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Abstract: Removing haze or rain is one of the difficult problems in computer vision applications.
On real-world road images, haze and rain often occur together, but traditional methods cannot
solve this imaging problem. To address rain and haze problems simultaneously, we present a robust
network-based framework consisting of three steps: image decomposition using guided filters,
a frequency-based haze and rain removal network (FHRR-Net), and image restoration based on
an atmospheric scattering model using predicted transmission maps and predicted rain-removed
images. We demonstrate FHRR-Net’s capabilities with synthesized and real-world road images.
Experimental results show that our trained framework has superior performance on synthesized and
real-world road test images compared with state-of-the-art methods. We use PSNR (peak signal-to-
noise) and SSIM (structural similarity index) indicators to evaluate our model quantitatively, showing
that our methods have the highest PSNR and SSIM values. Furthermore, we demonstrate through
experiments that our method is useful in real-world vision applications.

Keywords: encoder-decoder network; dilated convolution; image restoration; guided filter; de-
haze; derain

1. Introduction

Restoring degraded weather images to clean images is vital for many outdoor vision
systems, including object detection [1,2] and semantic segmentation [3,4]. Most of these
vision systems are designed based on good weather conditions and aim to work well
under these conditions. However, in the real world, various weather conditions, such
as rain and fog, degrade camera input images and the vision system. Under rainy and
foggy conditions, rain streak occludes nearby objects, while fog produces hazy effects with
light scattering, reducing the visibility of objects and the performance of vision systems.
Figure 1 shows an example of applying an object detection algorithm to a hazy and rainy
road image. In the rainy and foggy road image, object recognition error occurs. Figure 1b
shows the result of the YOLOv3 algorithm [5]. The first row of Figure 1b shows incorrect
recognition of a truck as a vase due to rain and fog. The second row of Figure 1b shows a
low image recognition rate due to images degraded by the weather.

Many camera-based advanced driver-assistance systems (e.g., pedestrian detection,
lane departure warning, and traffic sign recognition) have been designed for driver conve-
nience. As shown in the above example, rain and haze can cause errors in camera-based
systems and cause serious accidents. Therefore, it is essential to study image restoration for
road images degraded by rain and fog. However, road images have various characteristics,
such as the presence of sky in the image and also a variety of road shapes, road materi-
als, and backgrounds. Due to these characteristics, it is not easy to restore a degraded
road image.
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(a) (b)

Figure 1. Object detection results on haze and rainy road images: (a) hazy and rainy input images,
(b) YOLOv3 [1] object detection results. The images are obtained from Google.

Various methods have been proposed for restoring images degraded by rain and
haze. Traditionally, the main focus was on restoration using hand-crafted features. More
recently, researchers have mainly studied restoration using neural networks. Rain or haze
removal–related studies can be classified as follows:

Rain removal from a single image: Removing rain from a single image has been a
challenging task because of the lack of information compared to video-based methods. In
spite of such difficulties, many methods using hand-crafted features have been studied. For
example, Kim et al. [6] proposed a rain streak removal-based region detection algorithm
that analyzes the rotation angle and the aspect ratio of the elliptical kernel at each pixel
location, performing non-local mean filtering on detected rain streak regions. Li et al. [7]
proposed a simple patch-based priors method using Gaussian mixture models. These
priors can accommodate rain streaks at multiple orientations and scales. Du et al. [8]
proposed a gradient domain method based on the observation that rain streaks influence
X and Y gradients. However, rain removal using only hand-crafted techniques is not
completely robust because the problem is ill posed. Recently, deep learning-based methods
have been studied to solve this problem. For example, Fu et al. [9] first proposed a deep
learning-based rain streak removal method, DerainNet, and upgraded the model [10] by
appling ResNet structure to reduce the mapping range, resulting in better convergence of
loss functions. Yang et al. [11] proposed a new rain streak image model and removed rain
streaks effectively by adding a rain region layer.

Haze removal from a single image: Removing haze from a single image is a difficult
problem to solve because it is ill-posed in nature. Recently, however, learning-based
methods have been studied, achieving significant progress [12–15]. Zhu et al. [12] proposed
a novel color attenuation method, creating a linear model for modeling scene depth. They
trained the parameters of the model with a supervised learning method. Cai et al. [13]
introduced a CNN-based end-to-end system called Dehazenet. They also introduced a new
nonlinear function, BRelu, to increase learning performance.

