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Abstract: Fixed base structures subjected to earthquake forces are prone to various issues, such as
the attraction of greater forces to structure, amplified accelerations to non-structural components,
expensive design for better seismic performance, and so forth. Base isolation applied at the foundation
of vulnerable structures is a radical bypass from the conventional approaches utilized by structural
engineers. However, the practical implementation of passive base isolation is constrained by factors
such as large displacements at isolation level, uplifting forces at isolators, and vulnerability to
unpredictable and versatile earthquakes. This study is focused on the evaluation of the smart base
isolation system under various harmonic and earthquake loadings. The proposed system employs a
magnetorheological elastomer (MRE)—a class of smart materials, based on an adaptive isolation layer
under the building structure for its vibration control. The building is idealized as a five-degree-of-
freedom (DOF) structure with the mass lumped at each storey. The stiffness of the MRE isolation layer
is adjusted using the linear quadratic regulator (LQR) optimal feedback control algorithm. A total of
18 simulations have been performed for the fixed base, passively isolated, and MRE-based isolated
structures under a series of earthquake loadings of both a near-fault and far-fault nature for analyzing
a total of 306 responses of the structures. The simulation results indicate that MRE-based isolation
has significantly reduced all the responses compared to the passively isolated structure for both the
near-fault and far-fault earthquake loadings. For harmonic loading, however, the passively isolated
structure outperformed the MRE isolated structure in terms of storey drift and acceleration responses.

Keywords: smart base isolation; near-fault earthquakes; magnetorheological elastomer (MRE);
structural dynamics

1. Introduction

Base Isolation is a technique that has been successful in mitigating vibrations in the
dynamic system [1,2]. For building structures, it is commonly introduced at the foundation
level which isolates the superstructure from earthquake accelerations that can be destructive to
the structure [3,4]. Through base isolation, the superstructure is decoupled from the vibrations
and the frequency of the dynamic system is thus modified [5,6]. Base isolators working on
conventional principles are prone to vulnerabilities to far-fault and near-fault earthquakes [7,8].
Earthquakes from far faults feature low-frequency range vibrations that can induce resonance
and amplify the response of the structure [9,10]. Near-fault earthquakes have vibration
characteristics of a high amplitude and long-period velocity pulse resulting in failure of the
base isolator itself [11–13]. Further, the seismic isolators working on conventional principles
have been ineffective for near-fault earthquakes, as they cause the structure to operate in its
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inelastic range for even design level earthquakes [1,2]. When a structure goes in the inelastic
range, several fatigue-related issues [14,15] have to be considered, which makes the problem
of vibration control even more challenging. Then, the passive nature of base isolators working
on conventional principles limits the effective operation of the devices to only the predicted
earthquakes and renders them ineffective for unprecedented earthquakes in the area [16,17].
Efforts have been made to overcome the problems associated with conventional vibration
control techniques [18,19]. Active base isolation systems are designed by introducing active
control strategies in tandem with passive base isolation [20]. These work by external energy
supplied to the system that imparts forces to structure [21].

So far, numerous active control mechanisms and strategies have been adopted by
researchers and structural engineers. Consequently, several active base control systems
have been proposed and studied [22,23]. Reinhorn et al. [24] studied the shape control of
structures undergoing inelastic deformations by employing an active pulse/force system.
Kelly et al. [22] proposed the application of robust control in tandem with base isolation to
minimize the total structural displacement and velocity. The control forces are designed
in a way to overcome the forces generated by the isolation system at the base of the
structure. Yoshida et al. [25] investigated the application of LQG and H∞ control strategies
with hybrid base isolation systems by computer simulations. Additionally, several efforts
have been made in parallel to verify the effectiveness of active base isolation systems in
minimizing the structural response [23,26]. Despite a great number of efforts on analytical
and experimental research, numerous full-scale structures have still been equipped with
active control systems, and the implementation of base isolation with active control around
the world has not been adopted yet. The primary reasons for this are the lack of real-time
controllable isolation devices, high budget requirements for both implementation and
maintenance, the requirement of high external power, system reliability and robustness,
and lack of acceptance of non-conventional technology [21]. High power requirements of
the actuators being a major challenge necessitated alternative approaches, which led to
the developing of semi-active base isolation systems in which supplementary semi-active
energy dissipation or displacement control devices are introduced [21]. These devices are
adaptable and have low power requirements.

