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Abstract: The COVID-19 disease has spread all over the world, representing an intriguing challenge
for humanity as a whole. The efficient diagnosis of humans infected by COVID-19 still remains an
increasing need worldwide. The chest X-ray imagery represents, among others, one attractive means
to detect COVID-19 cases efficiently. Many studies have reported the efficiency of using deep learning
classifiers in diagnosing COVID-19 from chest X-ray images. They conducted several comparisons
among a subset of classifiers to identify the most accurate. In this paper, we investigate the potential
of the combination of state-of-the-art classifiers in achieving the highest possible accuracy for the
detection of COVID-19 from X-ray. For this purpose, we conducted a comprehensive comparison
study among 16 state-of-the-art classifiers. To the best of our knowledge, this is the first study
considering this number of classifiers. This paper’s innovation lies in the methodology that we
followed to develop the inference system that allows us to detect COVID-19 with high accuracy.
The methodology consists of three steps: (1) comprehensive comparative study between 16 state-of-
the-art classifiers; (2) comparison between different ensemble classification techniques, including
hard/soft majority, weighted voting, Support Vector Machine, and Random Forest; and (3) finding
the combination of deep learning models and ensemble classification techniques that lead to the
highest classification confidence on three classes. We found that using the Majority Voting approach
is an adequate strategy to adopt in general cases for this task and may achieve an average accuracy
up to 99.314%.

Keywords: COVID-19; X-ray; deep learning; classification; majority voting; Pneumonia; VGGNet;
EfficientNet; ResNet; MobileNet; inception; densenet

1. Introduction

Since December 2019, the world has been plagued with uncertainty and devastation
relating to a novel virus, SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus
2), which causes the coronavirus disease 2019, COVID-19 (Corona Virus Disease 2019).
The COVID-19 pandemic has had a profound economic and social impact on most countries.
As of 8 May 2020, the virus has claimed almost 300,000 lives and infected almost four
million people throughout the world.

SARS-CoV-2 is not the deadliest virus in contemporary history. Ebola is significantly
more deadly, reaching a fatality rate of 50% of infected people. Coronaviruses that cause Se-
vere Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS)
result in death in approximately 10% and 30% to 40% of cases, respectively. In fact, what
makes COVID-19 particularly dangerous is that seeing that it does not immediately ravage
the body, it remains active within the host for a longer period of time, therefore increasing
the probability of contamination. The virus can attack the upper respiratory airways, often
exhausting the host’s immune system.
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Researchers around the world were urged to tackle challenges related to this virus,
which remains an enigma for the most part. Ongoing intensive works include and are
not limited to the sequencing of the virus, screening, related medical treatment, and the
necessary vaccine. Our contribution concerns the screening of the virus.

This research’s motivation is to provide a reliable diagnosis system to support the
decision-making of medical experts in the detection COVID-19 virus. Since the coronavirus
mainly attacks the respiratory system, the diagnosis of chest X-rays has emerged as a
viable solution for the detection of COVID-19 infection. In this paper, we contribute to
the state-of-the-art by a comprehensive study that compares and combines 16 classifiers
to develop a reliable inference system that can detect the COVID-19 virus from chest X-rs
with high confidence.

1.1. COVID-19 Diagnosis in Chest X-Rays Images

Several approaches have been used to screen for the virus that causes COVID-19. We
opted for screening by analyzing the medical image. Medical image analysis includes image
acquisition, detection, segmentation, recognition, classification, diagnosis, and follow-up.

We focused on virus screening through image recognition. This recognition is un-
dertaken through classification among various viruses. We profited from the progress
conducted on deep learning [1–7]. Deep Learning is a sub-field of machine learning dealing
with algorithms in tune with the structure and function of the brain - known as artificial
neural networks. Deep learning builds features automatically based on training data. It
combines feature extraction and classification. For feature extraction and image classifi-
cation, the Convolutional Neural Network (CNN) turned out to be the neural network
offering the most promising avenue for deep learning. This avenue branches off in several
structures of the network, such as AlexNet, VGGNet, ResNet, Inception, and EfficientNet.
One structure may be implemented by more than one algorithm. The main interesting
quality of deep learning is that it can be composed and extended in various ways to
solve a variety of more complex tasks. By using this quality, we contributed, among oth-
ers, to the adaptation of a list of deep learning algorithms to our specific application of
COVID-19 detection.

In this paper, the main challenges are the identification of Coronavirus cases in blurred
X-ray images and the differentiation of these cases of COVID-19 from other pneumonia
cases, like MERS and SARS [8], bearing in mind that they have a high degree of similarity.
Second, the COVID-19 virus does not have a fixed shape, circular, for example, inside the
human tissue. Third, the decision resulting from the detection process is very delicate and
can put human beings at risk. False-Negative means, in our situation, a person infected
by the virus, who is declared by our process safe and sound, while the patient may be at
risk of death, and even worse: before dying, he/she may infect thousands of people. Thus,
the rate of False-Negatives should be literally zero.

The originality of our work lies in the following aspects: First, we composed a dataset
enabling deep training within COVID-19 related images, and we improve the performance
of the dataset by removing duplicate images giving our deep neural network models
additional opportunities to learn unbiasedly the different patterns existing in the data.
Second, we considered and trained 16 state-of-the-art deep learning models to classify
X-ray images into three classes, normal, pneumonia, and COVID-19. Third, we selected the
five best classifiers and combined them using five voting approaches (hard/soft majority,
weighted voting, Support Vector Machine, and Random Forest) improve the classification
accuracy. We found that the ensemble classification to with the hard voting approach
achieves the best accuracy up to 99.314%, by leveraging the combination of the classifiers.
To the best of our knowledge, this is the first work that evaluates 16 classifiers and 5 voting
approaches for the classification of COVID-19 from X-rays.
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1.2. Related Works

In the literature, there are several works that used deep learning classifiers to detect
patients infected with COVID-19 [9,10]. Xu et al. [11] found that the characteristics of
Computed Tomography (CT) imaging of COVID-19 are different from other types of viral
pneumonia (such as Influenza-A viral pneumonia). They used multiple CNN models
to classify CT images, calculate the infection probability of COVID-19, and assist in the
early screening of patients with COVID-19. They collected a total of 618 CT samples: 219
from 110 patients with COVID-19; 224 CT samples from 224 patients with Influenza-A
viral pneumonia; and 175 CT samples from healthy people. Then, they pre-processed
the CT images to extract effective pulmonary regions. Then, they used a 3D CNN model
based on ResNet18 to segment multiple candidate image cubes. They chose a 3D image
classification model to be able to categorize all the image patches. The location attention
classification model uses the relative distance from-edge as extra weight for the model.
This classification model aims to learn the relative location information of the patch on the
pulmonary image. They acquired a total of 11,871 image patches, including 2634 COVID-19,
2661 Influenza-A-viral-pneumonia, and 6576 irrelevant-to-infection. Finally, they used the
Noisy or Bayesian function to calculate the infection type (COVID-19, Influenza-A-viral-
pneumonia, or no-infection-found) and the total confidence score of the CT case. They only
compared the average f1-score for the first two classes, which showed an enhancement of
4.7%, with an overall classification accuracy of 86.7% for all three groups.

Because there is no automatic tool to quantify the infection volume for COVID-19
patients clinically, Shan et al. [12] proposed to develop a Deep Learning-based system called
“VB Net” neural network for automatic segmentation and quantification of COVID-19
infection regions in chest CT [13]. This system also aims to accurately estimate the shapes,
volumes, and percentage of the infection region. The “VB Net” model is a combination be-
tween the V-Net model and the bottleneck model. The V-Net extracts global image features
using down-sampling and convolution operations, and the bottleneck model integrates
fine-grained image features using up-sampling and convolution operations. Compared
with V-Net, the speed of VB-Net is much higher because of the bottleneck structure. The
system is trained using 249 COVID-19 patients’ data and validated on 300 new COVID-19
patients. To accelerate the delineation of COVID-19 CT images used for training, which is
very time-consuming, they proposed a human-in-the-loop (HITL) strategy to generate the
training samples iteratively. This method assists radiologists to refine the automatic anno-
tation of each case. To evaluate the performance of the DL (Deep Learning) based system,
the Dice similarity coefficient, the differences of volume, and the percentage of infection
(POI) are calculated between automatic and manual segmentation results on the validation
set. The proposed system gave dice similarity coefficients of 91.6 ± 10.0% between auto-
matic and manual segmentation and a mean POI estimation error of 0.3% for the whole
lung on the validation dataset. The proposed human in the loop strategy reduces the delin-
eation time to 4 min after three iterations of model updating. The segmentation accuracy
of deep learning models was evaluated using the Dice similarity coefficient on the entire
300 validation set. It has improved from 85.1 ± 11.4%, to 91.0 ± 9.6%, and 91.6 ± 10.0%
with more training data added. The improved segmentation accuracy greatly reduces
human intervention and, thus, significantly reduces the time of annotation and labeling.