Ren et al. [14] introduced a deep neural network to estimate transmission maps using
haze features effectively. To estimate transmission maps, they proposed a neural network
consisting of a layer of large filter sizes and a layer of small filter sizes that fine-tune the
results. Li et al. [15] introduced a network called AOD-NET based on a haze model. Instead
of estimating the transmission maps and atmospheric light, they combined parameters to
create a new model with faster performance than other networks.

In most situations haze and rain occur simultaneously. However, previous methods
focused on removing either rain or haze. In other words, these methods are specified with
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rain or haze. Yang [11] added a rain region which does not concern about haze models. On
the other hand, Ren et al. [14] considers the haze related feature, transmission map.

In this paper, we propose a novel framework for removing rain and haze simultane-
ously in a single road image. The frequency-based image decomposition is used prior to
training neural network models to consider rain and haze separately and present a deep
convolution double encoder-decoder neural network model.

2. Proposed Frequency-Based Haze and Rain Removal Network (FHRR-Net) Framework

This section introduces methods for analyzing images degraded by rain and fog in de-
tail. We present frequency-based haze and rain removal network (FHRR-Net). Architecture
of the network is depicted in Figure 2. Overall framework includes four basic elements:

1. Analysis of haze and rain models to create a synthesized training dataset.
2. Image decomposition using a guided filter.
3. Architecture of encoder-decoder networks.
4. Image restoration using image degradation model.

In the first section, we illustrate the characteristic of the haze and rain model. Second,
we demonstrate a image decomposition method using trainable guided filter. Finally, a
deep convolutional encoder-decoder model is introduced which restores hazy and rainy
images from degradation model.

Figure 2. Schematic diagram of the proposed frequency-based haze and rain removal network (FHRR-Net) framework.

2.1. Analysis of Haze and Rain Models for Creating Synthesized Training Dataset

Training dataset for the proposed network is created based on the rain model as shown
in Figure 3. We also propose haze removal method based on the haze model. Therefore, to
fully understand FHRR, it is crucial to know the haze and rain model. In this section, we
describe the haze model and the rain model in detail.

(a) (b)

Figure 3. Example comparison of synthesis methods on road image using rain-models. (a) Using linear addition model,
(b) Using screen blending model.
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2.1.1. Haze Model (Atmospheric Scattering Model)

The physical modeling of haze was done by McCarthy [16] as a atmospheric scattering
model. Many traditional hand-crafted base haze removal methods have been studied based
on this model [17–19]. The single haze image consists of a combination of haze-free images,
transmission maps, and global atmospheric light values. The atmospheric scattering model
is written as:

I(x) = J(x)t(x) + A(1− t(x)), (1)

where x is a two-dimensional vector that indicates the position of each pixel. J is the clean
image, I is the hazy image, A is the global atmospheric light value, and t is the transmission
which has a value between 0 and 1. The transmission maps are affected by the scattering
coefficient and the distance from the object. The transmission maps is expressed as:

t(x) = e−βd(x), (2)

where β is the scattering coefficient. d indicates distance from the object and the observer
in pixel x. As the distance of the object and the atmospheric degradation factor increase,
the atmosphere becomes further hazy.

2.1.2. Rain Model (Rain Streak Model)

In rainy road environments, the input image is usually affected by rain streak. Thus,
the rain streak model is appropriate for representing rainy images. The rain model used to
synthesize the shape of the rain streaks, which has been widely used in previous studies, is
as follows:

O(x) = B(x) + S(x), (3)

where O is the observed image degraded by the raindrop. B indicates the clean background
image, and S is the rain streak image. There are many studies on removing rain using this
model [20,21]. They focused on separating background B and rain S through observed
O. However, this simple addition model is insufficient to represent the rain phenomenon.
For this reason, Luo et al. [22] suggested using a nonlinear composite model with a screen
blending method rather than using the existing linear addition synthesis model. The
screen blend model can model some visual properties of real-world rain images, such as
the effectiveness of internal reflections, to generate visually more true rain images. The
combination of rain and background layers can more naturally express signal-defendant
properties using screen blending techniques. Therefore, the screen blend model is expected
to be more effective in training the network by expressing the combination of background
and background more naturally. The model proposed by Luo [22] is as follows:

O(x) = B(x) + S(x)− B(x) ◦ S(x), (4)

where ◦ operator indicates point-wise multiplication. This nonlinear synthesis models was
used for the training dataset.