Magnetorheological fluid (MRF) dampers have also been explored for base isola-
tion [3,27,28]. MRFs are smart materials whose rheological properties can be controlled by
changing the applied external magnetic field [29]. MR materials comprise of micro-sized
iron particles dispersed in non-magnetic elastic matrix. When a magnetic field is applied,
the rheological properties of these materials can be rapidly and reversibly changed [30].
These have quick responsiveness to the magnetic field, rapid reversibility, and controllable
performance which make these an excellent choice for use in applications in which con-
trolled energy dissipation is needed, e.g., brakes and clutches for exercise equipment [31]
and controllable dampers for vehicle suspensions [32]. A controllable fluid damper de-
veloped with MRFs is a popular device with semi-active control. These dampers have
attracted considerable attention and interest from researchers. The greatest strength of
MRF dampers is their assembly with a considerably simple and thus reliable design. It
does not contain any moving parts other than the piston [21].

It can be noted that all the “smart” base isolation strategies achieve a certain level
of “smartness” by making use of additional variable damping through active or semi-
active dampers to conventional base isolation, often known as hybrid base isolation. This
supplementary damping has been studied by Kelly [33] in more detail who concluded with
adequate satisfaction that the use of supplementary dampers in base isolation is a misplaced
effort and is a source of undesirable problems. The damping primarily controls vibration
responses under the circumstances of steady-state resonance and a free vibration stage [34].
Nevertheless, while operating under the impact load, which is particularly featured in
near-fault earthquakes, the availability of ample time becomes a bottleneck for damping
to dissipate vibrational energy. Additionally, although the supplementary damping may
forcefully confine the base displacement of the passive base isolation system [35], the
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high-frequency accelerations as well as an increase in inter-storey drifts may be introduced
to the superstructure by augmenting damping [36]. Further, the MRF-based dampers have
their inherent disadvantages such as long-term particle deposition and environmental
contamination, etc. [37].

In order to achieve an ideal performance of base isolation while avoiding the issues
associated with additional dampers, the seismic isolator itself should be adaptable. To
achieve this, magnetorheological elastomers (MREs) have been studied by researchers for
use in base isolators [38–40]. MREs are controllable composites that are mainly composed
of magnetic fillers (commonly iron particles) and elastomers as the dispersion matrix [41].
The efficiency of MREs has been thoroughly studied by varying different material pa-
rameters, such as matrix material [42–44], size [39,45–47], percentage content [42,48–50],
type and shape of filler material, and operation mode of the MRE material [39,45]. Unlike
MRFs, MREs exhibit stable magnetorheological performance because the particles do not
undergo sedimentation with time,. Moreover, the thermal stability of MREs is also superior
as compared to MRFs. Other advantages of MREs are quick response time (less than
milliseconds [51]) and having magnetic field-dependent yield stress.

Due to the magnetic field-dependent properties of MREs, they have various appli-
cations in different fields of engineering [41]. In civil engineering structures, MREs have
been used primarily in the development of adaptive seismic isolators [39,52]. Studies have
been conducted to investigate the suitability of MRE-based isolation systems [39,53] which
validated that MR elastomer base isolation outperforms the traditional passive system in
terms of response improvement during earthquake excitations. Jung et al. [40] developed
a single-degree-of-freedom scaled-down structure model above an MR elastomer and
performed experimental testing on the system under harmonic excitation and earthquake
time histories. Behrooz et al. [54] developed a variable stiffness and damping isolator
(VSDI) for base isolation of a civil structure. Four MRE samples, each 12 mm thick and
trapezoidal were proposed in the design with a shim dividing them. Four electromagnetic
coils were provided on the top and bottom of MRE samples to generate the magnetic flux.
The coils were covered with two steel caps along with steel cores. The overall dimensions
of VSDI are 128 mm × 64 mm × 110 mm. The number of turns in a single-coil is 800,
and the power required for each device is 234.2W at a 4 A current. A maximum stiffness
increase of 57% was reported in shear mode. However, the main drawback of this design
of the isolator for civil structures is the limited loading capacity in the vertical direction.
Li et al. [55,56] put forward, for the first time, a laminated MRE base isolator containing
47 sheets of MR elastomer each 2 mm thick with a diameter of 140 mm. Every MRE layer
is accompanied by a 1-mm-thick steel sheet of the same diameter with a total of 46 steel
sheets. This configuration makes the laminated structure 140 mm high. An electromagnetic
coil was positioned outside the laminations. An enclosed magnetic path is formed with
the steel plates at the top and bottom; the hollow steel yoke, the cylindrical steel block,
and the laminated structure also form the core of the electromagnetic coil. The benefits of
the laminated design are greater vertical loading capacity of the isolator and an improved
magnetic conductivity of the structure and the widely practiced design of the MRE base
isolator as shown in Figure 1. This device can take a maximum load of 370 kg in compres-
sion for its weakest state, i.e., 0 magnetic flux, and at a maximum design displacement of
26 mm. An even greater vertical loading capacity is expected under the application of a
magnetic field. This loading capacity furnishes the minimum requirements for its use in the
seismic isolation of civil structures. Experimental tests on a shake table demonstrated an
effective stiffness increase of 37% and of 45% of force under a designed maximum current
of 5A. The uniform magnetic field of 0.3 T is estimated to energize all of the MR elastomer
layers in the device. Furthermore, an MR elastomer of a highly adjustable nature with a
laminated structure was developed and experimentally tested by Li et al. [5] using a soft
MRE. The device contains 25 sheets of MR elastomer, each 1 mm thick with diameters of
120 mm. The MR elastomer used in the new device can produce a force increase of 1479%
and a stiffness increase of 1630% when the magnetic field varied from 0T to 0.44T. Yang
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et al. [57] conducted a study on the design and experimental testing of a novel MRE-based
isolator with a hybrid magnetic system. A negative stiffness change in the isolator has been
reported due to the incorporated hybrid magnetic system. The stiffness of the isolator can
be increased or decreased based on the direction of current in the proposed isolator design.

