Infrared Radiation Favorably Influences the Quality Characteristics of Key Lime Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Solvent, and Black Lime Procurement
2.2. Black Lime Juice Processing
2.3. Physicochemical Analysis
2.3.1. Total Soluble Solids (Brix) and pH Value
2.3.2. Titratable Acidity (TA)
2.3.3. Ascorbic Acid (AA) Content
2.3.4. Total Phenolic Content (TPC)
2.3.5. Antioxidant Activity
2.4. Pectinmethylesterase (PME)
2.5. Hydroxymethyl Furfural (HMF)
2.6. Microbiological Analysis
2.7. Determination of Color
2.8. Sensory Analysis
2.9. Statistical Methods
3. Results and Discussion
3.1. Physiochemical Content of Stored Juice Samples
3.2. Determination of Ascorbic Acid
3.3. Determination of Total Phenolic Content
3.4. Determination of Antioxidant Activity
3.5. Determination of Pectinmethylesterase Activity (PME)
3.6. Determination of Hydroxymethylfurfural (HMF)
3.7. Microbial Content of Stored Juice Samples
3.8. Color Values
3.8.1. Lightness (L*)
3.8.2. Redness-Greenness (a*)
3.8.3. Yellowness-Blueness (b*)
3.9. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Jiraungkoorskul, W.; Narang, N. Anticancer activity of key lime, Citrus aurantifolia. Pharmacogn. Rev. 2016, 10, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, B.; Muthukumarappan, K.; O’Donnell, C.; Cullen, P. Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innov. Food Sci. Emerg. Technol. 2009, 10, 166–171. [Google Scholar] [CrossRef]
- Ling, B.; Tang, J.; Kong, F.; Mitcham, E.J.; Wang, S. Kinetics of Food Quality Changes During Thermal Processing: A Review. Food Bioprocess Technol. 2014, 8, 343–358. [Google Scholar] [CrossRef]
- Abedelmaksoud, T.G.; Mohsen, S.M.; Duedahl-Olesen, L.; Elnikeety, M.M.; Feyissa, A.H. Impact of ohmicsonication treatment on pectinmethylesterase in not-from-concentrate orange juice. J. Food Sci. Technol. 2019, 56, 3951–3956. [Google Scholar] [CrossRef]
- Abedelmaksoud, T.G.; Mohsen, S.M.; Duedahl-Olesen, L.; Elnikeety, M.M.; Feyissa, A.H. Optimization of ohmicsonication for overall quality characteristics of NFC apple juice. J. Food Process. Preserv. 2019, 43, e14087. [Google Scholar] [CrossRef]
- Rhim, J.W.; Nunes, R.V.; Jones, V.A.; Swartzel, K.R. Kinetics of Color Change of Grape Juice Generated using Linearly Increasing Temperature. J. Food Sci. 1989, 54, 776–777. [Google Scholar] [CrossRef]
- Ahmed, J.; Kaur, A.; Shivhare, U. Color Degradation Kinetics of Spinach, Mustard Leaves, and Mixed Puree. J. Food Sci. 2002, 67, 1088–1091. [Google Scholar] [CrossRef]
- Rattanathanalerk, M.; Chiewchan, N.; Srichumpoung, W. Effect of thermal processing on the quality loss of pineapple juice. J. Food Eng. 2005, 66, 259–265. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Singh, A. Recent advances in agitation thermal processing. Curr. Opin. Food Sci. 2018, 23, 90–96. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Singh, A. Heat transfer phenomena during thermal processing of liquid particulate mixtures—A Review. Crit. Rev Food Sci. Nutr. 2017, 57, 1350–1364. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pratap-Singh, A. A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation. Therm. Process. J Food Sci. 2016, 81, E1399–E1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, P.; Tiwari, B.K.; Valdramidis, V.P. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 1–6. [Google Scholar]