2.1.3. Heavy Rain Model

In this section, the final model of the combined haze model and rain model is writ-
ten as:

O(x) = I(x) + S(x)− I(x) ◦ S(x), (5)

where I means the haze image as expressed in (1). S is the rain streak image as described
in (3). Through the above analysis, model rain streaks and haze on images can be expressed
mathematically. Therefore, training dataset created on the blending model presents more
realistic haze and rain phenomena. The following subsection describes how to decompose
the degraded images into frequency domain which helps the network optimize more
quickly and accurately.
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2.2. Image Decomposition Using Guided Filter

One of the most effective edge preserving smoothing algorithms is the guided filter [23,24].
We apply a guided filter to the degraded input image by haze and rain and then obtain
the low-frequency layer of the degraded image. The difference between the obtained
low-frequency layer and the input image is used to obtain a high-frequency layer of the
degraded image. As shown in Figure 4, the high-frequency layer contains most of the
rains streaks and edge components. The low-frequency layer looks very blurry, but some
elements present in the low-frequency layer constitute a degraded input image excluding
rain streaks and edge components present in the high-frequency layer. Therefore, it is
possible to deduce that the components of the haze exist in the low-frequency layer. Figure 4
shows an example of the applying guide filters to degraded input images. Figure 4c shows
that there are many raindrops and edge components. We use decomposed layers to restore
rain and haze images.

(a) (b) (c)

Figure 4. Applying guided filter on the hazy and rainy input image. (a) Input image. (b) Low-
frequency of the image. (c) High-frequency of the image.

Image decomposition using a guided filter has been proved to be easier to remove rain
streaks and achieve excellent results [9,10]. Proposed FHHR-Net estimates transmission
maps using only low-frequency layers, which are more effective than using whole single
image. Since the block operation is used for convolution, the estimated transmission maps
have block artifacts. Because block artifacts adversely affect the dehaze process, various
methods have been proposed to eliminate block artifacts [25]. However, when estimating
the transmission maps using a low-frequency image, block artifacts are rarely generated
because the edges are already smoothed.

In this work, to take advantage of end-to-end learning, we use trainable guided
filter [26]. The image decomposition process using guided filter is as follows:

O(x) = Olow(x) + Ohigh(x), (6)

where O indicates hazy and rainy image, which is separated in low-frequency Olow and
high-frequency Ohigh. FHRR-Net uses Ohigh to remove non-stripes and Olow to estimate the
transmission maps effectively.

2.3. Frequency-Based Haze and Rain Removal Network (FHRR-Net) Architecture

Restoring degraded images by haze and rain using the models is equivalent to solving
the inverse problem of the models. Deep neural network is used to address the lack of
information problem that is characteristic of a single degraded image. In this section,
details of the structure of proposed encoder-decoder networks is introduced. The details of
the overall network architecture are shown in Table 1.
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Table 1. FHRR-Net architecture details.

High-Frequency Encoder-Decoder Network

Layer Kernel Size Dilated Factor Output Size Skip Connections

Input 256 × 256
Encoder_conv 0 3 1 16 × 256 × 256

Encoder_conv 1_1 3 2 32 × 128 × 128
Encoder_conv 1_2 3 2 32 × 128 × 128 Decoder_deconv 2
Encoder_conv 2_1 3 2 64 × 64 × 64
Encoder_conv 2_2 3 2 64 × 64 × 64 Decoder_deconv 1
Encoder_conv 3_1 3 2 128 × 32 × 32
Encoder_conv 3_2 3 2 128 × 32 × 32

Decoder_deconv 1 2 2 64 × 64 × 64 Encoder_conv 2_2
Decoder_conv 1_1 3 2 64 × 64 × 64
Decoder_conv 1_2 3 2 64 × 64 × 64
Decoder_deconv 2 2 2 32 × 128 × 128 Encoder_conv 1_2
Decoder_conv 2_1 3 2 32 × 128 × 128
Decoder_conv 2_2 3 2 32 × 128 × 128
Decoder_deconv 3 2 2 32 × 256 × 256
Decoder_conv 3_1 3 2 16 × 256 × 256
Decoder_conv 3_2 3 2 16 × 256 × 256

