
applied
sciences

Article

Nodule Detection with Convolutional Neural Network Using
Apache Spark and GPU Frameworks

Nikitha Johnsirani Venkatesan 1, Dong Ryeol Shin 1 and Choon Sung Nam 2,*

����������
�������

Citation: Johnsirani Venkatesan, N.;

Shin, D.R.; Nam, C.S.

Nodule Detection with Convolutional

Neural Network Using Apache Spark

and GPU Frameworks. Appl. Sci.

2021, 11, 2838.

https://doi.org/10.3390/

app11062838

Academic Editor: Fabio La Foresta

Received: 1 February 2021

Accepted: 15 March 2021

Published: 22 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 10027, Korea;
nikipraha.18@gmail.com (N.J.V.); drshin@skku.edu (D.R.S.)

2 Department of Software Convergence Engineering, Inha University, Incheon 15798, Korea
* Correspondence: namgun99@gmail.com

Abstract: In the pharmaceutical field, early detection of lung nodules is indispensable for increasing
patient survival. We can enhance the quality of the medical images by intensifying the radiation dose.
High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt
radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network
model in which Gaussian noise is removed for better classification and increased training accuracy.
Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed
method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall,
F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as
evaluation metrics. We conducted a performance comparison of our proposed model on numerous
platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising
the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning
framework, is suitable for parallel training computation with high accuracy.

Keywords: lung nodule; Apache Spark; Convolutional Neural Networks; deep learning

1. Introduction

Lung cancer is one of the most prevalent cancers globally, with only 16% of cases
being diagnosed at an immature stage. World cancer research fund global statistics states
that 58% of lung cancer befalls in developing countries due to a lack of early detection.
About 154,050 people die from lung cancer in the U.S. per year, as per the report of the
American Cancer Society [1]. The survival percentage of lung cancer can be increased by
detecting the nodules early in the patient. However, detecting lung nodule need the utmost
attention of the radiologists. The nodule size is comparatively petite in the pre-cancer
stage and is difficult to differentiate from other benign tissues. The CT scan and visual
noise resolution make it troublesome to diagnose even for specialist radiologists. The
existing systems, such as LungRAD, suffer from many false positives while detecting lung
nodules. To overcome these challenges, an Artificial Intelligence (AI) model is essential in
each hospital to detect the nodule. There are numerous approaches to detect lung nodules
classified by predetermined models and features [2–5]. To this point, Artificial Intelligence
(AI) [6] has been proven to be one of the most thriving creations in the medical industry.
Machine learning [7] and deep learning [8] algorithms are used extensively for classification
purposes. Convolutional neural network [9] is one of the successful neural network models
for image processing. It demands an enormous amount of labeled training data, which is
considered difficult to acquire in the medical field. However, even with radiologists’ careful
labeling, the model’s accuracy might decrease due to visual noise. The image quality of
CT scans influenced by radiation as the image quality is high with increased dosage [10],
and vice versa. However, a high dosage of radiation has many side effects, which uplift
the chances of cancer [11,12]. A reduced dose of radiation results in poor CT image quality
with visual noise.

Appl. Sci. 2021, 11, 2838. https://doi.org/10.3390/app11062838 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11062838
https://doi.org/10.3390/app11062838
https://doi.org/10.3390/app11062838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11062838
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11062838?type=check_update&version=1

Appl. Sci. 2021, 11, 2838 2 of 18

As aforementioned, erratic noise makes it tedious for the radiologist to distinguish
between the nodules in the lung region [13]. For lower-dose examinations, the ability to
determine relevant disease on noisier images will depend on various factors, including
lesion intensity, lesion contrast associated with neighboring tissues, and image noise and
sharpness. Applying data processing and image restoration approaches that minimize
image noise while preserving spatial resolution makes it possible to increase the quality and
diagnostic value of intrinsically noisy low-dose CT images. Therefore, noise removal plays
an essential role as a pre-processing step in deep learning to enable the precise detection
of lung nodules [14]. Deep learning is proven to be successful among researchers because
of its ability to self-learn the feature values and provide an authentic outcome. NVIDIA’s
researchers performed trials on the ImageNet dataset to remove grains and noises without
the need for observing the clean data [15]. The same technique can be applied to medical
images where acquiring training data with ground truth is tedious. By proper model
training, deep learning makes it achievable to enhance the image quality by removing noise
and grains without training images. Deep learning can reconstruct the under-sampled CT
images by training with the available data. It can extract more useful information from
the unstructured data even without labeled knowledge by self-learning. This complexly
integrated feature extraction and deep layers classification model easily overcomes the
conventional machine learning algorithms [16].