- Rastogi, N.K. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 2012, 52, 737–760. [Google Scholar] [CrossRef]
- Nowak, D.; Lewicki, P.P. Infrared drying of apple slices. Innov. Food Sci. Emerg. Technol. 2004, 5, 353–360. [Google Scholar] [CrossRef]
- Tan, M.; Chua, K.J.; Mujumdar, A.S.; Chou, S.K. Effect of osmotic pre-treatment and infrared radiation on drying rate and color changes during drying of potato and pineapple. Dry. Technol. 2001, 19, 2193–2207. [Google Scholar] [CrossRef]
- Boudhrioua, N.; Bahloul, N.; Ben Slimen, I.; Kechaou, N. Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind. Crop. Prod. 2009, 29, 412–419. [Google Scholar] [CrossRef]
- Aboud, S.A.; Altemimi, A.B.; Al-Hilphy, A.R.S.; Watson, D.G. Effect of batch infrared extraction pasteurizer (BIREP)-based processing on the quality preservation of dried lime juice. J. Food Process. Preserv. 2020, 44, 14759. [Google Scholar] [CrossRef]
- Bhat, R.; Kamaruddin, N.S.B.C.; Min-Tze, L.; Karim, A. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochemistry 2011, 18, 1295–1300. [Google Scholar] [CrossRef]
- Kashyap, G.; Gautam, M.D. Analysis of Vitamin C in commercial and naturals substances by iodometric titration found in Nimar and Malwaregeion. J. Sci. Res. Pharma. 2012, 1, 77–78. [Google Scholar]
- Jafari, S.M.; Jabari, S.S.; Dehnad, D.; Shahidi, S.A. Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice. J. Food Sci. Technol. 2017, 54, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Aadil, R.M.; Zeng, X.-A.; Zhang, Z.-H.; Wang, M.-S.; Han, Z.; Jing, H.; Jabbar, S. Thermosonication: A potential technique that influences the quality of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1275–1282. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Conti, G.O.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, A.; Mandal, R.; Singh, P.; Singh, A.; Singh, A.P. Pulsed Light treatment below a Critical Fluence (3.82 J/cm2) minimizes photo-degradation and browning of a model Phenolic (Gallic Acid) Solution. Foods 2019, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Kimball, D.A. Citrus Processing: A complete Guide, 2nd ed.; Aspen Publishers Inc.: Gaithersburg, MD, USA, 1999; pp. 257–264. [Google Scholar]
- Cohen, E.; Birk, Y.; Mannheim, C.; Saguy, I. A Rapid Method to Monitor Quality of Apple Juice During Thermal Processing. LWT 1998, 31, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Benjamin, O.; Gamrasni, D. Microbial, nutritional, and organoleptic quality of pomegranate juice following high-pressure homogenization and low-temperature pasteurization. J. Food Sci. 2020, 85, 592–599. [Google Scholar] [CrossRef]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Waghray, K.; Gulla, S.; Kumar, C.S.; Kumar, M.P.; Kumar, A.A. Sensory Quality and Acceptability of Fresh Juices. Stud. Home Community Sci. 2012, 6, 179–181. [Google Scholar] [CrossRef]
- Ziena, H. Quality attributes of Bearss Seedless lime (Citrus latifolia Tan) juice during storage. Food Chem. 2000, 71, 167–172. [Google Scholar] [CrossRef]
- Rodrigo, D.; Arranz, J.I. Physicochemical characteristics and quality of refrigerated Spanish orange-carrot juices and in-fluence of storage conditions. J. Food Sci. 2003, 68, 2111–2116. [Google Scholar] [CrossRef]