Output 3 2 3 × 256 × 256

Low-frequency Encoder-decoder network

Layer Kernel size Dilated factor Output size Skip connections

Input 256 × 256
Encoder_conv 0 3 1 16 × 256 × 256

Encoder_conv 1_1 3 2 32 × 128 × 128
Encoder_conv 1_2 3 2 32 × 128 × 128 Decoder_deconv 2
Encoder_conv 2_1 3 2 64 × 64 × 64
Encoder_conv 2_2 3 2 64 × 64 × 64 Decoder_deconv 1
Encoder_conv 3_1 3 2 128 × 32 × 32
Encoder_conv 3_2 3 2 128 × 32 × 32

Decoder_deconv 1 2 2 64 × 64 × 64 Encoder_conv 2_2
Decoder_conv 1_1 3 2 64 × 64 × 64
Decoder_conv 1_2 3 2 64 × 64 × 64
Decoder_deconv 2 2 2 32 × 128 × 128 Encoder_conv 1_2
Decoder_conv 2_1 3 2 32 × 128 × 128
Decoder_conv 2_2 3 2 32 × 128 × 128
Decoder_deconv 3 2 2 32 × 256 × 256
Decoder_conv 3_1 3 2 16 × 256 × 256
Decoder_conv 3_2 3 2 16 × 256 × 256

Output 3 2 1 × 256 × 256

Inspired by the residual network [27] and the encoder-decoder style network [28],
the proposed FHRR-Net consists of two encoder-decoder models: one is for training the
high-frequency layer of the input image, and one is for training the low-frequency layer
of the image. Dilated structures and symmetric skip connections are applied to increase
the image restoration performance of the network as illustrated in Figure 5. It also shows
the linking of the encoder and decoders through symmetric skip connections. After the
image is decomposed into low and high frequency domain using guided filter, it goes
through high-frequency network or low-frequency network. Both network architectures
are symmetric, which is efficient for estimating frequency domain into image domain.
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Figure 5. The overall architecture of FHRR-Net. The encoder decoder structure consists of a convo-
lutional layer, followed by a batch normalization layer and a ReLu layer. The blue boxes indicate
convolutional layers, and orange boxes indicate deconvolutional layers.

2.3.1. Dilated Convolution

Dilated Convolution [29,30] is a way to increase the receptive field by adding zero
padding inside the filter without increasing the parameters. Dilation rate is a hyper
parameter for dilated convolution which defines the spacing between kernels. For example,
a 3 × 3 kernel with dilation rate of 2 has the same view as a 5 × 5 kernel, using only nine
parameters. A visual example of dilated convolution is shown in Figure 6.

In Figure 6, 3 × 3 dilated convolution with a dilated rate of 1 has the same receptive
field as a traditional 3 × 3 convolution, but a 3 × 3 dilated convolution with a dilated
rate of 2 has a receptive field of 5 × 5 convolution. Figure 6b shows the same amount of
computation as the traditional 3 × 3 convolution, but with a 5 × 5 receptive field.

In the haze removal work, contextual information of the input image is helpful for
removing haze relevant features [14] and also useful in rain streak removal work [11]. By
using a dilated structure, richer contextual information from the input can be obtained.

Dilated convolutions for all the convolutional layers of proposed encoder-decoder
structure and also, due to the nature of the encoder-decoder structure, it has a variety of
scale output features. These characteristics make it possible to take a large receptive field
and easily obtain contextual information of the input image.

2.3.2. Symmetric Skip Connections and Negative Mapping

The encoder-decoder network with symmetric skip connections are suitable to restore
degraded image [27]. The encoder of proposed network consists of convolutional layers,
and the decoder consists of deconvolutional and convolutional layers. The encoder works
to remove the major noise while preserving the important characteristics of the image.
As the network goes deeper, the decoder works less because details along with the main
noise can be removed. Symmetric skip connections have been proposed to solve this
problem in deep networks which deliver the details of the image from the encoder to the
decoder, increasing the image’s restoring performance. To increase the training ability
of the network, we also applied Fu [10]’s negative mapping method which is one of the
skip connections. The negative mapping technique is implemented in the network to help
training by reducing the mapping range as shown in Figure 5. Using negative mapping
significantly reduces the mapping range. Therefore, we suggested applying a negative
mapping method to the encoder-decoder network to restore the detail of the image better.
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(a) (b)

Figure 6. A visual example of dilated convolution. (a) Traditional convolution. (b) Dilated convolution.