Figure 1. Magnetorheological elastomer (MRE) base isolator [57].

The current trend on studies of MRE-based seismic isolation is focused on the de-
velopment of isolation devices, their mathematical models, and subsequent necessary
improvements/modifications in them for their effective implementation in large civil
structures. No explicit research for MRE base isolation, however, has been conducted to
gauge its effectiveness for near-fault and far-fault earthquakes. Since its performance for
near-fault and far-fault earthquakes is a major drawback for passive base isolation systems,
it is pretty much indispensable to obtain a comparison of the structural responses for both
the systems, i.e., passive base isolation and MRE-based seismic isolation and to gauge how
much response improvement is possible by employing MRE base isolation techniques for
the case of both near-fault and far-fault earthquakes.

This study is focused on the investigation of the structural response of magnetorhe-
ological elastomers (MRE)-based multi-degree-of-freedom (MDOF) isolated structures
under historic earthquake loadings. The effectiveness of MRE base isolation has been
analyzed for near- and far-fault earthquakes individually first, and a comparison has been
drawn afterward. The study involves identifying the historical near-fault and far-fault
earthquakes, applying the selected earthquake loadings to the fixed base and passively
isolated buildings, selecting and implementing suitable control strategy on passive isolator
for varying its stiffness in real-time to simulate MRE-based smart isolation, and simulating
the building models for selected earthquake loadings using closed-loop feedback control
and obtain the responses. Consequently, a total of 612 responses from the three structures
with 1x5 and 2x6 degrees-of-freedom (DOFs) have been analyzed for six earthquake time
histories for each structure and a comparison has been made at the end.

2. Methodology
2.1. Structure Parameters and Characteristics

A benchmark building structure [39,58] has been used for evaluating the structural
response. The building structure can be idealized as a 5-degree-of-freedom (DOF) model
with mass lumped at each storey. The simple representation of the idealized model is
shown in Figure 2.

With the addition of an isolation layer, the model can be treated as a 6-degree-of-
freedom system for both passive and MRE-controlled isolated structural models. In
Figure 2, M, K, and C represent mass, stiffness, and damping, while their subscripts
represent the level at which the given values are applicable. For example, Mb is mass
at the isolation layer. Similarly, Kb is stiffness and Cb is damping coefficient at isolation
level. Since MRE-controlled isolation tends to change its stiffness at any time instance, the
stiffness is denoted as K(t).
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Figure 2. Building structure idealized representation.

The adopted [39,58] parameters of the building model and isolation layer used for
simulation are presented in Tables 1 and 2, respectively.

Table 1. Structure parameters.

Storey Mass (kg) Stiffness (kN/m) Damping (kN.s/m)

1 5897 33,732 67
2 5897 29,093 58
3 5897 28,621 57
4 5897 24,954 50
5 5897 19,059 38

Table 2. Base isolation parameters.

Stiffness 232 kN/m

Damping 3.74 kN.s/m

MR Effect 137%

Using the above parameters, the corresponding structure characteristics such as time
period and natural frequencies can be worked out as they are the Eigenvalues depending
on the mass and stiffness of the structure. These are tabulated in Table 3.

Table 3. Structure vibration characteristics.