- Kaddumukasa, P.P.; Imathiu, S.M.; Mathara, J.M.; Nakavuma, J.L. Influence of physicochemical parameters on storage stability: Microbiological quality of fresh unpasteurized fruit juices. Food Sci. Nutr. 2017, 5, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.H.; Sulieman, A.M. Studies on pasteurized and concentrated lime juice. Zagazig J. Agric. Res. 2013, 40, 545–557. [Google Scholar]
- Torres, B.; Tiwari, B.; Patras, A.; Cullen, P.; Brunton, N.; O’Donnell, C. Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov. Food Sci. Emerg. Technol. 2011, 12, 93–97. [Google Scholar] [CrossRef]
- Doroud, M.; Daneshi, M. The Effect of Storage Temperatures on Physicochemical, Microbial and Sensory Properties of Lime Juice. Food. Eng. Res. 2019, 18, 15–52. [Google Scholar]
- Liu, F.; Wang, Y. Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innova. Food Sci. Emerg. Tech. 2014, 21, 35–43. [Google Scholar] [CrossRef]
- Castro-López, C.; Sánchez-Alejo, E.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz, J.; Martínez-Avila, G. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage. Heliyon 2016, 2, e00152. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.N.; Lourenço, S.; Fidalgo, L.G.; Santos, S.A.O.; Silvestre, A.J.D.; Jerónimo, E.; Saraiva, J.A. Long-Term Effect on Bioactive Components and Antioxidant Activity of Thermal and High-Pressure Pasteurization of Orange Juice. Molecules 2018, 23, 2706. [Google Scholar] [CrossRef] [Green Version]
- Saci, F.; Meziant, L. Effect of storage time and temperature on the health-promoting substances and antioxidant activity of two commercial fruit based-beverages. Int. J. Bioinform. Biomed. Eng. 2015, 1, 118–122. [Google Scholar]
- Lee, S.-C.; Kim, J.-H.; Jeong, S.-M.; Kim, D.-R.; Ha, J.-U.; Nam, K.C.; Ahn, D.U. Effect of Far-Infrared Radiation on the Antioxidant Activity of Rice Hulls. J. Agric. Food Chem. 2003, 51, 4400–4403. [Google Scholar] [CrossRef]
- Kieling, D.D.; Barbosa-Cánovas, G.V. Effects of high pressure processing on the physicochemical and microbiological pa-rameters, bioactive compounds, and antioxidant activity of a lemongrass-lime mixed beverage. J. Food Sci. Tech. 2019, 56, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.A.K.; Sulaiman, A. Quality assessment of ozone-treated citrus fruit juices. Int. Food Res. J. 2019, 26, 1405–1415. [Google Scholar]
- Esteve, M.; Frígola, A.; Rodrigo, C. Effect of storage period under variable conditions on the chemical and physical composition and colour of Spanish refrigerated orange juices. Food Chem. Toxicol. 2005, 43, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Agcam, E.; Akyıldız, A. Effects of PEF and heat pasteurization on PME activity in orange juice with regard to a new in-activation kinetic model. Food Chem. 2014, 165, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Hoshino, E. Similarities between the thermal inactivation kinetics of Bacillus amyloliquefaciensα-amylase in an aqueous solution of sodium dodecyl sulphate and the kinetics in the solution of anionic-phospholipid vesicles. Biotech. Appl. Biochem. 2003, 38, 175–181. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Javed, M.S.; Ahmad, Z.; Amjad, A.; Khan, A.A.; Shah, F.-U.-H.; Filza, F. Amassing of Hydroxymethylfurfural, 2-Furfural and 5-Methyl furfural in orange (Citrus reticulata) juice during storage. Food Sci. Technol. 2020, 40, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Burdurlu, H.S.; Koca, N.; Karadeniz, F. Degradation of vitamin C in citrus juice concentrates during storage. J. Food Eng. 2006, 74, 211–216. [Google Scholar] [CrossRef]