2.3.3. Loss Functions for Training

Since we estimate the output through two encoder-decoder networks, we need to
define two loss functions for high-frequency and low-frequency network. L1 error is known
to produce better results in image restoration than L2 loss. This phenomenon is due to the
convergence problem characteristics: L2 tends to converge into to the local minimum, but
L1 converges well to the global minimum in image restoration [31]. Therefore, we train
each encoder-decoder network using L1 errors to get better image restoration results from
training dataset. Based on the introduced statement, the loss function of the high-frequency
encoder-decoder is as follows:

LH = ∑
x∈X
|FH(Ohigh(x)) + O(x)− I(x)|, (7)

where x denotes the pixel in image spatial domain X, and FH denotes proposed high
frequency encoder-decoder network. Ohigh is the high-frequency region of the input image
which is obtained from guided filter as mentioned. I denotes a ground truth image where
only haze exists. Through the loss function, the high-frequency encoder-decoder network
trains and outputs rain-removed images from the haze and rain images.

Second, the loss function of the low-frequency encoder-decoder is as follows:

LL = ∑
x∈X
|FL(Olow(x)) + O(x)− t(x)|, (8)

where t denotes transmission map of the input image, Olow is the low-frequency region
of the input images, and FL denotes proposed low frequency encoder-decoder network.
Unlike the high-frequency encoder-decoder network, the ground truth of the low-frequency
loss function is the transmission map. The other parameters of the loss function are the
same as the parameters of the high-frequency loss function.

Since the two-loss functions has same scale, the total loss is a made with addition
operation.The total loss function can be expressed as follows:

LT = α · LL + (1− α) · LH , (9)

where LT is the total loss function. The network is trained through optimizing function in (9).
We empirically set the alpha to 0.7 for training and design our network structure, as described
throughout this section.

2.4. Image Restoration Using Atmospheric Scattering Model

In this section, we describe the final process of the framework. After estimating the
transmission map from the low-frequency network and removing the rain streaks with the
high-frequency network, using these information, degraded images are restored based on
physical methods by rewriting the atmospheric model 1 into following equation:

J(x) =
I(x)− A

t(x)
+ A. (10)
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Throughout proposed networks, estimated transmission maps and estimated rain-
removed images are obtained. Specifically, we can obtain t and I using the low-frequency
high-frequency encoder-decoder networks, respectively. The value of t can be zero value
in an image, such as bright light and sky regions. In these pixels, the value in (1) can
have the infinite value. Therefore, a lower limit of t(x) was set to 0.1 to prevent the
denominator from zero. Additionally, we need to estimate the atmospheric light A based
on the following equation:

I(x) = A, i f , t(x) < tth. (11)

In (11), we choose the darkest 0.1% of pixels in a transmission map t(x). This part
means the highest intensity haze in the hazy image I(x), as the atmospheric light A. In
order to set the threshold for A, a threshold value experiment is needed, which we perform
in the next section. As above, I, t, and A are determined. We assign values to the image
degradation model to get a clean image.

3. Experimental Result

In this section, extensive experiments are conducted to demonstrate the performance
of proposed FHRR-Net. Results on real-world road image and synthetic road data are used
to evaluate the performance of our model against several state-of-the-art neural network
methods. The synthetic dataset restoration score is quantitatively measured by PSNR (peak
signal-to-noise) and SSIM (structural similarity index) which are often used as indicators
for evaluating performance in several image restoration works. Real-world road image
experiment results are also compared qualitatively. We also show the effectiveness of
proposed method through ablation study.