Fixed Base Passive BIS
Mode Frequency (Hz) Time Period (s) Frequency (Hz) Time Period (s)

1 3.20 0.31 0.40 2.5
2 8.72 0.11 5.47 0.2
3 13.62 0.07 10.30 0.1
4 17.61 0.06 14.73 0.07
5 20.92 0.05 18.41 0.05
6 - - 21.32 0.04

2.2. Equation of Motion and System Matrices

Assuming linear structure properties and representing the displacements relative to
the ground as

x = [xb x1 x2 x3 x4 x5] (1)
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the equation of motion for structure reduced into matrix form can be expressed as:

[M]
{ ..

x(t)
}

+ [C]
{ .

x(t)
}

+ [K]{x(t)} = [γ]{u(t)} + [δ]
..
xg (2)

The mass, stiffness, and damping matrices for the fixed base system are 5× 5 matrices,
and for the base-isolated structure they are 6x6 matrices and are widely expressed as
generalized in Equations (3), (4), and (5), respectively.

[M] = Mass Matrix =

 mb · · · 0
...

. . .
...

0 · · · m5

 (3)

[C] = Damping Matrix =


cb + c1 −c1
−c1 c1 + c2

· · · 0

...
. . .

...
0 · · · c5

 (4)

[K] = Sti f f ness Matrix =


kb + k1 −k1
−k1 k1 + k2

· · · 0

...
. . .

...
0 · · · k5

 (5)

γ is the force location matrix to be used only for MRE based isolated structure model. For
fixed base and passive isolated models, γ would be a null matrix. Similarly, u(t) is the
applied force and applicable only to the MRE isolated structure model.

γ = n × r force location matrix =
[

1 0 0 0 0 0
]T (6)

u(t) =
[

u(t)b u(t)1 u(t)2 u(t)3 u(t)4 u(t)5
]T (7)

δ is the coefficient vector for earthquake ground acceleration,
..
xg. δ will be 5 × 1 for the

fixed base structure model and 6 × 1 for isolated structure models.

δ =
[

m1 m2 m3 m4 m5
]

for fixed base structure (8)

δ =
[

mb m1 m2 m3 m4 m5
]

for isolated structure (9)

2.3. State-Space Representations

Equation (2) can be re-arranged in terms of structural acceleration as{ ..
x(t)

}
= [M]−1[C]

{ .
x(t)

}
− [M]−1[K]{x(t)} + [M]−1[γ]{u(t)} + [M]−1[δ]

..
xg(t) (10)

Equation (10) can be re-written in the form{ ..
x(t)

}
= [M]−1[C]

{ .
x(t)

}
− [M]−1[K]{x(t)} + [M]−1[γ]{u(t)} + [M]−1[δ]

..
xg(t) (11){ { .

x(t)
}{ ..

x(t)
} } =

[
[0] [I]

−[M]−1[K] −[M]−1[C]

]{
{x(t)}{ .

x(t)
} } +

[
[0]

[M]−1[γ]

]
{u(t)} +

[
[0]

[M]−1[δ]

]
..
xg(t) (12)

The second-order equation of motion (2) can be cast to its first-order state-variable rep-
resentation by defining the following state vector to apply linear control theory developed
for first-order dynamic systems [59–61].

Z(t) =

{
{x(t)}{ .

x(t)
} } (13)
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Then, Equation (12) can be expressed as properties, representing the displacements
relative to the ground as

.
{Z (t)

}
= [A]{Z(t)} + [Bu]{u(t)} + [Br]

..
xg(t) (14)

where
.
Z(t) =

{ { .
x(t)

}{ ..
x(t)

} } (15)

Then matrix [A] in Equation (14), also known as the plant matrix, would be a 10 × 10
matrix for the fixed base structure and a 12 × 12 matrix for isolated structure models, and
will be expressed as:

[A] =

[
[0] [I]

−[M]−1[K] −[M]−1[C]

]
(16)

[Bu] would be the null matrix for the fixed base and passive base-isolated structure
model and a 12 × 1 matrix for the MRE isolated structure model, and will be expressed as:

[Bu] =

[
[0]

[M]−1[γ]

]
(17)

[Br] would be a 10 × 1 vector for the fixed base structure and a 12 × 1 vector for
both the passive base-isolated structure and MRE isolated structure models. It can be
expressed as:

[Br] =

[
[0]

[M]−1[δ]

]
(18)