Many studies confirm that among the characteristics of the patients infected with
COVID-19 is that they present abnormalities in their chest X-ray images [14,15]. Motivated
by the need for faster interpretation of radiography images, Wang et al. [16] proposed a
deep convolutional neural network design (COVID-Net), to detect the COVID-19 cases
from chest radiography X-ray images. They used the open-source COVIDx dataset; it
comprises 16,756 chest radiography images from 13,645 patient cases from two open access
data repositories. More specifically, the COVIDx dataset contains only 76 radiography
images from 53 COVID-19 patient cases, while there are significantly more patient cases and
corresponding radiography images with Normal and Non-COVID-19 pneumonia. In total,
there are 8066 normal patient cases and 5526 cases of non-COVID-19 pneumonia patients.
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The COVID-Net network architecture uses a lightweight residual projection-expansion-
projection-extension (PEPX) design pattern. The first-stage projection is composed of 1 × 1
convolutions for projecting input features to a lower dimension. The expansion stage
is composed of 1 × 1 convolutions for expanding features to a higher dimension that is
different than that of the input features. The Depth-wise representation uses efficient 3 × 3
depth-wise convolutions for learning spatial characteristics to minimize computational
complexity. The second-stage projection is composed of 1 × 1 convolutions for projecting
features back to a lower dimension. Finally, an extension is composed of 1 × 1 convolutions
that extend channel dimensionality to a higher dimension to produce the final features.
The COVID-Net balances accuracy and computational complexity by achieving 92.4% test
accuracy, while requiring just 2.26 billion MAC (Multiplier Accumulator)operations to
perform case predictions.

In another approach, Duran-Lopez et al. [17] proposed to diagnose COVID-19 cases
from X-ray images using a set of pre-processing algorithms followed by a designed CNN
(COVID-XNet) in order to distinguish COVID-19 cases from normal cases at an average
accuracy of 94.43% and an AUC (Area Under Curve) of 0.988. They also went deeper by
analyzing the extracted features from COVID-XNet using the Class Activation Maps (CAM).
This helped to localize precisely the COVID-19 infected areas inside the screened lungs.
The localization accuracy was assessed qualitatively by a lung specialist and confirmed to
be efficient and accurate.

Leveraging fractional-order (FO) calculus techniques, Sahlol et al. [18] proposed
a COVID-19 X-ray classification method that uses a pre-trained CNN (Inception [19])
as feature extractor, followed by an improved swarm-based meta-heuristic optimization
technique (Marine Predators Algorithm [20]) to select only relevant features. They achieved
up to 99.6% accuracy on the binary classification problem on the dataset made public by
Chowdhury et al. [21]. While we used the same dataset, the problem that we address in
this paper is more challenging since it also considers a third class of other pneumonia cases.
More recently, in order to mitigate the problem of the small size of available COVID-19
datasets, Karakanis and Leontidis [22] used a conditional generative adversarial network
(cGAN [23]) for data augmentation. Accordingly, they generated realistic synthetic images
only for the under-represented COVID-19 class, since the two other classes had a sufficient
number of original images. Then, they tested two ad hoc lightweight deep-learning models
on the augmented dataset. They obtained an accuracy of 98.7% and 98.3% on the binary
and 3-class problems, respectively, on a small balanced dataset (275 images for each class)
that they extracted from originally unbalanced datasets made public by Reference [24,25].
In a similar approach, Zebin and Rezvy [26] used a different type of generative adversarial
network (a CycleGAN [27]) for augmenting the number of COVID-19 images, then tested
several pre-trained CNN-based feature extractors. They attained a maximum accuracy of
96.8% with EfficientNet-B0 architecture [28] on a selected dataset where COVID-19 images
were taken from Reference [24], while normal and other pneumonia images were taken
from Reference [25]. Nevertheless, such a heterogeneous dataset may introduce some bias
in the results. Moreover, we will show in Section 3.3 that we can reach a higher accuracy
without resorting to supplementary synthetic images.

To differentiate COVID-19 cases from other pneumonia cases, Farooq et al. [29] pro-
posed to build open source and open access chest X-rays datasets and presented an accurate
Convolutional Neural Network framework [30]. They also used an updated version of the
COVIDx dataset recently made public by the authors of the COVID-Net [16] previously
described. It consists of a total of 5941 chest radiography images from 2839 patients with
four classes. There are 68 COVID-19 radiographs from 45 COVID-19 patients. There were
a total of 1203 patients with negative pneumonia: normal class, 931 patients with bacterial
pneumonia, and 660 patients with non-COVID-19 viral pneumonia cases. To solve the
imbalanced classification problem caused by the small number of COVID-19 images, they
proposed to use data augmentation techniques. The transformations used included vertical
flips of the training images, random rotation of the images (maximum rotation angle was
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15 degrees), and lighting conditions. They chose to employ the ResNet50 model for the
classification task because it provides a good trade-off between performance and number
of parameters, has proved faster training, and it is possible to produce images with differ-
ent sizes than the training images. The ResNet50 model is pre-trained on the ImageNet
dataset [31] and fine-tuned with the COVIDx dataset. The input images are resized to
128 × 128 × 3, 224 × 224 × 3, and 299 × 299 × 3 pixels and are employed in different
training stages. For training a high-performance network with very few epochs, they used
the transfer learning techniques introduced in Fastai [32]. This technique replaces the head
of the trained model by another containing a sequence of Adaptive average/max pooling,
batch normalization, drop out, and linear layers. The resultant network is called COVID-
ResNet. This approach achieved a state-of-the-art accuracy of 96.23% on the COVIDx
dataset with only 41 epochs and 25.6 M parameters.

To study the application of the COVID-19 detection application based on deep learning
models from the chest X-ray images, Minaee et al. [33] started by preparing a dataset of
5000 chest X-rs from the publicly available datasets. Then, they used Transfer learning
on a subset of 2000 radiograms to train 4 CNN models, including ResNet18, ResNet50,
SqueezeNet, and DenseNet-121, to identify COVID-19 disease in the analyzed chest X-ray
images. Finally, they evaluated these models on the 3000 images. Most of these networks
achieved a sensitivity rate of 98% (±3%) and a specificity rate of around 90%.

Table 1 summarizes the datasets, algorithms, and results of the most similar related
works on COVID-19 detection, compared to the present paper. In this table, row 1 will
refer to the work introduced by Reference [11]; row 2 will refer to the work introduced
by Reference [12], row 3 will refer to the work introduced by Reference [16], row 4 will
refer to the work introduced by Reference [29], row 5 will refer to the work introduced by
Reference [33], and the last row will describe the output generated by our method.

The remainder of the paper is organized as follows. Section 2 describes the meth-
ods and the materials used in this study: the characteristics of the COVID-19 dataset,
the data collection and the cleaning processes, and, finally, the 16 deep learning models
selected. Section 3 discusses the main results. Section 4 concludes the paper and outlines
future works.
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Table 1. Comparison of our paper with the related works.

Main Results
Ref. Dataset Used Algorithms Accuracy Recall Precision

Normal 90.0% 93.1%

Non-COVID-19 83.3% 86.2%1 [11]

A total of 618 CT samples:
219 CT samples with
COVID-19; 224 CT samples
with Influenza-A
viral pneumonia; and 175 CT
samples from healthy people.
528 CT samples for training
90 CT samples for validation

3D CNN model based on
the classical ResNet18
network structure.