3.1. Experimental Environment

We conducted experiments on Cityscapes’ foggy dataset [32–34], which is widely
used for other research and shows meaningful results on real world dataset. It provides
a collection of synthetic foggy images and transmission maps (ground-truth material).
Using foggy dataset and rain streaks [10] with (5), we collected 18,006 training images, 2871
validation images, and 9189 test images. In addition, using models pretrained on generated
Cityscapes rain dataset, 24 real world road images were tested which includes haze and
rain streak effects. FHRR-Net and other comparison methods were trained and tested on
same dataset condition. After each convolutional layer in the encoder-decoder network,
batch normalization [35] and ReLu [36] layer are used. Adam optimizer method [37] was
used to train the network with batch size 128, momentum to 0.9. Initial learning rate is set
to 0.01 for 100K iterations and 0.001 for 100K iterations to 200K iterations and terminate
the training at 200K iterations. All experiments are conducted using NVIDIA Geforce GTX
1080 with Tensorflow library.

3.2. Creating the Synthesized Dataset

As mentioned above, new rain and haze road dataset are generated using (5). Rain
streaks are applied on Cityscapes’ foggy dataset. Refs. [32–34] provides a collection of
synthetic foggy images and transmission maps, which is ground-truth for (8). The fog
data consisted of images of the vehicle front camera in various cities in conditions ranging
from light to dense fog, as reflected in various scattering values (0.02, 0.01, 0.005). The
synthesized dataset expresses the harsh road situation, which includes not only rain and
haze on the road but also haze caused by heavy rain on the road. Figure 7 shows a visual
representation of the rain and haze road dataset created by combining the Cityscapes foggy
dataset with the rain model.

This synthesized rain and haze dataset is used as input to the proposed FHRR-Net. To
train the network, transmission maps in the foggy dataset is set to the ground truth of the
low-frequency network and the hazy image in the foggy dataset is set to the ground truth
of the high-frequency network. The loss function is optimized by comparing the ground
truth of the dataset with the network output of the FHRR-Net.
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(a) (b)

Figure 7. Example of created synthetic dataset. (a) Cityscape foggy dataset [32–34]. (b) Our new rain and haze road dataset.
To make the dataset more general, we created a new rain and haze road dataset by combining various directions and
thicknesses of the rain streak.

3.3. Performance Comparison with State-of-the-Art Methods

A comparative experiment was conducted with the proposed FHRR-Net and two
state-of-art methods: MSCNN [14] and DerainNet [10]. We first compare the state-of-the-art
methods on synthetic datasets, evaluating qualitatively and quantitatively. Figure 8b is a
part of the synthesized test data which includes both rain and haze components. We also
compare the state-of-the-art methods on real-world road images to show that the network
is robust.

(a) (b) (c) (d) (e)

Figure 8. Visual comparison with the state-of-art methods on the synthesized dataset. (a) Ground truth, (b) Inputs,
(c) DerainNet [10] (d) MSCNN [14], (e) FHRR-Net.

In Figure 8, DerainNet only removes the rain streak part of the synthesized image.
Specifically, Figure 8c shows that the fog is not removed. On the other hand, MSCNN only
removes the hazy part of the synthesized image. In Figure 8d, the rain streak components
are not removed with MSCNN. Quantitative evaluations of the results on Figure 8 are
shown in Table 2. FHRR-Net obtains better PSNR and SSIM indicators than other state-
of-the-art methods. Based on the above experimental results, FHRR-Net shows the best
results for the synthesized data.

Visual comparison results from real-world road data are shown in Figure 9. Some
images on Figure 9c show that MSCNN is unable to remove rain from the actual road
image with haze and rain together. In addition, there is excessive enhancement in the
process of removing the haze.
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(a) (b) (c) (d)

Figure 9. Visual comparison with the state-of-art methods on real-world road data, (a) Inputs, (b) DerainNet [10]
(c) MSCNN [14], (d) FHRR-Net. Some images are obtained through Google Images; others are taken directly.

Table 2. Average PSNR (peak signal-to-noise) and SSIM (structural similarity index) results on
synthesized data for state-of-arts methods.

Methods Average PSNR Average SSIM

DerainNet µ = 18.79, σ2 = 1.58 µ = 0.84, σ2 = 0.08
MSCNN µ = 20.01, σ2 = 1.08 µ = 0.81, σ2 = 0.08

FHRR-Net µ = 22.02, σ2 = 1.20 µ = 0.91, σ2 = 0.06

3.4. Comparison of Performance with Combined SOTA Methods (Derain + Dehaze)

In this section, we conducted an experiment comparing the proposed method with
the results of applying the state-of-the-art techniques DerainNet [10] and MSCNN [14]
sequentially. The experiment is described in the following, Figure 10, schematic diagram.

