach (ILA) or direct learning approach (DLA). In the ILA stage, a post-distortion is
used, where the device’s output measurements are taken as the post-distortion input and
the input measurements are taken as the post-distortion output. Then, the post-distorter
is estimated based on the least square error (LSE) method, and the result is placed before
the RF-PA. Unlike DLA, it is required to define an RF-PA model then, and finally, the total
linearization is just the inverse result of this model [18,20,21]. Some linearization works
related to compensation of nonlinear systems use a compensation model to update the
coefficients of a system, such as nonlinear applications of the global system for mobile
communication (GSM) [22]; in addition, models derived from Volterra Series such as MPM
to compensate for the characteristics of the short-wave PA are presented, where IMD3 to
overcome the nonlinear behavior are reduced [23]. Additionally, a two-step approach was
developed for DLA as linearization technique based on convolutional neural network [24].
It should be noted that, in the works developed, they do not use an electrical parameter
that can vary to adjust the modeling stage or to compensate the system. Therefore, to
address the aggressive multi-carrier LTE-A and WCDMA modulation schemes, it is still
an important challenge to fulfill the power, efficiency, and linearity requirements in new
architectures of RF-PAs [25]. The main aim of this paper is to offer an adaptive alternative
to correct the undesirable effect of spectral regrowth, based on modeling and linearization
stages, where the P1dB of a nonlinear device caused by the memory effects in short time
is considered, the obtained results are tested into a development board, the error vector
magnitude (EVM) is evaluated, and the developed adaptive linearization scheme is able
to adapt to the nonlinear behavior under analysis. The novelty presented in this work
is the integration of an adaptive modeling stage for RF-PA linearization for applications
in the 2.5 GHz band for highly nonlinear devices related to telecommunications and for
worldwide interoperability for microwave transmissions access (WiMax) and long-term
evolution (LTE), where the modeling stage considers the P1dB as a metric for updating
coefficients.

The remainder of this paper is organized as follows. In Section 2, the modeling
description involving the MPM, W-MPM, and ILA linearization methods are depicted.
Section 3 describes the experimental setup used to perform the measurements of the RF-
PA under test in addition to the simulation system implementation based on the DSP
builder tool prior to implementing it on the FPGA development board. Section 4 shows
the obtained results and precision of the highly nonlinear device under test, the modeling
accuracy, and the linearization result. Finally, in Section 5, a discussion and the main
conclusions obtained are presented.

2. Dynamic Modeling Stage

This section describes the traditional MPM and the W-MPM used as the adaptive mod-
eling method that considers the P1dB as the main electrical characteristic. This represents
the change between the linear and saturation regions and shows adequate adaptability to
the electric factor and data variation during the coefficient estimation process. Addition-
ally, the system is implemented in the Intel® Altera FPGA Cyclone V board through the
DSP builder design tool using the 14-bit resolution high speed mezzanine card (HSMC)
acquisition board.
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2.1. Memory Polynomial Model (MPM)

The state-of-the-art reports MPM as an accurate modeling technique with low compu-
tational cost related to coefficients calculation and hardware implementation for RF-PA
modeling without taking into account the amplification process. Wide RF-PA data vari-
ation due to memory effects or changes in the P1dB are an interesting evaluation of the
development of an adaptive alternative [26]. The MPM consists of delay stages that involve
the diagonal terms of the general Volterra Series; the MPM can be expressed by

y(n) =
K

∑
k=1

M

∑
m=0

ak,mx(n−m)|x(n−m)|k, (1)

where the complex baseband signals are expressed by the x(n) and y(n) input–output
relationship. ak,m is the complex polynomial coefficients, M is the memory depth, and
K is the polynomial order. In this paper, it is shown that the W-MPM as an adaptive
methodology is effective in taking into account electrical variations for modeling highly
nonlinear RF-PAs. This improves the accuracy of reported MPM as truncation of the
Volterra Series. The benefits of the W-MPM are related to the exhibit nonlinearities of the
PA exhibited at low input to voltage levels with strong memory effects in the short term
and at a high input voltage level with mild memory effects [27].