COVID-19

86.7%

86.7% 81.3%

Normal - -

Non-COVID-19 - -2 [12]

300 CT images of COVID-19
cases for validation.
249 CT images of COVID-19
cases for training.

The “VB Net” model is a
combination between the
V-Net model and the
bottleneck model for
automatic segmentation
and quantification COVID-19

91.6%
- -

Normal 95.0% 90.5%

Non-COVID-19 94.0% 91.3%3 [16]

COVIDx dataset :
16,756 chest-X-ray images from
13,645 patient cases: 76 images
from 53 COVID-19 patient
cases, 8066 patient
normal cases, 5526 patient
non-COVID-19 pneumonia cases

The COVID-Net network
architecture uses a
lightweight residual (PEPX)
design pattern.

COVID-19

93.3%

91.0% 98.9%

Normal 96.5% 99.1%

Non-COVID-19 93.9% 92.7%4 [29]

A total of 5941 posteroanterior
chest-X-ray images from 2839
patients: 68 COVID-19 images
from45 COVID-19 patients.
1203 patients with Normal class,
931 patients with a bacterial
pneumonia
660 patients with non-COVID-19
viral pneumonia cases.

The ResNet50 model for
classification.

COVID-19

96.2%

100.0% 100.0%

Normal - -

Non-COVID-19 - -
5 [33]

COVID-X-ray-5k:
It contains 2084 training
and 3100 test images.
- 2084 images for training
divided into 84 COVID-19
and 2000 Non-COVID
- 3100 images for testing
divided into 100 COVID-19
and 3000 Non-COVID.

4 CNN models,
including ResNet18,
ResNet50, SqueezeNet,
and DenseNet-121,
to identify COVID-19
disease in the analyzed
chest X-ray images.

COVID-19

89.5%

- -

Normal 100.0% 98.52%

Non-COVID-19 98.50% 100.0%
Our
paper

The chest X-ray dataset contains
2911 images divided into:
237 COVID-19 positive images,
1338 normal images,
1336 viral pneumonia images.
2328 images for the training,
291 images for the validation,
292 images for testing.

MobileNet-V2, Xception,
Inception-V3,
DenseNet-201, VGG16,
Resnet-50 (V1 and V2),
Resnet 101, and
EfficientNet (B0, B1, B2,
B3, B4, B5, B6, and B7),
and Ensemble classification
using voting. COVID-19

99.31%

100.0% 100.0%

2. Materials & Methods

In this paper, we propose to detect and differentiate the COVID-19 cases from other
pneumonia and normal cases using deep learning algorithms based on chest X-ray images.
Our proposed method is composed of 5 steps. In the first step, we started by preparing the
Chest X-ray Dataset. In the second step, we trained the selected classification algorithms
on the constructed dataset. The selected classification algorithms were: MobileNetV2,
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Xception, InceptionV3, DenseNet-201, VGG16, ResNet50 (V1 and V2), and ResNet11
EfficientNet (B0, B1, B2, B3, B4, B5, B6, and B7). In the third step, we selected the five
best-performing algorithms and tested five different voting approaches to pick out the best
strategy to consider in general cases. In this section, we will explain these three steps in
more detail.

2.1. Dataset Preparation

In this paper, we used the Chest X-ray Dataset for the detection of COVID-19 cases
that was recently made public by Chowdhury et al. [21]. This dataset was made by a team
of researchers from Qatar University, Doha, and the University of Dhaka, Bangladesh,
along with their collaborators from Pakistan and Malaysia in collaboration with medical
doctors. The inclusion exclusion criteria is common for all COVID-19 dataset.

The dataset is composed of chest X-ray images that merely present the anterior-
posterior views because based on board-certified radiologist advice. Only anterior-posterior
images are kept for COVID-19 prediction since the other type of images is not suitable for
this purpose [33].

It contains chest X-ray images for COVID-19 positive cases, along with Normal and
Viral Pneumonia images. It consists of a total of 2992 chest radiography images with three
classes: 306 COVID-19 positive images, 1341 normal images, and 1345 viral pneumonia im-
ages.

To improve the Chest X-ray Dataset, we removed duplicate images found in the
original dataset. We found that it contains 77 duplicate images. The new dataset contains
2911 images divided into 237 COVID-19 positive images, 1338 normal images, and 1336 vi-
ral pneumonia images. As observed, the COVID-19 cases are significantly lower than other
classes, making it an imbalanced classification problem. Figure 1 presents some images of
the chest X-ray dataset.

Figure 1. Sample images from the chest X-ray dataset.

For the evaluation of our deep learning model, we split our dataset into 2328 images
for the training, 291 images for validation (dev), and 292 images for testing. For the training,
we performed data augmentation on the dataset and fixed the input size of the image to
224 × 224 × 3.
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2.2. Training of the Selected Algorithms

Among the state of the art algorithms in image classification, we selected 16 classi-
fiers which are: MobileNetV2 [34], Xception [35], InceptionV3 [19], DenseNet-201 [36],
VGG16 [37], ResNet (ResNet50V1, ResNet50V2, ResNet11) [38], and EfficientNet (B0, B1,
B2, B3, B4, B5, B6, and B7) [28]. These classifiers are considered among the most popular
CNN architectures used in literature based on the recent survey made by Khan et al. [39].
We wanted to consider this large number of classifiers to be able to reach the maximum
possible accuracy on COVID-19 diagnosis task independently from the chosen CNN ar-
chitecture. For every selected model, we used the pre-trained weights on the ImageNet
dataset as a start point for the training. In fact, the constructed dataset is so small to be
sufficient to learn discriminative features for general visual patterns. Big datasets, like
ImageNet, help the model to learn better general visual patterns that exist in image data.
Using pre-trained weights on ImageNet for training small datasets helps the model to
converge faster and easier. Although, in our case, the type of chest X-ray Images is different
from the type of images existing in ImageNet. But, in literature, there are no big datasets of
chest X-ray images that we may use to pre-train our model on. ImageNet was the most
adequate dataset in our case. During the training of our model, all the layers were set to be
trainable. We did not freeze any part of the model. In fact, our dataset’s domain is notably
different from the domain of ImageNet, and all the parameters of the model should be
tuned to fit our dataset.

In every model, we changed the last layers of the classification part by a proposed head
model composed of 7 layers. The first layer is an average pooling layer with a size of 4 × 4
to reduce the number of parameters, followed by a ReLU activation layer (Rectified Linear
Unit) that increases the non-linearity in the images. The third layer is a batch normalization
layer that improves the speed, performance, and stability of our model, followed by a
ReLU activation layer. We placed the dropout 0.5 after the activation function that sets
a number of hidden units to 0 with a probability of 0.5. The sixth and last layer before
the classification layer is a batch normalization layer aiming to improve the whole model.
Finally, the last layer is a Softmax layer with three outputs corresponding to 3 different
classes ( COVID-19, Normal, and Viral Pneumonia). Figure 2 presents our proposed model
combined with the feature extractor of the selected model concatenated to the designed
head model.

Figure 2. The proposed model architecture for training the COVID-19 chest X-ray dataset.

2.2.1. MobileNet

MobileNetV2 [34] is the second version of MobileNet architecture. This architecture
contains two types of blocks. One is a residual block with a stride of 1. The other is a block
with a stride of 2 for downsizing. For each block, there are three layers. The first layer
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is 1 × 1 convolution with ReLU6, the second layer is a depth-wise convolution, and the
third layer is another 1 × 1 convolution but without any non-linearity. The architecture
of MobileNetV2 is displayed in Figure 3. Every line represents a series of layers that
are repeated n times, c is the number of output channels, s is the stride, and t is the
expansion factor.

Figure 3. MobileNet architecture [34].

To adapt the MobileNetV2 architecture for our application, we replaced the head FC
(Fully Connected) layer by the designed head in our proposed architecture (Figure 2).

2.2.2. Xception

The Xception [35] architecture has 36 convolutional layers forming the feature extrac-
tion base of the network. The 36 convolutional layers are structured into 14 modules, all of
them have linear residual connections around them, except for the first and last modules.
In short, the Xception architecture is a linear stack of depth-wise separable convolution
layers with residual connections. The data first goes through the entry flow, then through
the middle flow, which is repeated eight times, and finally through the exit flow. Note that
all Convolution and Separable Convolution layers are followed by batch normalization. All
Separable Convolution layers use a depth multiplier of 1. A representation of the Xception
architecture is illustrated in Figure 4. Data goes first into the Entry flow. Then, it reiterates
into the middle flow for eight times before going into the exit flow.