2.4. Linear Quadratic Regulator (LQR) Feedback Control

Equation (14) cannot be solved directly because the number of equations (12) is less
than the number of unknown variables (13) in the case of base isolation, i.e., 12 × response
outputs Z(t) and 1 × control force u(t). Thus, one more equation in this case is needed to
solve the control problem. This required equation is referred to as the feedback control
law. There are three control outlines through which the feedback control law can be
implemented [59–61] to the smart structure model, i.e., open-loop feedback control, closed-
loop feedback control, and open-closed loop feedback controls. For open-loop feedback
control, the control force is determined by feedback of excitation at the base, such as
sinusoidal motion or earthquake ground motion. The input information for its control
law is only the base excitation data acquired with the help of accelerometers, etc. The
obtained information is then used to calculate the required control force. For closed-loop
feedback control, the control force is determined by the feedback of structure responses
at each or some degrees-of-freedom. The input information for its control law consists
of the structure responses such as velocities or relative displacements with the help of
sensors. The acquired information is then used to calculate the required control force. The
open–closed-loop scheme is a combination of both the closed-loop and open-loop control
schemes. This can obtain information on both the ground motions and the structural
responses. The control force is dependent on ground motion, displacement, and velocity
responses [62].

Utilizing one of the above-discussed control schemes, Equation (14) can be solved
mathematically. For a structure with closed-loop feedback control, the control force matrix
is determined by using the measurements of response values and feeding them back to the
equation. In this way, the feedback law will be given as

{u(t)} = −[G]{Z(t)} (19)

In the case of the MRE base-isolated model, u will be a single value of force applied
at the isolation level. G is a 1 × 12 matrix of feedback gain. Hence, the key parameter to
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make Equation (14) mathematically solvable is gain matrix G. In the current study, the
gain matrix is obtained by using the linear quadratic regulator (LQR) algorithm and is
discussed ahead.

Once G is obtained, the closed-loop system takes the form as expressed below

.
{Z (t)

}
= [Ac]{Z(t)} + [Br]

..
xg(t) (20)

where Ac is the closed-loop plant matrix obtained through a substitution operation of
Equation (19) into Equation (14), and expressed as

[Ac] = [A] − [Bu][G] (21)

The linear quadratic regulator (LQR) algorithm for structural control is an optimal
control algorithm. The key objective of LQR is to minimize the following quadratic cost
function J with respect to the control force input u(t).

J =
∫ t

0

[
zT(t)Q z(t) + uT(t) R u(t)

]
dt (22)

In regulator-type algorithm problems, the system is idealized to be in equilibrium,
and the LQR control algorithm serves the purpose of maintaining that equilibrium, even
though the system is subjected to turbulences or of minimizing the response of the system
under consideration from any sorts of disturbances [6].

The parameters Q and R in the quadratic cost function J are used as design parameters
to penalize the state variables and the control signals, respectively. The larger these values,
the greater the penalizing of these signals. Choosing a large value for R means the system
is intended to become stabilized with less (weighted) force. This is usually known as an
expensive control strategy. On the other hand, choosing a small value for R means the
control force will not be penalized. Similarly, a large value for Q means the system is
intended to become stabilized with the least possible changes in the states, and a small
Q implies less concern about the changes in the states. So Q and R are the tuning knobs
requiring adjustments to strike a balance between state response and control force.

There is an exclusive function of “lqr()” in MATLAB to calculate the gain matrix from
the input of the closed-loop plant matrix Ac and Bu along with Q and R values. The syntax
is shown below:

[G, S, E] = lqr(Ac, Bu, Q, R) (23)

2.5. Control Force

In this study, the MR elastomer is idealized as a linear stiffness element. Alhough
the assumption of linear behavior does not represent the actual characteristics of MR
elastomers, it does denote the general dynamics of the material in a small strain range and
permits a rather simple approach to investigate the controllable isolation system [39].

The stiffness of the MR elastomer is expressed as K(t), which is the sum of actual (zero
field) stiffness and the varying stiffness that is dependent on the external magnetic field or
the current value through the electromagnetic coil. The MRE stiffness can be written as

K(t) = K0 + K1u(t) (24)

where K0 is the actual (baseline) stiffness of MREs and K1(u(t)) denotes the variation in
stiffness with time due to the command input u(t) at any time instant. In the current study,
an MR elastomer material with an MR effect of 137% has been adopted [47]. Hence, the
maximum value of the stiffness that can be physically achieved is K1,max = 1.37K0. Thus,
K(t) will vary from 0 to 2.37K0. This maximum achievable stiffness value provides an upper
limit to the control force that is

u(t)max ≤ K(t)maxxb (25)
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For ensuring the optimal performance of the system, the control force u(t) has to be
approaching the limit. If the control force is considerably lower than its upper limit, then
the isolator would be underperforming, and if it is higher than the limit, then the isolator
will not be able to generate the required force. Thus, some trials have to be performed
for every excitation loading by varying Q and R parameters of the LQR algorithm until a
control force equal to its limit is obtained.