Figure 11 shows the results of an experiment performed as described in Figure 10
schematic diagram. Experiment 2 method result image usually appears to have excessive
color enhancements. For example, in the first picture of Figure 11c,d, the color of the tree
on the upper left is close to black. In addition, the color of the people in the middle picture
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is also close to black.Person, car, tree, or umbrella in the last picture is shown close to black.
As a result, in the Figure 10, experiment 2 and experiment 3 methods excessively improve
the color compared to the original image. Hence, this experiment confirm that FHRR-Net
improves better than the combination of the two SOTA methods in both removing rain
and haze.

Figure 10. Schematic diagram: Comparison experiments with combined SOTA methods and proposed algorithm.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. Comparison results of the combined SOTA methods with FHRR-Net. (a) Ground truth. (b) Our results. (c) Results
of applying the (DerainNet + MSCNN) method. (d) Results of applying the (MSCNN + DerainNet) method.

3.5. Object Detection Results

In order to provide the evidence benefits on harsh road scenes, an experiment is
done to prove whether our method affects the results of object detection. YOLOv3 [5], an
object detection method, is used for detection which is trained with COCO dataset for
the experiments.

Figure 12a shows object detection results on degaded input images, where (b) shows
object detection results after applying DerainNet on input images, (c) shows object detection
results after applying MSCNN on input images, and (d) shows object detection results after
applying FHRR-Net. The first row of Figure 12a shows that object detection fails in the
case of degraded images of distant vehicles. In contrast, the first row of Figure 12d shows
that even distant vehicles can be detected as objects. Figure 12b,c show the object detection
results of DerainNet and MSCNN: object detection results are better than in Figure 12b,c,
the object detection result is better than Figure 12a, but the overall accuracy is lower than
in Figure 12c.

Table 3 shows detection accuracy results after using state-of-the-art image restoration
methods. We use 20 real-world test images to measure and compare average mAP and
confidence for each object in the images. It is shown that our algorithm positively affects
object detection in degraded images via Table 3 and Figure 12.
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(a) (b)

(c) (d)

Figure 12. YOLOv3 object detection results on real-world road restored images. (a) Input images. (b) Object detection
results after applying DerainNet. (c) Object detection results after applying MSCNN. (d) Object detection results after
applying FHRR-Net.
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Table 3. Comparison of YOLOv3 results after using the state-of-arts image restoration methods.

Original
Input + YOLOv3

DerainNet
+YOLOv3

MSCNN
+YOLOv3

FHRR-Net
+YOLOv3

mAP Confidence mAP Confidence mAP Confidence mAP Confidence

0.84 0.924 0.77 0.909 0.75 0.845 0.89 0.921

3.6. Analysis of Proposed Architecture
3.6.1. Effectiveness of the Proposed Dilated Convolution and Negative Mapping

In Section 2.3, FHRR-Net uses dilated convolution with negative mapping for convo-
lution. To prove that the proposed structure is most effective, we conducted a comparative
experiment after excluding the dilated convolution and the negative mapping structure,
respectively. In Table 4, quantitative measurement results are shown using PSNR and
SSIM scores for each structure on the synthesized dataset. Figure 13 also shows a visual
comparison of qualitative results for a synthesized dataset.

Figure 13a shows ground truth of experiments. Figure 13b shows our synthesized
test dataset. Figure 13c illustrates a structure learned using a negative mapping structure
without using dilated convolution. Figure 13d shows a structure learning using only
dilated convolution without using neg mapping structure. The fog is slightly removed as
in Figure 13c than in Figure 13e. On the other hand, comparing Figure 13d with Figure 13e
shows that the rain streak is less removed without negative mapping. These results implies
that removing haze is effected by dilated convolution which gives large receptive field. In
addition, it proves that negative mapping gives high-level features through the connection.
Table 4 also shows that PSNR and SSIM index are the highest in the proposed structure
that uses dilated convention and negative mapping.

As a result of quantitative and qualitative evaluation, dilated convolution and negative
mapping are shown to be effective in removing haze and rain from encoder-decoder
networks for image restoration.