2.2. Weighted MPM as Dynamical Modeling and Linearization Stages

For high bandwidth applications requiring an additional linearization process, it is
necessary to develop accurate models and much better if this modeling stage follows an
adaptive methodology due to the nonlinearities added to the wireless transmission. To
better address these nonlinearities, the W-MPM incorporates a novel weight function with
a tradeoff between the static and dynamic distortions depending on the input value. This
is an interesting contribution for the amplification process change due to normal use of the
device. These weight functions are involved in the calculation of the coefficients in order to
detect when the short-term memory occurs [27]. The W-MPM can be expressed by

yW−MPM(n) =
KS

∑
k=1

akWS(|x(n)|)x(n)|x(n)|k

+
KD

∑
k=1

M

∑
m=0

βk,mWD(|x(n−m)|)x(n−m)|x(n−m)|k (2)

where ak is the coefficient of the static part of the model, βk,m is the model coefficients
for the dynamic behavior, KS is the maximum nonlinear order of the static side of the
model, and KD accounts for the memory effects added to the device under test. In this case,
WS(|x(n)|) is related to the static behavior and WD(|x(n−m)|) represents the weighted
functions involved in the dynamics of the model, k represents the incremental level of
nonlinearity order, and m represents the short-term memory depth. In both cases, P1dB
is the crucial parameter of the calculation. It must be noted that the P1dB is the main
electrical factor that affects the coefficient update. Then, yW−MPM is the complex baseband
output signal. Therefore, the weighting function for the dynamic part of the model is
formulated by

WD(|x(n−m)|) = 1
2

{
tanh

[
G(k, m) ·

(
1− |x(n−m)|

|x|th

)]
+ 1

}
. (3)

where |x|th is the threshold value given by

|x|th = xthn · |x|max. (4)
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where |x|thn is directly related to the P1dB compression point as a criterion for modeling
for each RF-PA. On the other hand, |x|max is the maximum voltage of the input value. xthn

is the coefficient related to the P1dB established by the input voltage value in correlation
with the amplification result. The G(k, m) function is given by

G(k, m) =
1

k ·m2 . (5)

Similarly, the weight function of the static model is described by Equation (6), where
the P1dB is the main electrical factor:

WS(|x(n)|) =
1
2

{
tanh

[
− k ·

(
1− |x(n−m)|

|x|th

)]
+ 1

}
. (6)

After having developed the mathematical modeling of the RF-PA according to the
W-MPM from the input–output data, the normalized mean square error (NMSE) was
established as a metric to estimate the general deviations between the predicted and
measured values. The calculation methods and functions used were programmed in
Matlab and include the three variants of coefficient extraction for modeling (all, even, and
odd). The results that we show in this paper apply to the use of only even coefficients in
the model due to a better NMSE value obtained for the cases at hand. The basic principle
of the linearization method is to place the nonlinear correction in front of the RF-PA
behavioral modeling stage so that the combined data of the nonlinear and linear time-
invariant functions produce a linear gain. In this work, the ILA linearization algorithm is
proposed as an alternative with a proper accuracy joined with the dynamical stage where
the electrical factor as P1dB can be considered during the coefficient extraction. The output
of the ILA stage is expressed as

zp(n) =
M

∑
m=0

L

∑
l=0

bmlφml [x(n)], (7)

where zp(n) represents the relation of y(n)/G0, G0 is the maximum gain obtained from
the AM/AM conversion curve, φml [x(n)] = x(n−m)|x(n−m)|2K−1, bml is the complex
coefficient of the linearization stage, M is the memory depth, and K is the nonlinearity order.

3. Experimental System-Level Setup

In this section, an experimental setup is presented to conduct characterization of the
medium high PA. Similarly, the data-driven procedure is used to perform the modeling
and the experimental validation. In this section, the measurement setup established based
on a FPGA development board, local oscillator, and power sensors is also described, in this
case, introducing a signal sweep for the device under test.

Measurement Procedure

In accordance with the measurements obtained, a setup with a realistic operation of
a base station is realized as shown in Figure 1. At the transmitter/receiver, the signals
are first frequency shifted by a digital intermediate frequency (IF) set at 76.8 MHz using
dual channel 16-bit digital-to-analog converters (DACs) with a synchronization clock set
at 307 MHz. The IF-to-RF up-conversion path uses an IQ modulator driven by a local
oscillator (LO) that is used at 2 GHz to be mixed with the baseband signal. The main
program structure is created through MATLAB that is connected to the FPGA and can
download/upload data frame from/to the synchronous instantiated ROM memory on
the FPGA. The signals are generated in MATLAB, stored to RAM instantiated memories,
and processed by FPGA (Arria V GX-360KLE) on the board. The FPGA controls all the
signal sequences, feeds the DAC board (TI transmitter TSW30H84) with baseband signals,
and acquires the digital samples from the analog-to-digital converter (ADC) board (TI
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feedback/receiver TSW1266 with a dual-channel ADC ADS5402). In the DAC board, two
32-bit numerically controlled oscillators (NCOs) are configured to shift the two transmitted
signal to IF frequencies ωIF,Tx1 and ωIF,Tx2 , respectively, which are then modulated by a
selected radio frequency carrier ωRF,C.