Gaussian noise is an additive noise; removing it involves smoothing the distinct inside
region of an image. These classical linear filters, such as the Gaussian filter, reduce noise
efficiently but significantly blur the edges. A local measure of an image is to detect edges
quantitatively and level them less than the rest of the picture. The contaminated pixels at the
edges will be smoothed effectively using the multiple layers on the proposed Non-Gaussian
Convolutional Neural Network (NG-CNN) architecture. Hence, all the regions of images
are concentrated at numerous stages in terms of pixel by pixel. Thereby we attain qualified
noise removed images. In our proposed Non-Gaussian Convolutional Neural Network
(NG-CNN), we applied Gaussian noise removal as a foremost pre-processing step, which is
later trained using the neural network’s hidden layers. A significant part of noise removal
is linear filtering and non-linear filtering. Non-Gaussian CNN’s construction helps in
embracing the progress in profound architecture, learning algorithms, and regularization
methods into image denoising. The non-Gaussian CNN model can handle Gaussian
denoising with the unknown noise level. Non-Gaussian eliminates the latent clean image
in the hidden layers, which constructively remove noise. It increases flexibility and capacity
for exploiting image characteristics, which ensures the CT scan image’s fidelity, aiming
for better classification accuracy. We trained the deep learning model with a labeled lung
dataset to produce a minimum error rate. This paper is a continuation of our work [17].

This paper improved the algorithm and computed the difference to reduce training
time and analyze the performance. We implemented the proposed algorithm in various
platforms, Apache Spark, GPU, and CPU. General deep learning models in real-time are
being trained by GPUs [18] and parallelized GPUs [19]. The training time of a complex
model with many hidden layers would take even several days to converge. To reduce
the converging time and to fine-tune the hyper-parameters, distributed training is the
solution. Many researchers are trying to integrate deep learning and Spark to diminish the
computation expense and to distribute the process [20]. Hence, we did the performance
analysis by comparing the platforms, as mentioned earlier. Overall, our contributions in
this paper are listed as follows:

• The proposed NG-CNN model shows a great accuracy percentage in detecting the
lung nodule even when the nodule’s size is less than 1.5 mm as we applied a noise filter
as an extensive pre-processing technique. Measurement of correntropy is integrated
with the autoencoder based deep neural network.

• We designed Apache Spark deep learning framework for our proposed NG-CNN
model. Training time and performance are analyzed using detailed experimentation
on various platforms, such as Apache Spark, GPU, and CPU.

Appl. Sci. 2021, 11, 2838 3 of 18

• Large labeled lung CT scan dataset of size 150 GB has been used for evaluation,
making it perfect for CNN training. The cumulative number of cases is more than
1600, with multiple slices per patient.

• Classification accuracy, sensitivity, specificity, and area under the ROC curve (AUC) of
the model performance are compared with various combinations of CNN parameters
and other deep neural networks.

The rest of the paper is organized as follows: Section 2 exhibits the literature survey
related to our research work. Our proposed methodology is illustrated in detail in Section 3.
Section 4 demonstrates the results of the experiments and discussion. Section 5 concludes
the paper along with possible future work.

2. Related Works

In this section, the background works related to our methodology are discussed briefly.
The first part of the section focus on papers that improve the accuracy percentage in the
CNN model. The second part of the section scrutinize performance comparison between
Apache Spark and GPU.