2.6. Excitation Data

The fixed base, passively isolated, and MRE controlled isolated structures are subjected
to earthquake excitations in form of acceleration for analyzing their responses. In the current
study, near-fault earthquake ground motion [1,8,11–13,63–71] time histories have been selected
from 1999 Chi-Chi, 1979 Imperial Valley, and 1999 Kocaeli earthquakes. These records are
taken from Taichung, Brawley Airport, and Izmit stations, respectively [72]. Furthermore,
another set of earthquake time histories, which are recorded from the same earthquake events
under the same site conditions with the fault located at a distance far away from the site,
is selected to demonstrate far-field ground motion characteristics [1,8,11–13,63–65,67–71,73].
The properties and description of the adopted time histories for near-fault and far-fault
earthquakes are presented in Tables 4 and 5, respectively.

Table 4. Near-fault earthquake time histories.

Event Mw Station PGA PGV (cm/s) Distance to a Fault (km)

Chi-Chi (1999) 7.6 Taichung 0.2 g 36.3 9.5
Imperial Valley (1979) 6.9 Brawley Airport 0.16 g 36.6 8.5

Kocaeli (1999) 7.8 Izmit 0.17 g 22.6 4.8

Table 5. Far-fault earthquake time histories.

Event Mw Station PGA PGV (cm/s) Distance to a Fault (km)

Chi-Chi (1999) 7.6 Ilan 0.2g 11.8 49
Imperial Valley (1979) 6.9 Compuertas 0.15g 9.5 35

Kocaeli (1999) 7.8 Fatih 0.16g 12 64.5

The ground motion time histories are adapted from the PEER Strong Motion Database [72].
We aimed to acquire two sets of time history records (i.e., near-fault and far-fault) with the
same peak ground acceleration of each earthquake (Chi-Chi 1999, Imperial Valley 1979, and
Kocaeli 1999) for a more accurate and fair comparison of the results [69]. Thus, the selection
of records has been made with more diligence. If the ground motion time histories of each
earthquake were selected randomly (different peak acceleration values and/or site conditions),
the meaningful comparison of the responses could not have been established with confidence.
Thus, we aimed to eliminate this contradiction by selected ground motion records with the
same peak acceleration values under the same site conditions [69,72].

The acceleration and velocity records of the adopted earthquake time histories are
shown in Figures 3–5. The same vertical scale in the plots has been adopted for near-fault
and far-fault records for a particular earthquake loading to demonstrate the difference
between the earthquakes. These figures show the significant velocity pulses for the near-
fault ground motions compared to far-field records [70] despite having the same peak
ground acceleration, which is one of the main characteristics of destructive near-field
earthquake records [1,8,11–13,63–65,67–71,73].
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Figure 3. Near-fault and far-fault ground motions recorded at the Chi-Chi earthquake in 1999. (a) Acceleration time
histories for near-fault and far-fault earthquake records. (b) Velocity time-histories for near-fault and far-fault earthquake
records [72].

Figure 4. Near-fault and far-fault ground motions recorded at the Imperial Valley earthquake in 1979. (a) Acceleration time
histories for near-fault and far-fault earthquake records. (b) Velocity time-histories for near-fault and far-fault earthquake
records [72].

In this way, a total of 12 simulations have been performed for each of the fixed
base, passively isolated, and MR elastomer-based isolated structures using MATLAB. The
cumulative number of simulations for all the three structures and 12 load cases totals 36. A
total of 306 responses were compiled and analyzed, after which the results were processed,
compared, presented, and discussed.
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Figure 5. Near-fault and far-fault ground motions were recorded at the Kocaeli earthquake in 1999. (a) Acceleration time
histories for near-fault and far-fault earthquake records. (b) Velocity time-histories for near-fault and far-fault earthquake
records [72].

3. Results and Discussions

Six loading cases (time histories) for earthquake excitation [72] have been selected
for evaluating the response of structures, out of which three are near-field and three are
far-field [69,70]. The responses against the earthquake excitation are discussed below.

3.1. Displacement Responses

Displacement response is the total displacement of the storey at the corresponding
degree-of-freedom. Representative displacement time history for Chi-Chi earthquake
excitations is shown in Figure 6. It is clear from the figure that the passively isolated
structure subjected to earthquake loading time history vibrates at a lower frequency and
higher amplitude, whereas the fixed base structure vibrates at a much higher frequency. It
can be observed from the time history plots that the MR elastomer-based isolated structure
does not vibrate at any single value of frequency; rather, it responds by vibrating at a
range of frequencies. Higher amplitudes of both the isolated structures are due to larger
displacements at the isolation level.