At the mixing process, the signal is up-sampled with a factor 4 filter interpolation
using a sampling rate of 1.2 GHz in the up-conversion. Note that the local oscillator
power of −11 dB also contributes to the output power, a calibration procedure is given in
order to set an adequate input level at the Pin, and then the resulting signal is amplified
through a predriver (Mini-Circuits ZRL-2300+). A 30 dB attenuator is placed at the PA
output simplification to perform PA characterization and measurements of a medium-high
PA (Mini-Circuits ZHL-42W+). Given the FPGA design, it is identified that low-voltage
differential signaling (LVDS) serializer/deserializer (SERDES) circuitry introduces the most
prominent latency across the channel Tx/Rx. A time alignment is jointly performed from
a cross-correlation simultaneously from the real-time at the Tx/Rx data, in concordance.
Moreover, during the experiments to provide fair comparisons with the DPD methods, a
wide-band receiver is used to acquire the PA output at a sampling rate of 614 Msps, which
is twice the transmission bandwidth: 307 MHz.

Figure 1. Experimental measurement testbed setup based on ARRIA V Board for a radio frequency
power amplifier (RF-PA).

Table 1 shows the main electrical characteristics of the PA NXP Semiconductors 10 W,
at 2.34 GHz, and Table 2 show that of the device ZHL-42W+ at 2000 MHz 32.24 dBm under
test; they contain the biasing and main setting established during the performed device
measurements.

Table 1. Features of the NXP 10 W PA.

PA NXP 10 W @ 2.34 GHz

Parameter Values

Gain 12.26 dB @ 2.34 GHz
PA input Power 23.84 dBm

PA output Power 36.10 dBm
Device biasing VDS = 50 V, IDS = 54 mA
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Table 2. Features of the ZHL-42W+ PA at 32.24 dBm.

PA ZHL-42W+ @ 2.00 GHz

Parameter Values

Gain 34 dB @ 2.00 GHz
Maximum power 1.25 W

DC Supply 15 V, 1 A
Bandwidth 10–4200 MHz

4. Modeling and Linearization Stage Setup

The system level model is illustrated in Figure 2 with the designed modeling and
system-level stages in Simulink to develop the modeling and linearization for the chain
of the PA device under test. The overall structure is flexible up to a nonlinear order of 11
and memory 6. Figure 2a depicts the output string of the DSP builder tool, where the data
are controlled with a resolution of 10 bits in the bus address and the amplitude is sampled
with the maximum resolution of 14-bit. In this case, the output signals are divided into
16,384 parts. In this scheme, the coefficient calculation is obtained through code based on
the LSE method and can be updated taking into account the electrical factor P1dB that
corresponds to the voltage when the linear gain corresponds to a 79.43% decrease.

u

u

st_DAC2

SignalTap ll

SignedToUnsigned

XOR

d(13:0)               q(13:0)

00000000000000

SignedToUnsigned1

XOR
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00000000000000 Channel A

Channel B

st_DAC1
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Decrement1
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(9:0) q(13:0)

LUT

(9:0) q(13:0)
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Delay

Z
-1

Delay

Z
-1
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u

u
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Figure 2. Indirect learning approach (ILA) algorithm block diagram: (a) DSP-FPGA physical link for
data conditioning, (b) adaptive weighted memory polynomial model (W-MPM) modeling stage, and
(c) proposed ILA system control-based scheme.