Figure 4. Xception architecture [35].
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2.2.3. Inception

The InceptionV3 [19] is the last version of the Inception architecture. It allows us
to increase the depth and the width of the deep learning network, while simultaneously
maintaining the computational cost constant. It works as a multi-level feature generator by
computing 1 × 1, 3 × 3, and 5 × 5 convolutions with 42 layers deep. This allows the model
to use multiple scales of kernels on the image and to get results from all of them. All such
outputs are stacked along the channel dimension and used as input to the next layer. A
representation of the of the InceptionV3 architecture is made in Figure 5.

Figure 5. InceptionV3 architecture [40].

2.2.4. DenseNet

The DenseNet architecture, introduced by Huang et al. [36], is a network architecture
where each layer is directly connected to every other layer in a feed-forward. The feature
maps of all preceding layers are treated as separate inputs for each layer, whereas its
own feature maps are passed on as inputs to all subsequent layers. This simplifies the
connectivity pattern between layers introduced in other architectures. This makes it lower
in the number of parameters than an equivalent traditional CNN, as there is no need to learn
redundant feature maps. There are multiple variants of DenseNet following the number of
layers. For example, DenseNet-201 corresponds to a variant where the number of layers
with trainable weights is 201 (excluding batch normalization layers). A representation of
one DenseNet architecture based on three Dense blocks is made in Figure 6.

Figure 6. DenseNet architecture [36].

2.2.5. VGGNet

In the VGG16 [41] architecture, the input to the first convolutional layer is of fixed
size 224 × 224 × 3 RGB (Red-Green-Blue) image. The image is passed through a stack of
convolutional layers, where the filters were used with a very small receptive field: 3 × 3.
One of the configurations also utilizes 1 × 1 convolution filters, which can be seen as a
linear transformation of the input channels. The convolution stride is fixed to 1 pixel; the
spatial padding of convolutional layer input is such that the spatial resolution is preserved
after convolution, the padding is 1-pixel for 3 × 3 convolutional layers. Spatial pooling
is carried out by five max-pooling layers, which follow some of the convolutional layers.
Max-pooling is performed over a 2 × 2 pixel window, with stride 2. A representation of
the VGG architectures is made in Figure 7.
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Figure 7. VGG architectures [41].

2.2.6. ResNet

The ResNet [38] model comes with a residual learning framework to simplify the
training of deeper networks. The architecture is based on network layers’ reformulation
as a residual block added to the layer inputs. The ResNet network has four stages. It
takes as input an image having height and width as multiple of 32 and channel width
as 3 (224 × 224 × 3). Every ResNet architecture performs the initial convolution and
max-pooling using 7 × 7 and 3 × 3 kernel sizes, respectively. Afterward, Stage 1 of the
network has 3 Residual blocks. Every Residual block contains three layers. The kernels’
size to perform the convolution operation in a residual block of stage 1 is 64, 64, and 128,
respectively. The convolution operation in the Residual Block is performed with stride 2.
Hence, the input size will be reduced to half in terms of height and width, but the channel
width will be doubled. Figure 8 describes the most used ResNet architectures.

Figure 8. ResNet architectures [38].

In the current paper, we chose three variants of ResNet (ResNet50-V1, ResNet50-V2,
and ResNet11). Two major differences exist between ResNet50–V1 and ResNet50–V2.
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The first difference is that ResNet50-V2 has removed the last non-linearity, therefore
clearing the input path to output in the form of identity connection. The second difference
is that ResNet50-V2 applies Batch Normalization and ReLU activation to the input before
the multiplication with the weight matrix (convolution operation), while ResNet50-V1
performs the convolution, followed by Batch Normalization and ReLU activation.

ResNet11 contains 51 convolutional layers more that ResNet50. It also has 7.6 bil-
lion FLOPS (Floating Point Operations per Second) instead of 3.8 billion FLOPS for the
ResNet50 model.

2.2.7. EfficientNet

EfficientNets [28] are a list of classifiers introduced recently in 2019 and based on
AutoML and Compound Scaling. AutoML is used to develop a mobile-size baseline
network (EfficientNet-B0). Then, the compound scaling method is used to scale up this
baseline to obtain EfficientNet-B1 to B7. The Compound Scaling method scales uniformly
all dimensions of depth, width, and resolution using a simple yet highly effective com-
pound coefficient. The depth of layers should increase 20%, the width 10%, and the image
resolution 15% to keep things as efficient as possible, while expanding the implementation
and improving the accuracy. Alpha, beta, and gamma are the scaling multipliers for depth,
width, and resolution, respectively. They are obtained using a grid search. Phi is a user-
specific coefficient. It is a real number that controls resources. Below are the equations of
depth, weight, and resolution based on Phi :

Depth : d = αφ, (1)

Width : w = βφ, (2)

Resolution : r = γφ, (3)

while : α.β2.γ2 ≈ 2; α ≥ 1, β ≥ 1andγ ≥ 1. (4)

EfficientNet-B0 architecture is a mobile sized architecture having 11M trainable pa-
rameters. Its architecture is described in Figure 9, where every row is a separate stage i in
the network. Every stage i is characterized by a number of layers L̂i, an input resolution
size < Ĥi, Ŵi > and an output channels size Ĉi.

Figure 9. EfficientNet-B0 architecture [28].

It uses seven inverted residual blocks. Squeeze and excitation blocks are used along
with the swish activation function. EfficientNet uses 7 MBConv blocks. Every MBConv
block takes two inputs. The first is data, and the second is block arguments. The data
is received from the last layer. The block arguments are a collection of attributes to be
used inside an MBConv block, like input filters, output filters, expansion ratio, squeeze
ratio, etc. The expansion phase aims to expand the layer to make it wide. The depth-wise
convolution phase applies a depth-wise convolution using the kernel size mentioned in
the block arguments. The Squeeze and excitation phase extracts the global features using
the global average pooling. Then, it squeezes the numbers of channels using the squeeze
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ratio. The Output phase applies convolution operation using the output filters mentioned
in the block arguments.

2.3. Ensemble Classification

As demonstrated in the Experimental section, we got different accuracies for the 16
selected classifiers when testing them on the Chest X-ray Dataset. But, we noted that five
classifiers generally outperform the others in this task. This affirmation is concluded after
testing the classifiers on two different datasets (a validation and a test set). No one of them
is to be selected as the best classifier in all cases (the best classifier tested in the validation
set is different from the best classifier in the test set). Hence, we decided to combine results
generated by every classifier following five different ensemble classification methods. First,
we selected the Voting approach because it is the straightforward solution to generate
final-stage classification from different predictions. We included both the soft and the hard
approaches to assess the validity of both of them. Then, we selected three of the top used
machine learning algorithms (Random Forests, SVM and Neural Networks) to estimate
if there is a more accurate combination between the different predictions. We selected
these classifiers similarly to many studies that only considered them in their research
works [42–47]. Below is a more detailed description of every selected approach:

• Majority Voting using the hard approach: As shown in Figure 10, this method acts
by summing the per class labels associated with every classifier for the input image.
Then, it gives the final label to the class that has the greatest number of labels (votes)
among the classifiers. If there are equal votes for two different classes, we chose to
assign the final label to the class with the least index. Other strategies can be used to
solve this special case, as well.

• Majority Voting using the soft approach: As shown in Figure 10, this method acts by
summing the per class values of the probability vector generated by every classifier
for the input image. Then, it gives the final label to the class that has the greatest
probability sum. Equal probabilities sum is an almost impossible case for the soft
approach.

• Weighted voting using a Neural Network: Here, we designed a more dedicated
voting approach in order to give a learned weight for every classifier prediction.
In fact, manually giving a weight for every classifier is not practical. To solve this
problem, we decided to assign the weights using a Neural Network. The Neural
Network is trained on the validation set and tested on the test set. In the end, every
classifier will be assigned a conditional weight that depends on other classifiers to
deduce the most accurate label for the input image.

• SVM (Support vector machine)-based voting: To deduce the right classification of
the input image, an SVM is trained to deduce the right classification of the input
image by only seeing the vector of labels assigned by the top classifiers. The training
of the SVM is made on the validation set and tested on the test set.