- Kadakal, C.; Nas, S. Effect of heat treatment and evaporation on patulin and some other properties of apple juice. J. Sci. Food Agric. 2003, 83, 987–990. [Google Scholar] [CrossRef]
- Li, Y.-h.; Lu, X.-y. Investigation on the origin of 5-HMF in Shengmaiyin decoction by RP-HPLC method. J. Zhejiang Uni. Sci. B 2005, 6, 1015–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwachukwu, E.; Ezeigbo, C.G. Changes in microbial population of pasteurized soursop juice treated with benzoate and lime during storage. Afr. J. Microbiol. Res. 2013, 7, 3992–3995. [Google Scholar]
- Batool, S.; Tahir, S.; Rauf, N.; Kalsoom, R. Microbiological analysis of pasteurized and fresh fruit juice sold in Rawalpindi of Pakistan. Bangladesh J. Sci. Ind. Res. 2013, 48, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Rawson, A.; Patras, A.; Tiwari, B.; Noci, F.; Koutchma, T.; Brunton, N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res. Int. 2011, 44, 1875–1887. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Effects of radiation processing on phytochemicals and antioxidants in plant pro-duce. Trends Food Sci. Technol. 2009, 20, 201–212. [Google Scholar] [CrossRef]
Color Components | Treatments | Storage Period (Day) | ||||
---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | ||
L* | IR | 73.65 e ± 1.45 | 78.82 c ± 2.11 | 83.72 b ± 2.31 | 79.21 c ± 1.39 | 69.80 f ± 2.01 |
CH | 65.57 g ± 2.05 | 75.79 d ± 1.81 | 66.86 g ± 1.36 | 74.90 d ± 2.14 | 43.72 h ± 2.31 | |
C | 75.45 d ± 1.78 | 81.76 b ± 3.11 | 85.29 a ± 3.07 | 81.96 b ± 2.48 | 74.70 d ± 3.11 | |
a* | IR | 14.19 b ± 0.57 | 3.76 j ± 1.81 | −7.52 f ± 0.02 | −5.17 h ± 0.06 | −3.76 j ± 0.11 |
CH | 12.45 c ± 0.54 | 6.11 g ± 0.16 | 10.35 d ± 0.23 | 1.88l l ± 0.01 | 2.35 k ± 0.10 | |
C | 16.93 a ± 0.23 | −4.70 i ± 0.08 | −8 e ± 0.03 | −13.17 c ± 0.12 | −14.58 b ± 0.10 | |
b* | IR | 37.52 j ± 1.05 | 32.47 k ± 0.21 | 74.35 c ± 2.31 | 78.11 a ± 1.96 | 72.47 d ± 0.99 |
CH | 33.57 k ± 0.98 | 65.88 e ± 1.08 | 76.70 b ± 2.61 | 77.64 ab ± 1.94 | 61.71 f ± 2.01 | |
C | 39.56 i ± 1.11 | 49.41 h ± 1.21 | 59.78 f ± 1.28 | 57.88 g ± 0.73 | 74.82 c ± 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altemimi, A.B.; Al-Hilphy, A.R.S.; Abedelmaksoud, T.G.; Aboud, S.A.; Badwaik, L.S.; G, L.; Noore, S.; Pratap-Singh, A. Infrared Radiation Favorably Influences the Quality Characteristics of Key Lime Juice. Appl. Sci. 2021, 11, 2842. https://doi.org/10.3390/app11062842
Altemimi AB, Al-Hilphy ARS, Abedelmaksoud TG, Aboud SA, Badwaik LS, G L, Noore S, Pratap-Singh A. Infrared Radiation Favorably Influences the Quality Characteristics of Key Lime Juice. Applied Sciences. 2021; 11(6):2842. https://doi.org/10.3390/app11062842
Chicago/Turabian StyleAltemimi, Ammar B., Asaad R. S. Al-Hilphy, Tarek Gamal Abedelmaksoud, Salam A. Aboud, Laxmikant S. Badwaik, Lakshmanan G, Shaba Noore, and Anubhav Pratap-Singh. 2021. "Infrared Radiation Favorably Influences the Quality Characteristics of Key Lime Juice" Applied Sciences 11, no. 6: 2842. https://doi.org/10.3390/app11062842
APA StyleAltemimi, A. B., Al-Hilphy, A. R. S., Abedelmaksoud, T. G., Aboud, S. A., Badwaik, L. S., G, L., Noore, S., & Pratap-Singh, A. (2021). Infrared Radiation Favorably Influences the Quality Characteristics of Key Lime Juice. Applied Sciences, 11(6), 2842. https://doi.org/10.3390/app11062842