Indirect Learning Approach for the Proposal Modeling Stage

Behavioral modeling of the medium-high RF-PA was developed through the MPM
expressed by Equation (1) and the W-MPM expressed by Equation (2). The coefficient
extraction process was done using the LSE method. The development structure depicted
in Figure 2b corresponds to the W-MPM proposed as the adaptive modeling taking into
account the electrical factor of P1dB; a similar structure is performed for the MPM. This
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schematic is used to model the NXP 10 W at 2.34 GHz and ZHL-42W+ at 2000 MHz
32.24 dBm RF-PAs. The experiments conducted are specified below:

(i) An algorithm is performed for the offline training of the model (PA) and the predis-
torter (PD) block using the MPM and W-MPM approaches (running on MATLAB-PC
with DSP blockset system environment) as defined in the overall block diagram in
Figure 2.

(ii) At every iteration, the model searches for a weighting subset of parameters to con-
tribute in the minimization the LSE and NMSE.

(iii) The developed chain through DSP Builder tool allows us to transfer the input signal
compared with the amplification process by the DAC of the FPGA development board
Cyclone V.

(iv) Both signals are sampled using 10-bit resolution related to the address bus capability;
the magnitude signals are sampled for the maximum resolution of the HSMC card
with 14 bits.

We evaluate in this work both conversion curves that present a notable presence of
highly nonlinear behavior. The achieved error was −32.72 dB for the MPM and −38.03 dB
in NMSE for the W-MPM. Additionally, it was performed a modeling stage obtaining
−44.34 dB NMSE based on the MPM and −44.90 dB NMSE for the device ZHL-42W+ at
2000 MHz, and it should be noted that the devices have a very high nonlinear behavior
and strong data dispersion. Both models contain more than 65 K data samples for each con-
version curve. The W-MPM showed a better accuracy compared with the traditional MPM,
and it can even be updated if the conversion curves change with time due to its intrinsic
adaptability based on the P1dB detecting the compression region in the amplification stage.
During hardware implementation, the total resources used for each model is compared.
In this case, it obtained a slightly reduced amount of the available resources in the FPGA
board Cyclone V during the W-MPM compared with the MPM, as it can be seen in Table 3.
The W-MPM had a reduction in the adaptive logic module (ALM) using 340 compared
with the required 378 used by the MPM.

Table 3. Hardware resources occupation in Cyclone V 5CEFAF31I7 FPGA device with comparison
for the W-MPM and MPM models.

Description W-MPM Resource Utilization MPM Resource Utilization

Logic Utilization (ALMs) 340/56,480 (<1%) 378/56,480 (<1%)
Total Registers 771 751
Total Pins I/O 40/480 (8%) 40/480 (8%)

Total block memory bits 43,008/7,024,0640 (<1) 43,008/7,024,0640 (<1)
Total PLLs 1/7 (14%) 1/7 (14%)

Table 4 summarize the Halstead metrics based on the two developed modeling stages
W-MPM and MPM. The following estimation was calculated based on the developed code
for the extraction coefficient method and the implementation chain. As it can be seen,
the complex operations associated with the program length indicate the difficulty and
effort during both processes, which is considerably bigger for the MPM compared with
the W-MPM. However, both cases were resolved in a considerable reduced time for this
type of implementation, where the model has a big data dispersion between short value
intervals. A Halstead complexity analysis was done for both modeling stages where the
W-MPM requires less offline training before implementation compared with the MPM in
this study case, which required 11.85 s compared with 13.33 s.



Appl. Sci. 2021, 11, 2942 9 of 15

Table 4. Halstead complexity analysis for W-MPM and MPM.

Complexity Metric W-MPM MPM

Number of distinct operators 7 7
Number of distinct operands 7 7

Total number of operators 9 11
Total number of operands 7 7

Program vocabulary 14 14
Program length: 16 18

Calculated estimated program length 39.30 39.30
Volume 60.92 68.53

Difficulty 3.50 3.50
Effort 213.21 239.86

Time required to program (s) 11.85 13.33
Number of delivered bugs 0.07 0.08

Figures 3 and 4 show the linearization performance based on MPM and W-MPM, re-
spectively; in both cases, the amplitude and phase distortion were properly linearized. The
results obtained from the adaptive W-MPM algorithm minimized the required resources
and coefficients compared with the MPM. These models and the learning code were im-
plemented in FPGA development board Cyclone V, and it was achieved by reducing the
amount of coefficients and by improving the accuracy compared with reported works in
the literature. The accuracy obtained was −32.72 dB NMSE using the MPM compared with
−38.03 dB NMSE for adaptive W-MPM.