Peak displacements relative to the base for all three structures and both near- and
far-field stations of the Imperial Valley earthquake are presented in Figure 7. The green
line indicates the fixed base structure, the blue the passively isolated structure (Passive
BIS), and the red line the MRE base-isolated structure (MRE BIS). Thicker lines with box
markers show the response against near-field (NF) earthquakes, whereas thinner lines with
star markers show the response against far-field (FF) time history. It is evident from the
figure that for both near-field and far-field time histories, MRE BIS has the lowest response,
while the fixed base structure shows the highest displacement response. Furthermore, it
can be observed that the response against the near-field earthquake time history is higher
than that that of the far-field earthquake time history for all the three structures under
consideration, despite having the same peak ground acceleration values in their records.
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Figure 6. Displacement time history at storey 5 for the Chi-Chi earthquake.

Figure 7. Peak displacements relative to base, Imperial Valley earthquake.

Storey-wise line plots for peak displacements are presented in Figure 8. It can be seen
in the figures that for the isolated structures, a major portion of total displacement (96–99%)
in the structure is absorbed at the isolation level due to the relatively soft isolation layer,
and very minimal displacement is being transferred to the superstructure. Whereas for
the fixed base model, all the displacement is transferred rather uniformly to the super-
structure. Higher base drifts for the near-fault earthquake time histories compared to the
far-fault earthquake time histories can be observed. A considerably lower response for the
Kocaeli earthquake far-fault earthquake time histories can also be seen as compared to the
other cases.

A comparison of peak displacement response for all the adopted earthquake time
histories is presented in Figure 9. A greater response for the passively IS and greater
subsequent reduction in response can be observed for the near-field earthquakes compared
to the far-fault ones. It can also be observed that the response of the passively isolated
structure against Kocaeli FF station is very low compared to that of other responses, thus
its response reduction of MRE BIS compared to passively IS is also lower.
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Figure 8. Storey-wise total displacements.

Figure 9. Peak displacement response at top storey against earthquake cases.

The average displacement response improvement of MRE BIS compared to the pas-
sively IS is presented in Figure 10. It is evident that response improvement is greater for
the near-fault earthquake records compared to the far-fault ones.

Figure 10. Average displacement response reduction of MRE base-isolated structure (MRE BIS) compared to the passively IS.
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3.2. Storey Drift Responses

Storey-drifts refer to the difference of displacement of two consecutive stories. Peak
storey drift responses for both near- and far-field stations of the Chi-Chi earthquake are
presented in Figure 11. The sme legends have been adopted as discussed previously with
green, blue, and red representing fixed base, passively isolated, and MRE BIS, respectively,
and a box marker against near-fault and a star marker against far-field earthquakes are
used. Firstly, it is evident that storey drift responses decrease as we move from the bottom
to the top storeys. It can also be observed that for both the near-field and far-field time
histories, MRE BIS has the lowest response, while FBS shows the highest storey drift
response. This validates the applicability of MRE BIS to earthquakes of both types, i.e.,
near-field and far-field. Similarly, it is evident that response against near-field earthquake
time histories is higher than far-field earthquake time histories for all the three structures
under consideration.

Figure 11. Peak storey drifts, Chi-Chi earthquake.

A comparison of peak storey drift response for all the adopted earthquake time histo-
ries is presented in Figure 12. Greater response for passively isolated structure and greater
subsequent reduction in response can be observed for near-field earthquakes compared to
far-field ones. It can also be observed that storey drift response of passively isolated struc-
ture against Kocaeli far-field station is very low compared to that of other responses, thus
its response reduction of MRE BIS compared to a passively isolated structure is also lower.

Figure 12. Peak storey drifts response at storey 1.
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The average storey drift response improvement of MRE BIS compared to passively
IS is presented in Figure 13. It is evident that response improvement is greater for the
near-fault stations compared to the far-field ones. However, no reduction in average
response for Kocaeli far-field station earthquake case can be observed due to the discussed
reasons [21,35,36] in the literature which states that this behavior is typical for hybrid
base isolation systems where the supplementary force may forcefully confine the base
displacement of the passive base isolation system at the expense of larger accelerations, as
well as increased inter-storey drifts to the superstructure.

Figure 13. Average storey drifts response reduction of MRE BIS compared to passively IS.