Krizhevsky et al. [21] trained deep convolutional neural network for classification of
ImageNet dataset, which consists of 1.2 million HD images. The deep network consists of
five convolutional layers, three fully connected layers, and one softmax layer. GPU was
employed to train the dataset, and the authors proposed a novel regularization method
called “dropout” to avoid overfitting. Kalinovsky et al. [22] implemented segmentation
using deep CNN with experiments conducted in GPU Nvidia. The authors concentrated
on the segmentation of the lung images to categorize similar lung image patches.

Experimentation was done in a small set of lung images with few hundreds of scans
for both testing and training. Related works were done in Reference [23,24] from Cam-
bridge University, where pixel-wise segmentation in lung scans was implemented. The
deep model consists of an encoder and decoder layer and a pixel classification layer. In
Reference [25], the authors constructed a new dataset by transforming the original images.
The medical field lacks labeled training images. Changing the original dataset to create
more data is convenient to minimize the error rate and uplift deep model accuracy. Ex-
perimentation was conducted with various datasets, such as malignant nodules, artificial
geometric tumours, non-cancerous, and combined. The results show that the transformed
dataset can better capture CT scans’ features than the original dataset. Romero et al. [26],
introduced the single layer and deep convolutional networks based on a prediction system
for remote sensing data analysis. They launched the supervised deep convolutional net-
work, which can better operate on multi and hyperspectral imagery fields. They concluded
that the proposed method could not produce the optimal outcome with a high dimensional
dataset with less labeled information.

The authors in Reference [27] concentrated on the dataset and separated the dataset
based on the nodules’ volume. They enlarged the large lung nodule dataset to train
the model from 756 to more than 35,000. Random cropping also further expanded the
dataset’s count as the author believes a deep model requires a broad set of training data.
Setio et al., in Reference [28], compared various deep learning algorithms and evaluated
them by applying the LUNA16 dataset and reducing the confusion matrix’s false positives.
Algorithms, such as candidate detection, ISICAD, subsolidCAD, largeCAD, ETROCAD,
and M5L, are used for comparison. The results showed that convolutional networks and
the best combination of algorithms give a promising prediction for medical image analysis
with a minimum false positive percentage.

Similarly, Ref. [29,30] use various deep models to compare and analyze the best
suitable algorithm for detecting lung nodules. Two deep neural networks, such as convolu-
tional and recurrent neural networks, are combined as nodular deep. The experiments are
conducted with 1200 scans from the LIDC-IDRI dataset and are evaluated using metrics,
such as sensitivity and specificity. Lo et al. [31] use sphere template double matching tech-
nique to search the possible nodule-like shapes in the lung image data and later used the

Appl. Sci. 2021, 11, 2838 4 of 18

CNN algorithm for final classification. Anirudh et al. [32] use unsupervised segmentation
to provide only a point label and used CNN for binary classification. Our work focus on
pre-processing the CT lung dataset to remove the Gaussian noise, later final classification
is done by our proposed model NG-CNN.

Gupta et al. [33] proposed a framework that combines a deep learning algorithm and
Apache Spark to utilize Spark’s in-memory computing power efficiently. Experiments
ascertained that Spark is a better option for analyzing Big Data using a multilayer per-
ceptron (MLP). DL4j (Deeplearning4j) applies deep neural networks on distributed Spark
servers integrated with GPUs. Adam [34], the founder of DL4j, includes deep learning
libraries with Spark and deploys the deep learning networks by parallelizing the dataset.
Using distributed Spark, DL4j uses data parallelism and converges across the clusters
of the machine. In experiments, distributing data across the clusters using the Resilient
Distributed Data (RDD) property of Spark reduces converging time without compromising
accuracy percentage. In Reference [35], Li et al. introduced heterospark, which is Spark,
along with GPU accelerated to integrate the computation capability of both.