Figures 5 and 6 show the developed models that replicate effectively the highly
nonlinear device under analysis. For both devices, it was estimated the EVM after the
linearization algorithm and the distortion between the receiver and transmitter chain were
reduced. In this case, it was improved by 13.07% and by 15.48% for the EVM for the
NXP 10 W at 2.34 GHz using the static MPM and dynamic W-MPM, respectively. For the
ZHL-42W+ device operating at 2000 MHz with an output power of around 32.24 dBm, it
was improved by 24.1% and 24.22%, while the EVM is in the same conditions before and
after the proposed linearization algorithm.

Table 5 summarizes the performance comparison with a study of the involved works
in the state-of-the-art comparing mainly the RF-PA linearity order required to properly
address the behavior under a complexity analysis. Using the aforementioned simplification
the analysis assumes the required coefficient number of the modeling stages and yields
a feasible accuracy. Additionally, it is depicted as the technology of the RF-PA under
experimentation. In Figure 7 is depicted the development board Cyclone V and acquisition
card. Since the contribution of this paper is to offer an adaptive linearization scheme,
in this case, the baseband components with the up conversion cards are not required to
frequency shift from IF to baseband or even to use physical attenuators to attenuate the
signal power levels.
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(a) (b)

Figure 3. Linearization based on ILA based on MPM for the device NXP 10 W at 2.34 GHz. (a) AM/AM modeling and
linearization stage and (b) AM/PM modeling and linearization stage.

(a) (b)

Figure 4. Linearization based on ILA based on W-MPM for the device NXP 10 W at 2.34 GHz. (a) AM/AM modeling and
linearization stage and (b) AM/PM modeling and linearization stage.

(a) (b)

Figure 5. Linearization based on ILA based on MPM for the device ZHL-42W+ at 2000 MHz 32.24 dBm RF-PA. (a) AM/AM
modeling and linearization stage and (b) AM/PM modeling and linearization stage.
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(a) (b)

Figure 6. Linearization based on ILA based on W-MPM for the device ZHL-42W+ at 2000 MHz 32.24 dBm RF-PA. (a)
AM/AM modeling and linearization stage and (b) AM/PM modeling and linearization stage.

Table 5 summarizes a comparison of the proposed work as a dynamical modeling
stage compared with other related works. In addition to this, a model derived from the
general Volterra Series such as the MPM is described; the W-MPM is proposed as an
adaptive modeling technique in a comparison process where the fundamental basis of the
dynamic weighting selection proposal is considered as a modeling stage for estimation of
the distortion curves. In this case, the P1dB compression point of the device is identified
by programming and represents the point at which there is a gain level of 79.43% in
relation to the expected results based on its linear area of the device. The dynamic factor
is automatically calculated and established as the Xth value. Furthermore, the model is
analyzed in two stages, dynamic and static parts, and is able to update the coefficient in
case of wide variation in the amplification process due to the memory effects in short time.

An adaptive and static modeling technique is used to estimate the highly nonlinear
behavior of the PA NXP 10 W at 2.34 GHz. In this case, the precise modeling stage is crucial,
which can be used for a linearization technique; in this paper, we have shown the ILA
technique that was compatible with modeling stage based on MPM and W-MPM.

The adaptive modeling stage reaches for the NXP semiconductor of 10 W GaN HEMT
RF-PA an accuracy of −32.72 dB NMSE using the MPM compared with −38.03 dB for the
dynamical modeling stage based on the extraction algorithm. Additionally, it compared
the highly nonlinear behavior of the device ZHL-42W+ at 2000 MHz 32.24 dBm, where
an NMSE accuracy of the modeling stage of −44.34 dB was reached for the MPM, while
for the W-MPM adaptive algorithm, it is around −44.90 dB. In addition to this, the used
hardware resources on the Cyclone V development card show a usage of 340 adaptive
logic modules for the W-MPM compared with the 378 used resources for the MPM (see
Table 3). The transmission chain involves two channels designed for handling sampled
data with resolution 2n of the input signal with respect to the outputs. It is shown a
voltage offset block stage for adjustment linked to the DACs. In the simulation stage, the
coefficients of the modeling stages are calculated through the LSE method for the MPM
and W-MPM, The even terms are used in both conversion curves estimation since they
give the best precision based on NMSE error. An attenuator was designed for the voltage
unbalance of the input signal and the maximum peak voltage of the amplified signal. The
most important contribution of this work lies in the proposal of a W-MPM model and ILA
scheme for highly nonlinear models and data dispersion in the same way a whole dynamic
weighting selection system is developed where the change in amplitude can be monitored.