• Random Forests-based voting: The Random Forests algorithm acts by building a
number of decision trees during the training and generating as output the mode of
the assigned classes by the individual trees. The Random Forests method has the
advantage of avoiding the habit of overfitting for the normal decision tree. Here, we
do the same; many decision trees are built to estimate the right label based on the
labels made by the classifiers. Then, we deduce the mode of the estimations made
by these decision trees. This mode will be chosen as the final label assigned to the
input image.
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Figure 10. The ensemble classification model.

We tested every voting approach on the test set. For the two Majority Voting methods
(the hard and the soft approaches), they do not need any training; they were tested directly
on the test dataset. For the other three methods, we do the training of the algorithm on the
validation dataset before testing it on the test dataset.

As demonstrated in the experimental section, the majority voting methods (the hard
and the soft approaches) outperformed clearly the other methods. They were chosen as the
best strategy to adopt for the COVID-19 diagnosis from the chest X-ray images. These two
methods are illustrated in Figure 10.

3. Results

In this section, we describe the experiments run to evaluate the proposed approaches.
After that, we discuss the findings.

3.1. Experimental Setup

Concerning the deep learning classifiers, we used the Tensorflow 2.1 Library [48]. We
used the default Python API of the library. Models are instantiated using the Keras [49]
default implementation inside Tensorflow. Concerning the Ensemble voting, we imple-
mented the majority voting approaches (soft and hard approaches) in Python language.
We used Scikit-Learn [50] library for the SVM and the Random Forests models. We used
Keras [49] for the Neural Network-based Ensemble Voting. All the experiments were made
in Python [51] Language, and we used Jupyter Lab [52] for easy assessment of the results.
We performed the training and the testing on Google Colab Professional account. The GPUs
used were P100 and T4. The size of the RAM was 100 GB. For all the algorithms used, we
performed the training using the Adam optimizer and the Cross-Entropy loss function.
The image input sizes for all the networks are of (224 × 224) pixels. For the learning rate, we
started by 1.00e-04, and then we made some tuning by increasing the value of the learning
rate to 1.00e-05 for all the models, except the VGG16 and EfficientNet-B0. Only for these
two models, we noticed that the learning rate increase did not improve the convergence of
the results.

For the number of epochs, we started by 200 epochs. Then, we increased it or decreased
it depending on the convergence results and the stabilization of the Training Loss and
the Accuracy Curve. In Table 2, we presented the training epoch number and the epochs
number of best convergence for each deep learning model used in the experiments. The
batch size is a hyperparameter of gradient descent representing the number of training
samples fed to the network in one iteration before updating its parameters. Its value
depends on the size of the model, the GPU memory, and the convergence of the results.
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Table 2. Trainig parameters of the deep learning models.

Model Learning
Rate

Batch
Size

Epochs Number
of

Best Convergence

Number
of

Epochs

MobileNetV2 1.00e-05 200 760 1000
Xception 1.00e-05 100 471 500

InceptionV3 1.00e-05 100 369 400
DenseNet-201 1.00e-05 64 270 300

VGG16 1.00e-04 64 169 200
ResNet50V1 1.00e-05 100 152 200
ResNet50V2 1.00e-05 100 231 300

ResNet11 1.00e-05 100 425 500
EfficientNet-B0 1.00e-04 32 224 300
EfficientNet-B1 1.00e-05 32 152 200
EfficientNet-B2 1.00e-05 32 280 300
EfficientNet-B3 1.00e-05 32 373 400
EfficientNet-B4 1.00e-05 32 350 400
EfficientNet-B5 1.00e-05 32 415 500
EfficientNet-B6 1.00e-05 16 252 300
EfficientNet-B7 1.00e-05 16 290 300

3.2. Performance Evaluation and Metrics

For the evaluation of our proposed algorithms, we used six metrics based on the
following parameters:

• True Positives (TP) : It represents the number of images belonging to a class “X,” and
the model predicts correctly that they belong to the class “X”. For example, the input
image is of class “Normal” and the model predicts correctly that it is of class “Normal”.

• True Negatives (TN): It represents the number of images that do not belong to a
class “X” and the model predicts correctly that they do not belong to the class “X”.
For example, the input image is not “COVID”, and the model predicts correctly that it
is not of the class “COVID”.

• False Positives (FP): It represents the number of images belonging to a class “X” and
the model falsely predicts that it belongs to another class different from “X”. For ex-
ample, the input image is “COVID” and the model falsely predicts it as “Normal”.

• False Negatives (FN): It represents the number of images that do not belong to a class
“X” and the model falsely predicts that they belong to the class “X”. For example,
the input image is not “COVID”, and the model predicts it falsely as “COVID”.

The batch size is a hyperparameter of gradient descent representing the number
of training samples fed to the network in one iteration before updating its parameters.
Its value depends on the size of the model, the GPU memory, and the convergence of
the results.

The four metrics used for the evaluation are:

Accuracy = (TP + TN)/(TP + TN + FP + FN), (5)

Precision = TP/(TP + FP), (6)

Recall = TP/(TP + FN), and (7)

F1score =
2 ∗ Precision ∗ Recall
(Precision + Recall)

. (8)

For our problem: the COVID-19 diagnosis in chest X-ray images, all these defined
metrics have a significant meaning and interpretation. The accuracy measures the degree
of right predictions among the total predictions (right and false) of the model. We will
consider during our study the overall accuracy of the model to be able to judge the global
performance of the model overall the classes.

Concerning the precision, the recall, and the F1 score, we will consider only the class
“COVID”. This is more fruitful for our study and analysis. The precision will reflect the
model’s ability to only detect “COVID” cases without falsely classifying images that belong
to other class as “COVID” cases. The clinical impact of low precision is the increase in the
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number of classifying safe people (Normal and Viral Pneumonia cases) as COVID. It will
engender more false alarms and add more surcharge for the COVID medical staff as they
will attentively care for persons that did not suffer from COVID.

On the other hand, the recall (i.e., sensitivity) of the class COVID will reflect the
model’s ability to detect all the COVID cases that exist without assigning them to other
classes. The clinical impact of a low recall will be dangerous. In fact, a lower recall rate
means a higher risk to assign COVID cases to other classes and to prevent them from the
special care they need. They will be more exposed to complications, and they will be at a
higher risk of death. In addition, during this, they will, unconsciously, infect other people
with the disease.

Besides, the F1 score of the class COVID will measure the strength of the model in
treating the COVID cases (to successfully detect all the COVID cases in the dataset and
not assign any non-COVID case to the class COVID). In fact, it is an equal combination
between the precision and the recall metrics.

3.3. Results

For the evaluation of the proposed algorithms, we compared the values of the four
metrics (Overall Accuracy, Precision for the class COVID, Recall for the class COVID,
and F1 score for the class COVID) for every algorithm described in Section 3. We tested
these algorithms on the chest X-ray constructed dataset: the training set is composed of
2328 images, the validation set is composed of 291 images, and the test set is composed of
292 images. Tables 3 and 4 present the metrics of every algorithm on the training set and the
test set respectively. In addition, they represent the mean, the standard deviation, the Con-
fidence Level (95.0%), and the Confidence Interval (95.0%) for all the models. The results
are presented in both of the tables in an ascending order following the accuracy metrics.

Table 3. Evaluation metrics of the algorithms on the train dataset.

ALGORITHM
USED Accuracy Precision Recall F1-Score

EfficientNet-B0 0.9549 0.66197 0.93925 0.79325

EfficientNet-B6 0.97466 0.84821 1 0.91787

EfficientNet-B2 0.98969 0.89623 1 0.94527

EfficientNet-B4 0.99012 0.96447 1 0.98191

EfficientNet-B3 0.99527 0.96447 1 0.98191

EfficientNet-B5 0.99871 1 1 1

VGG16 0.99914 1 1 1

EfficientNet-B1 0.99957 1 1 1

ResNet50V2 0.99957 1 1 1

DenseNet-201 0.99957 1 1 1

Xception 0.99957 1 0.99474 0.99736

MobileNetV2 1 1 1 1

InceptionV3 1 1 1 1

ResNet50V1 1 1 1 1

ResNet11 1 1 1 1

EfficientNet-B7 1 1 1 1

Mean 0.99379 0.95845 0.99587 0.97609

SD 0.01235 0.09054 0.01515 0.05416

Confidence Level
(95.0%) 0.00658 0.04825 0.00807 0.02886

Confidence
Interval (95.0%) 0.98721–1 0.91020–1 0.98779–1 0.94723–1
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Table 4. Evaluation metrics of the algorithms on the test dataset.