3.3. Acceleration Responses

Acceleration response refers to the total acceleration occurring at the corresponding
degree-of-freedom/storey. Peak acceleration responses for near- and far-field stations of
the Kocaeli earthquake are presented in Figure 14. The same legends have been adopted
as discussed previously. For near-field stations, the fixed base structure has the highest
response while MRE BIS shows the lowest. For the far-field stations, however, observation
of passively isolated structures possessing minimum acceleration response can be made.
This might be because the response of passively isolated structure against the far-field
time histories is already very small and MRE BIS cannot improve it any further. This
phenomenon can also be attributed to typical hybrid base isolation systems where the
supplementary force forcefully confines the base displacement of the passive base isolation
system for some cases [21,35] at the expense of larger accelerations as well as increased
inter-storey drifts in the superstructure [21,36].

Figure 14. Peak acceleration, Kocaeli earthquake.
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A comparison of peak acceleration response for all the adopted earthquake time
histories is presented in Figure 15. A greater response for thepassively isolated structure
and a greater subsequent reduction in acceleration response can be observed for the
near-field earthquakes compared to the far-field ones. It can also be observed that the
acceleration response of the passively isolated structure against the Kocaeli far-field station
is very low compared to that of the other responses, thus its response reduction of MRE
BIS compared to the passively isolated structure is also lower.

Figure 15. Peak acceleration response at the top storey.

The average acceleration response improvement of MRE BIS compared to the passively
isolated structure is presented in Figure 16. It is evident that response improvement is
greater for the near-fault stations compared to the far-field ones. However, no reduction
in average acceleration response for the Kocaeli far-field station time histories can also
be observed. This behavior of increased inter-storey drifts and structural accelerations is
typical for hybrid base isolation systems where the supplementary force may forcefully
confine the base displacement of the passive base isolation system at the expense of larger
accelerations as well as increased inter-storey drifts to the superstructure [21,35,36].

Figure 16. Average acceleration response reduction.

3.4. Summary of Results

The average response reduction of MRE BIS compared to passive IS for all the earth-
quake cases is summarized in Table 6:
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Table 6. Percentage response reductions.

Excitation Time History Displacement
Reduction (%)

Storey Drift
Reduction (%)

Acceleration
Reduction (%)

Chi-Chi (NF) 78.22 59.54 59.26
Imperial Valley (NF) 67.82 50.39 51.28

Kocaeli (NF) 54.93 9.98 8.98
Chi-Chi (FF) 69.77 37.51 24.93

Imperial Valley (FF) 75.20 46.61 49.82
Kocaeli (FF) 46.79 −51.71 −76.26

This improvement is in agreement with the trends outlined in previous studies. A
comparison is presented in Table 7.

Table 7. Comparison with previous studies.

Parameter Reported Usman et al. (2009) [39] Jung et al. (2011) [40] Ramallo et al. (2014) [58] This Study

MR Effect 70% Not Reported 30% 137%
Structure Type 5 DOF B.M. 1 DOF Scaled 2 DOF Scaled 5 DOF B.M.

Investigation Type Numerical Experimental Experimental Numerical
Control Algorithm LQR Fuzzy Logic Lyapunov LQR

Displacement Reduction Up to 45% Up to 41% Up to 35% Up to 78%
Acceleration Reduction Up to 39% Up to 39% Up to 47% Up to 60%

4. Conclusions

A magnetorheological (MR) elastomer-based isolated structure has been modeled, and
the response investigated for historical near-fault and far-fault earthquake time histories.
The stiffness of the isolation layer was controlled utilizing the linear quadratic regulator
(LQR) optimal control algorithm. The following conclusions can be drawn after analyzing
the simulation results:

• MRE BIS shows superior performance in the reduction of all three responses evalu-
ated for all the near-field earthquakes compared to the passively isolated structure.
Similarly, displacements, storey drifts, and structural accelerations have been reduced
significantly compared to the fixed base structure.

• MRE BIS shows superior performance in the reduction of displacement response for
all the far-field earthquakes compared to passive BIS. Similarly, relative displacements,
storey drifts, and structural accelerations have been reduced significantly compared
to the fixed base system.

• Apart from the Kocaeli (FF) excitation time history, MRE BIS shows significantly better
performance in the reduction of storey drift and acceleration responses compared to
passive BIS for all far-field earthquake excitations. The reasons have been discussed in
detail in Section 3. This response may improve the application of a different control
algorithm on the structure.

• The response improvement of MRE BIS for all the three responses of displacement,
storey drifts, and acceleration is greater for near-fault earthquakes compared to far-
fault earthquake records for all the earthquake cases considered.
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