The W-MPM yields a considerably lower number of coefficients compared to the
MPM; the related P1dB parameter that involves 7 coefficients plus one per nonlinear stage
in total generates 42 coefficients for the device under test. In the static part, since it does
not consider memory, the design is implemented with a W-MPM with nonlinearity of 13
and memory effect of zero, which gives a total of 55 coefficients. In relation to the MPM, to
obtain relatively the same result based on the metric NMSE, a total of 67 coefficients are
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involved and a system of nonlinearity order 11 and high memory with level 6 is required.
The EVM reduction is estimated for the developed static and dynamic modeling stages;
both linearization process are compared. As we can see, the achieved EVM reduction is
considerably better after the linearization stage. The improved EVM is shown in Table 6.

Table 5. Comparison of dynamic W-MPM for RF-PA modeling versus related work.

Model Stage RF-PA Linearity Technology Nonlinearity and
Memory Effects

Coefficients
Number

Accuracy NMSE
(dB)

Proposed work, Device: PA NXP 10 W @ 2.34 GHz

W-MPM model Nonlinear GaN HEMT High order 55 −38.03 and
−44.9028

MPM model Nonlinear GaN HEMT High order 67 −32.72 and
−44.349

Proposed work, Device: ZHL-42W+ @2000 MHz 32.24 dBm

W-MPM model Nonlinear CMOS+LVDS High order 55 −27.8946
MPM model Nonlinear CMOS+LVDS High order 67 −24.8707

Related works

Hammerstein †, [28] Nonlinear GaN High order N/A −33.55
Hammerstein ‡, [28] Nonlinear GaN High order N/A −35.72

MP, [29] Nonlinear GaN Doherty High order N/A −32.2
EMP, [29] Nonlinear GaN Doherty High order N/A −24.9
SVR, [30] Nonlinear LDMOS High order 256 −36.5
DVR, [31] Nonlinear GaN Doherty High order 99 −31

† Conventional Hammerstein model. ‡ Modified Hammerstein model.

Table 6. EVM improvement based on the ILA algorithm for the MPM and W-MPM models.

Device NXP 10 W @ 2.34 GHz Estimated EVM EVM with ILA

MPM 15.624% 2.547%
W-MPM 16.54% 1.06%

Device ZHL-42W+ @ 2000 MHz 32.24 dBm Estimated EVM EVM with ILA

MPM 25.28% 1.18%
W-MPM 25.18% 0.96%

Figure 7. Photograph of setup hardware implementation of the adaptive modeling W-MPM stage.
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5. Conclusions

A dynamic weighting selection system based on two modeling stages, W-MPM and
MPM, applied to estimate the phase between signals was developed in this work. In this
matter, an effective modeling stage was implemented in hardware to properly address
highly nonlinear behavior. In this regard, the W-MPM required 55 and the MPM 67 coeffi-
cients to represent the device PA NXP 10 W at 2.34 GHz behavior. The adaptive modeling
stage reaches for the NXP Semiconductor of 10 W GaN HEMT RF-PA an accuracy of
−32.72 dB NMSE using the MPM compared with −38.03 dB NMSE for the W-MPM for the
10 W GaN HEMT RF-PA and of −44.9028 dB NMSE based on the MPM and −44.349 dB
NMSE for the device ZHL-42W+ at 2000 MHz, respectively.

The Halstead complexity analysis done establishes that the volume, complexity, and
timing convergence to implement both models is 11.85 for the W-MPM and 13.33 s for the
MPM, and the achieved time is relatively within the expected range due to the involved
iterations in the whole developed design. It is also highlighted that the FPGA implementa-
tion required less than one percent of the available logical units; the correction in amplitude
and phase based on the ILA scheme was properly performed. The EVM was estimated
before and after the linearization algorithm and modeling stages based on MPM and was
improved by 13.07% and 15.48% for the NXP 10 W at 2.34 GHz using the static MPM and
dynamic W-MPM, respectively. In the case of the ZHL-42W+ at 2000 MHz 32.24 dBm, it
was improved by 24.1% and 24.22% for the EVM in the same conditions before and after
the proposed linearization algorithm.
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