ALGORITHM USED Accuracy Precision Recall F1-Score
EfficientNet-B0 0.92466 0.55814 1 0.71642
EfficientNet-B3 0.96233 0.82759 1 0.90566
EfficientNet-B4 0.96233 0.82759 1 0.90566
VGG16 0.96575 1 1 1
EfficientNet-B2 0.97603 0.85714 1 0.92308
EfficientNet-B5 0.97603 1 1 1
EfficientNet-B6 0.97603 0.88889 1 0.94118
EfficientNet-B7 0.97603 0.96 1 0.97959
Xception 0.97945 1 1 1
InceptionV3 0.98288 1 1 1
EfficientNet-B1 0.9863 1 1 1
ResNet11 0.9863 1 1 1
DenseNet-201 0.9893 1 1 1
ResNet50V1 0.98973 0.96 1 0.97959
ResNet50V2 0.99315 1 1 1
MobileNetV2 0.99658 1 1 1
Majority Voting (hard approach) 0.99315 1 1 1
Majority Voting (soft approach) 0.99315 1 1 1
Weighted Voting using Neural
Networks 0.98630 1 1 1

SVM-based voting 0.98973 1 1 1
Random Forests-based voting 0.98630 1 1 1
Mean 0.97945 0.94663 1 0.969104
SD 0.01602 0.10743 0 0.066476
Confidence Level (95.0%) 0.00729 0.048903 0 0.03026

Confidence Interval (95.0%) 0.97215–
0.98674

0.89773–
0.99553 1–1 0.93884–0.99936

In Table 3, all the deep learning models had made an accuracy superior to 0.95, and 13
out of them had made an accuracy superior to 0.99. Although these good results, we cannot
judge the models’ performance until we see the accuracy on the test set. In fact, good
accuracy in the training set, coupled with lower performance on the test set, reflects that
the model suffers from overfitting, making it inefficient to use in real cases.

Table 5 presents the Inference time of the algorithms, which is exactly the time we
need to detect COVID-19 in chest X-ray images. The average inference time is 1 ms.

Table 5. Inference time of the algorithms on the test dataset.

ALGORITHM USED Inference Time (ms)
EfficientNet-B0 2
EfficientNet-B3 2
EfficientNet-B4 1
VGG16 0.879
EfficientNet-B2 2
EfficientNet-B5 2
EfficientNet-B6 2
EfficientNet-B7 2
Xception 2
InceptionV3 1
EfficientNet-B1 2
ResNet11 0.996
DenseNet-201 2
ResNet50V1 1
ResNet50V2 1
MobileNetV2 2
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As it can be observed in Table 4, the general performance of the models has decreased.
This reflects a weak degree of overfitting in most classifiers. Based on the overall accuracy,
we can see that some classifiers were more prone to overfitting (like EfficientNet-B7),
whereas others had no overfitting (like MobileNetV2 and ResNetV2).

In Figure 11, we tried to emphasize more the overall accuracy of the different deep
learning models on the test set. We can see that the best classifier is MobileNetV2, which
and accuracy of 0.99658.

In Figure 12, we show the plots of accuracy and loss of the top 5 best classifiers
(MobileNetV2, ResNet50V1, DenseNet-201, ResNet11 and ResNet50V2). The plots are
drawn for the training and the validation sets of the Chest X-ray Datasets.

These figures demonstrate that all the top models converge efficiently on the training
set from the few first epochs. In fact, 100 epochs were sufficient for all the models to con-
verge. However, in the validation set, more epochs were needed to reach the convergence
stage, especially for MobileNetV2, ResNet50V1, and ResNet11. Moreover, the overfitting
degree was weak in all models (convergence of the Accuracy on the training set is close to
its convergence on the validation set). The least prone model to overfitting was ResNet11.

Concerning the other metrics, the Precision, the Recall, and the F1 score measured
for the class COVID, quasi-optimal were obtained. Beginning by the Precision metric,
almost the top classifiers gave a precision of 1 (except ResNet50V1, which gave 0.96).
This is illustrated in Figure 13. Hence, this means clinically, that, based on the datasets,
the top models have a strong ability to not classify non-COVID cases as COVID cases. This
prevents the Medical staff from giving expensive care to individuals that did not suffer
from COVID in reality.

Concerning the Recall metric, it is more the most important metric to consider for the
COVID diagnosis. The higher this metric is, the higher the model ability to detect all the
COVID cases in the dataset. All the 16 deep learning classifiers were successful in getting
the full recall score: 1. The clinical impact of this fact is that the risk of labeling COVID
cases as safe is almost zero in real cases. Almost every COVID patient will be detected
successfully by them and, therefore, will be assigned the right care from the medical staff.
These patients will be at a lower risk of death and at a lower risk of infecting others with
this disease.

Figure 11. Overall Accuracy of the deep learning models on the test set.
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Figure 12. Training Loss and Accuracy for MobileNetV2, DenseNet-201, ResNet50V1, ResNet11, and
ResNet50V2.

Concerning the F1 score, it is a metric that combines precision and recall and gives an
idea about the model’s strength regarding the class COVID. As the recall is 1 for models,
this metric will be 1 when the precision metric is 1. For other models, the F1 score will
decrease following the error rate in the precision metric. According to Figure 14, all the top
selected classifiers got an F1 score of 1, except the ResNet50V1 which got 0.9796.

Finally, we provided in Figure 15 the confusion matrices of the best five models. We
can see that both models achieve the perfect performance of 100% for the COVID-19 class.
We can see that the performance of all the models for the class COVID (Class of index 1) is
100% in all the models, except the ResNet50V1. If we limit the confusion matrices on only
two classes (“COVID”/“non-COVID” cases), we will get an overall accuracy of 100% in
four of the top selected models.
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Figure 13. Precision.

Figure 14. F1 score.
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Figure 15. Confusion matrix of the best five models on the chest X-ray test dataset 0: ‘COVID-19’, 1:
‘NORMAL’, 2: ‘Viral Pneumonia’.

3.4. Ensemble Voting Appraoches

Based on the overall accuracy on the dataset, we selected the best five classifiers, which
are: MobileNetV2, ResNet50V2, ResNet50V1, DenseNet-201, and ResNet11. In order to
improve more the accuracy, we decided to apply 5 of Ensemble voting approaches, which
are already described in Section 3.

Concerning the first two ensemble voting approaches: Majority Voting using the hard
approach and the Majority Voting using the soft approach, they do not need training. They
are applied statically without any preliminary training. However, for the other three: The
Weighted Voting using Neural Networks, the SVM-based voting, and the Random Forests-
based voting, we trained the voting model on the validation dataset before applying it on
the test set. The weighting approach is learned independently on the validation dataset
before applying it to the test dataset.

We can see in the table that, through the Ensemble voting approaches, the Majority
Voting (both hard and soft approaches) are the best compared to other voting approaches.
They gave us slightly lesser accuracy than the top best classifier (0.00343 compared to the
best classifier: MobileNetV2).

Concerning the other voting approaches (Weighted voting using Neural Networks,
SVM-based voting, and Random Forests-based voting), they are less efficient than the
Majority Voting Approaches. This means that there is not an optimal weighted combination
of the classifiers labeling that works in all cases. To emphasize this fact, we compared the
accuracy on the validation set (where the models are trained) to their accuracies tested
in the test set; we also compared the mean, the standard deviation, the Confidence Level
(95.0%), and the Confidence Interval (95.0%) of the accuracy on the validation set with
those of the accuracy tested on the test set. All the results are presented in Table 6.
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Table 6. Evaluation metrics of 3 ensemble classification algorithms (Neural Networks, SVM and
Random Forests on the test and the validation dataset.