(a) (b) (c) (d) (e)

Figure 13. Comparison with different structures on the synthesized dataset, (a) Ground truth. (b) Synthesized data.
(c) Structure without dilated convolution. (d) Structure without negative mapping. (e) FHRR-Net.
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3.6.2. Comparison of Restoration Performance for Various Threshold Values

In this section, we quantitatively compare the restoration results for each A value
determined by each threshold in the image restoration process. Table 5 demonstrates the
quantitative measurement results using PSNR and SSIM scores for each threshold value on
the test dataset.

As mentioned in Section 2.4, a haze removal method using the image degradation
model through transmission maps needs the global atmospheric light to calculate the clean
image. In (11), the atmospheric value is determined by selecting average of the 0.1% darkest
pixel in the transmission map.

As shown in Table 5, the best results on PSNR and SSIM values are obtained when
choosing average of the 0.1% darkest pixel in the transmission map.

Rain and haze are significant obstacles to operating many camera-based vision systems
because of the degraded input image. In real-world road conditions, not only good weather
but also hazy and rainy weather exist, which can cause serious visual problems. Many
studies have been conducted on removing rain and haze from images, but none have
studied removing rain and haze simultaneously

Table 4. Average PSNR and SSIM with different structures on the synthesized dataset.

Without
Dilated Convolution

Without
Negative Mapping FHRR-Net

Average PSNR µ = 21.582, σ2 = 1.15 µ = 21.96, σ2 = 1.23 µ = 22.02, σ2 = 1.20

Average SSIM µ = 0.88, σ2 = 0.06 µ = 0.89, σ2 = 0.07 µ = 0.91, σ2 = 0.06

Table 5. Average PSNR and SSIM for each threshold to determine A.

Darkest
0.05% Pixel

Darkest
0.1% Pixel

Darkest
0.15% Pixel

Darkest
0.2% Pixel

Average PSNR µ = 21.96, σ2 = 1.21 µ = 22.02, σ2 = 1.22 µ = 22.00, σ2 = 1.23 µ = 21.94, σ2 = 1.20

Average SSIM µ = 0.9105, σ2 = 0.0617 µ = 0.9105, σ2 = 0.0616 µ = 0.9105, σ2 = 0.0617 µ = 0.9103, σ2 = 0.0612

3.6.3. Effectiveness of Frequency Decomposition

This section shows the effectiveness of using decomposed image for training the
network. In Section 2.3, we proposed a frequency-based framework to improve degraded
images using guided filters. As mentioned before, FHRR-Net has the advantage that
parameter optimization is easier than learning immediately by the original input. This
allows to take faster learning times and obtain better improved images.

Experiment on test dataset implies the effect of preprocessing in Table 6. One is learned
without frequency-based image decomposition which only takes the raw image and the
second is proposed frequency-based method. Table 6 shows experimental results for two
methods. As seen in the table, preprocessing gives an easier optimization for the network.

Table 6. Experimental results on frequency-based method effects.

Methods Average PSNR Average SSIM

Without frequency-based method µ = 21.02, σ2 = 1.55 µ = 0.82, σ2 = 0.08
FHRR-Net µ = 22.02, σ2 = 1.20 µ = 0.91, σ2 = 0.06

4. Conclusions

Rain and haze are significant obstacles to camera-based vision systems because of the
degraded input image. In real-world road conditions, not only good weather but also hazy
and rainy weather exist, which can cause serious visual problems. Many studies have been
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conducted on removing rain and haze from images, but none have studied removing rain
and haze at simultaneously.

On a real road, haze and rain tend to occur simultaneously. However, applying existing
algorithms improves only part of the haze or rain. In this paper, the occlusion of haze and
rain is both considered and propose a frequency-based haze and rain removal network.

Overall, the framework of our work has three stages. The first is the frequency-based
decomposition of the input image using the guided filter, and the second is the proposed
FHRR-Net which extracts features for rain streaks and transmission maps to restore images.
The network consist two symmetric encoder-decoder networks to train the low- and high-
frequency networks separately to remove the rain streaks. Finally, the haze is removed
with image degradation model.

Proposed FHRR-Net are compared with two state-of-the-art methods on synthesized
road test images and real urban road test images. Better results are shown in test data
synthesized through experiments, as well as in real test images, than other state-of-the-art
methods. Furthermore, object detection experiments validated that FHRR-Net is helpful
for general real-world vision applications.
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