ALGORITHM

USED

Accuracy in the

Validation Set

Accuracy in the

Test Set

Weighted Voting using

Neural Networks
0.99658 0.98630

SVM-based voting 0.99658 0.98973

Random Forests-based voting 0.99315 0.98630

Mean 0.99543 0.98744

SD 0.00198 0.00198

Confidence Level (95.0%) 0.00491 0.00491

Confidence Interval (95.0%) 0.99051–1 0.98252–0.99236

We can see in Table 6, although the three models were successful in learning, a good
representation of weighted combination between the different classifiers. This representa-
tion is not optimal in all cases and changes from one dataset to another. In fact, the high
accuracies of the top selected classifiers (above 98%) make the mission for these models
more difficult. Hence, we avoided using these approaches in the rest of this study and kept
focusing on the Majority Approaches.

Returning to Table 4, the Majority Voting (both hard approach and soft approach)
gave us the same metrics. This means that all the selected deep learning classifiers have
strong discriminative capabilities. They detect the final predicted class with a very strong
probability compared to other classes. In fact, the soft approach gives us better results
because it works on the probability and not the final associated label. To emphasize this
fact, we tested the Majority Voting approaches on three classifiers that are not among the
best (EfficientNet-B7, EfficientNet-B6, and EfficientNet-B5), and we calculated the mean,
the standard deviation, the Confidence Level (95.0%) and the Confidence Interval (95.0%)
of these different models for every considered metric. We got the results presented in
Table 7.

Table 7. Comparison between the soft and the hard approaches for Majority voting implemented on
three classifiers (EfficientNet-B5, B6 and B7).

ALGORITHM USED Accuracy Precision Recall F1-Score

EfficientNet-B5 0.97603 1 1 1

EfficientNet-B6 0.97603 0.88889 1 0.94118

EfficientNet-B7 0.97603 0.96 1 0.97959

Majority Voting (hard approach) 0.98630 0.96 1 0.97959

Majority Voting (soft approach) 0.98973 1 1 1

Mean 0.98082 0.96177 1 0.98007

SD 0.00667 0.04538 0 0.02401

Confidence Level (95.0%) 0.00828 0.05635 0 0.02982

Confidence Interval (95.0%) 0.97253–0.98911 0.90541–1.00000 1–1 0.95025–1

As seen in Table 7, the Accuracy of the soft approach is better than the hard approach.
And both approaches outperform clearly the three selected classifiers. In fact, the classifiers
have lesser discriminative capability than the top best. Hence, we can affirm that the
Majority Voting approaches work better when the classifier’s performance is less than the
optimal. Moreover, when we have the less discriminative capability; the soft approach
works better than the hard approach, in general.

Going further, we analyzed the measures of the ROC (Receiver Operating Charac-
teristic) AUC (Area Under Curve). Since our problem is a multi-classification problem,
we followed two strategies to convert it into a binary classification problem. The first is
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the OVO (One versus One) approach, in which we divided the dataset into multiple sub-
datasets. In each one of them, we only consider only one class versus another. The second
approach used is the OVR (One versus the Rest). In OVR, we split the dataset into multiple
sub-datasets where we consider only one class versus all the rest. Then, for every one of
the two approaches, we averaged the different obtained scores using two methods: macro
average score and prevalence weighted average. The scores are calculated for the top
selected classifiers (DenseNet-201, ResNet50V1, ResNet50V2, MobileNetV2, and ResNet11)
and the Soft Majority Approach. We cannot measure the AUC score for the Hard Major-
ity Approach because the predicted label in this case is not obtained from a probability.
The Results are presented in Table 8.

Table 8. AUC scores for DenseNet-201, ResNet50V1, ResNetV2, MobileNetV2, ResNet11, and the Soft Majority Voting
among them.

AUC Scores Following the OVO Scheme AUC Scores Following the OVR Scheme

Macro Average Prevalence-Weighted
Average

Macro Average Prevalence-Weighted
Average

DenseNet-201 0.995056 0.993194 0.995056 0.993194
ResNet50V1 0.999103 0.998765 0.999103 0.998765
ResNet50V2 0.997229 0.996185 0.997229 0.996185
MobileNetV2 0.999843 0.999783 0.999843 0.999783
ResNet11 0.992285 0.989379 0.992285 0.989379
Soft Majority Voting 0.999827 0.999762 0.999827 0.999762

We can see there that the Soft Majority Voting and the MobileNetV2 have the best
AUC scores than all the others. The margin between these two methods is not statistically
significant compared to their margin with the others classifiers. In fact, this margin is only
0.2% of the total margin between the best and the least performing algorithms. Hence, this
confirms the validity of choosing the Majority Voting approach in general cases to avoid
performance variability of the classifiers among different test sets. In fact, the performance
of MobileNetV2 was remarkably lower than the Soft Majority Approach on another test set
(see Table 11), while the Soft Majority Approach was always the best performing algorithm
on it.

3.5. Discussion

All the steps performed during this study have a remarkable impact on the efficiency
of the classifiers. We started with the chest X-ray image pre-processing and the data
augmentation. For image pre-processing, we proposed to remove all duplicate images from
the original dataset (77 duplicate images were removed). Although the number of images
has decreased in this case, it improves the dataset’s performance because having duplicate
images in the dataset creates a problem for two reasons. First, it introduces bias into your
dataset, giving the deep neural network additional opportunities to learn patterns specific
to the duplicates. Second, it hurts your model’s ability to generalize to new images outside
of what it was trained on. For the data augmentation, All of the pre-trained models were
large enough to be overfitted easily on this dataset. To avoid this, we resized the images to
224 × 224 × 3, and we included the random rotation of the images, as data augmentation
has an effect to prevent overfitting.

Then, we selected the most powerful deep learning algorithms for the images classifi-
cation to study in our task: MobileNetV2, Xception, InceptionV3, DenseNet-201, VGG16,
ResNet50 (V1 and V2), ResNet11, and EfficientNet (B0, B1, B2, B3, B4, B5, B6, and B7), We
fine-tuned these models by adding the proposed head model composed by one average
pooling layer with a size of 4 × 4, two ReLU activation layers, two batch normalization
layers, dropout 0.5, and, finally, a Softmax layer.

All proposed models demonstrated attractive results, with an accuracy rate of around
98%. Moreover, all the methods have 100% recall on the test set. A higher recall value means
a lower number of False-Negative (FN) cases, which is very important in the diagnosis of
COVID-19 cases. A patient who has a negative result is actually infected and will have a
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normal life without taking any precautionary measures, which can cause the infection of
other persons, which is very dangerous.

We compared our results with state of the art tested on the original chest X-ray test
dataset. Wang et al. [16] used COVID-Net network architecture, which has a lightweight
residual (PEPX) design pattern. They obtained a sensitivity of 88.6% and a precision
of 91.33%, with an accuracy of 92.4%. Farooq et al. [29] used an implementation of the
ResNet50 model, pretrained on the ImageNet dataset. They obtained a sensitivity of 96.9%
and a precision of 96.8%, with an accuracy of 96.32%. The comparison is given in Table 9,
and we can see that our best models have outperformed other state of the art methods.

Table 9. Comparative results for each model on test Accuracy.

Algorithm Accuracy

3D CNN (ResNet18) [11] 86.7%
VBNet [12] 91.6%

COVID-Net [16] 93.3%
ResNet50 [29] 96.23%

4 CNN models [33] 89.5%
ResNet50V2 99.315%

MobileNetV2 99.658%
Majority Voting 99.315%

As demonstrated previously, the top selected classifiers gave us quasi-optimal results
when tested on the chest X-ray test dataset. All of them gave 100% Accuracy in treating
COVID cases, except the ResNet50V1. However, to be able to generalize, we need more
experiments. This is why we tested all the classifiers and the Majority Voting again in
another dataset, which is the Validation dataset. The results are provided in Table 10.

Table 10. Evaluation metrics of the algorithms on the validation dataset.

ALGORITHM
USED

Accuracy Precision Recall F1-Score

EfficientNet-B0 0.88316 0.44681 0.91304 0.6

EfficientNet-B6 0.93471 0.6875 0.95652 0.8

EfficientNet-B4 0.94502 0.7931 1 0.88462

EfficientNet-B3 0.95189 0.82143 1 0.90196

EfficientNet-B2 0.95189 0.74194 1 0.85185

EfficientNet-B1 0.95876 0.88462 1 0.93878

InceptionV3 0.96564 1 1 1
ResNet50V1 0.96564 0.88 0.95652 0.91667
EfficientNet-B5 0.96564 1 1 1

VGG16 0.96907 0.95833 1 0.97872
ResNet50V2 0.97595 95652 0.95652 0.95652
MobileNetV2 0.97595 0.92 1 0.95833
Xception 0.97945 1 0.95652 97778
DenseNet-201 0.98625 1 1 1
ResNet11 0.99313 1 1 1
EfficientNet-B7 0.99313 1 1 1
Majority Voting
(hard approach)

0.99313 1 1 1

Majority Voting
(soft approach)

0.99313 1 1 1

From Table 10, we can deduce that the top 5 classifiers selected previously are among
the best on the validation dataset. Although the top-performing algorithm is different from
test to validation datasets. The best classifier in the test set was MobileNetV2, with an
accuracy of 0.99658. But it gave lesser performance when tested on the validation dataset:
0.97595. However, the Majority Voting approach gave in the validation set the best accuracy:
0.99313. Going deeper, we studied the average overall accuracy of every algorithm on both
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sets (the test set and the validation set). The results are provided in Table 11. The results
are ordered by descending order following the average accuracy calculated by averaging
every algorithm’s accuracy on the test and the validation sets.

Based on the results provided in Table 11, we note that the best method to use for the
problem treated in this paper is the Majority Voting method based on combinating results
from 5 classifiers: MobileNetV2, ResNet50V2, ResNet50V1, DenseNet-201, and ResNet11.
In fact, this method gave us the best average accuracy on both test and validation sets.
Moreover, it gives us 100% accuracy regarding the class COVID on both validation and test
sets (100% precision, 100% recall, and 100% F1 score on both sets). The average accuracy of
the Majority Voting approach is remarkably better than any other classifier tested on the
Chest X-ray Dataset (even the top selected classifiers in the test set).

Table 11. Average Accuracy of the classifiers and the Majority Voting methods on both the test and
the validation dataset.

Model
Accuracy
on the Test
Set

Accuracy
on the
Validation
Set

Average
accuracy

Majority Voting
(hard approach)

0.99315 0.99313 0.99314

Majority Voting
(soft approach)

0.99315 0.99313 0.99314

ResNet11 0.9863 0.99313 0.989715
DenseNet-201 0.9893 0.98625 0.987775
MobileNetV2 0.99658 0.97595 0.986265
EfficientNet-B7 0.97603 0.99313 0.98458
ResNet50V2 0.99315 0.97595 0.98455
Xception 0.97945 0.97945 0.97945
ResNet50V1 0.98973 0.96564 0.977685
InceptionV3 0.98288 0.96564 0.97426
EfficientNet-B1 0.9863 0.95876 0.97253
EfficientNet-B5 0.97603 0.96564 0.970835
VGG16 0.96575 0.96907 0.96741
EfficientNet-B2 0.97603 0.95189 0.96396
EfficientNet-B3 0.96233 0.95189 0.95711
EfficientNet-B6 0.97603 0.93471 0.95537
EfficientNet-B4 0.96233 0.94502 0.953675
EfficientNet-B0 0.92466 0.88316 0.90391

Going deeper, we decided to test the statistical significance of our introduced approach.
In other words, we need to statistically reject the hypothesis that assumes that the Majority
Voting superiority came only by chance in our experiments. So, we decided first to define
explicitly the Null Hypothesis H0 that we want to reject by calculating the p-value. As we
need to statistically quantify the superiority of one algorithm over the other, we considered
H0 as the hypothesis that the classification Method does not belong to the top 5% margin
of the difference between the top and the least performing algorithm on a selected dataset.
The Alternate Hypothesis H1 will be then defined as the hypothesis that the classification
method belongs to the top 5% margin of the difference between the top and the least
performing algorithms on a selected dataset. To calculate the p-value, we converted
Table 11 into a more understandable way to estimate the superiority of one algorithm over
the others. On every selected dataset, we calculated the increase in accuracy of every
method proportionally to the margin between the top and the least algorithm. Results are
written in Table 12.

The probability that one method belongs to the top 5% of the margin between the
best and the least performing algorithm on one dataset is: p0 = 0.05. Based on the
observations made on the test and the validation sets, the probability that the Majority
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Voting belongs to the top 5% margin on both the test and the validation set is p-value
= P(H0) = p0 × p0 = 0.0025. The common α value used as the threshold for p-value
is 0.05 [53]. In our case, p-value = 0.0025 << 0.05, which is strongly sufficient to reject
the Null Hypothesis H0. This strongly disprove the hypothesis that the Majority Voting
superiority among other classifiers is explained by chance. Moreover, calculating the
p-value for other methods is not enough to reject the Null Hypothesis H0 for them. This
reinforces more the statistical significance of the superiority of the Majority Voting over all
the other classifiers.

Table 12. Accuracy improvement of the selected methods proportionally to the margin between the
best and the least recorded accuracy on the test and the validation sets.

Model Test Set Validation
Set

Majority Voting
(hard approach)

95% 100%

Majority Voting
(soft approach)

95% 100%

ResNet11 86% 100%
DenseNet-201 90% 94%
MobileNetV2 100% 84%
EfficientNet-B7 71% 100%
ResNet50V2 95% 84%
Xception 76% 88%
ResNet50V1 90% 75%
InceptionV3 81% 75%
EfficientNet-B1 86% 69%
EfficientNet-B5 71% 75%
VGG16 57% 78%
EfficientNet-B2 71% 62%
EfficientNet-B3 52% 62%
EfficientNet-B6 71% 47%
EfficientNet-B4 52% 56%
EfficientNet-B0 0% 0%

Hence, we suggest that the Majority Voting approach is the most efficient method
to use in general cases when we do not have ideas about the targeted dataset. For all
other classifiers, the accuracy changes from one dataset to another. No classifier is able
to be adopted for every dataset. This study emphasizes the efficiency of the Voting ap-
proaches (especially the Majority Voting approach) in treating some sensitive tasks, like
COVID diagnosis.

Our study has some limitations to be targeted in the next research works. One of them
is that the dataset is not associated with data about the subjects who participated in the
study. This fact obliged us to be limited to descriptive statistics and prevented us from using
inferential statistics tools. Data, like gender, age, and clinical symptoms, could strengthen
our medical analysis method for better adoption in real cases. The dataset was also not
associated with the PCR test result (Polymerase chain reaction test) for every sample image.
PCR test is considered by many as the gold standard for COVID-19 diagnosis. Calculation
of the agreement rate between our method and the PCR test allows us to judge more the
potential of our method for a prevalent and widespread adoption in the actual condition of
the COVID-19 pandemic. All these limitations can be targeted in other studies to go deeper
into our method’s clinical interpretation.

4. Conclusions

In this study, we targeted the COVID diagnosis task from the chest X-ray images. We
began by preparing the dataset to be used. We selected the deep learning models to best
tested among the current state of the art algorithms in image classification. We modified
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their architecture to add our designed head model. We performed data augmentation
and made the training of all the selected classifiers on the processed dataset. We found
very encouraging results when testing on the test set. All the classifiers got an accuracy of
around 98%. The recall was 100% for all of them, which has an important clinical advantage.
This means the labeling of COVID cases to other classes is almost zero, which reduces the
risk of non-detecting COVID cases from their chest X-rays. To go beyond in improving
the accuracy, we selected the top-performing classifiers on the test set and designed five
different Ensemble Voting methods. To reinforce our findings, we made the experiments
on two different sets (the test set and the validation set). We found that the best approach
to be adopted for COVID diagnosis is the Majority Voting method based on the results
given by the top selected classifiers on the test set: MobileNetV2, ResNet50V2, ResNet50V1,
DenseNet-201, and ResNet11. The Majority Voting gave us an average accuracy of 0.99314
with 100% accuracy regarding the COVID class when tested on the test and the validation
set. To avoid the classifiers’ performance change from one test set to another, we propose
the Majority Voting as the best strategy to follow in general cases. This study emphasizes
more on the utility of the Majority Voting in treating sensitive and important tasks, like
COVID-19 diagnosis.

In future work, we need to invest more in the voting approaches by studying its
performance on larger datasets. Moreover, we need to go deeper in studying the soft
approach as it gives better results than the hard approach in many cases. Finally, we need
to overcome the cases where true labels are voted by a minority to tune the Majority Voting
to better performance.
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