Comparing with GPU, Spark shows promising results due to the increased number
of cores in a distributed setup. Spark has a significant benefit in terms of reducing the
computation complexity of the neural networks model. Moritz et al., in Reference [36],
exclusively developed a framework named SparkNet for deep models training in Apache
Spark. Caffe library is used for deep models, and Spark RDDs are used for reading the
dataset through a customized interface. They benchmarked the performance using the
Imagenet dataset and altering the number of workers in the Spark server. The number of
standard iterations and clusters is stated in the research paper to omit the communication
overhead. From the preceding research papers, it is evident that deep learning accuracy
entirely depends on the datasets’ size. There is a better chance for a decent accuracy
percentage in a deep model as we expand the dataset’s size for training. Today, Big Data
is flooding in zeta-bytes of data per minute from all over the world, such as social media,
sensors, organizations, search queries, and the like. Massive databases are available to
save zeta bytes of data, where machine learning and deep learning algorithms help to
process the extensive amount of data to get valuable insights as the dataset gets larger, the
training time for profound neural network advances in terms of weeks and even months.
By distributing the data or model across the number of clusters reduces the computational
cost and complexity. In the following section, we will discuss how we implemented our
proposed model in Apache Spark, a vibrant ecosystem of deploying deep neural models.

3. Our Proposed Methodology

Our proposed method introduces the Gaussian noise removal technique as a foremost
pre-processing step and integrating auto-encoder with a convolutional neural network. In
a deep convolutional model, classification techniques give flexible lung nodule prediction,
as there are multiple features present in the dataset. In this section, we also define the
correntropy measure with equations. The autoencoder used in our proposed model and
how our model deals with the Gaussian noise in the lung images are given in detail.
Figure 1 provides the overall flow of our proposed lung nodule detection framework in
five stages.

Appl. Sci. 2021, 11, 2838 5 of 18

Figure 1. Overall flow of our proposed lung nodule detection.

3.1. Pre-Processing

Noise in which probability density function is equal to the standard pixel of images is
Gaussian noise. It is obliged to predict the difference between the average pixel value and
the Gaussian noised pixel value, which is more challenging due to their similarity. In this
research method, we have done Gaussian noise exposure by using the correntropy measure.
Correntropy is a kernel-based similarity measure that contains both the statistical and
temporal structure of the underlying dataset. It mainly dispenses with the computation
of accuracy, sensitivity, specificity. No comparison of correntropy is given in any existing
methods, and our approach is specific as it deals with the parameters mentioned earlier. In
our paper, the measurement of correntropy is integrated with the autoencoder based deep
neural network. Autoencoders are based on unsupervised learning strategies, consisting of
three components, encoder, code, and decoder. The function of an encoder is to compress
the input and produce it to the system. The decoder reconstructs the image only using
the code. Sometimes the model could over-fit the input data. To overcome this problem
and learn a robust representation of the input data, we can manually add some noise
called denoising auto-encoders. This integrated mechanism, namely Gaussian noise aware
autoencoder, can ensure accurate and reliable detection of lung nodules even in the presence
of Gaussian noise. Figure 2a,b shows the original lung CT scans and the pre-pro-cessed
CT scans.

Figure 2. Results of pre-processed image and the original lung CT scans.

Our model uses an auto-encoder, where we trained the model to reduce the loss
between the output from the decoder and the original noise-free image rather than the
noisy CT image. We used the mean squared error to calculate the loss between the decoder’s
output and the encoder’s input. For our lung dataset, {(ai, bi)}N

i=1, where ai depicts the

Appl. Sci. 2021, 11, 2838 6 of 18

training dataset, and bi tells the ground truth labels. Loss over the dataset is given by the
sum of all the losses calculated over each iteration.

L =
1
N ∑

i
Li(f (ai, W), bi). (1)

Li denotes the loss function for each batch of the dataset. ai represents the input
dataset, W denotes the weight value of the model, bi represents the bias value. Once the
loss is calculated, we used back-propagation to update our weights throughout the network.
After proper training, our model removes the maximum noise from CT lung images to
attain better accuracy.

We adopted the correntropy measure to assess the similarity between the nearest
pixels based. Correntropy measure between the two pixels, namely A and B, is rated
as follows:

Correntropyσ(A, B) = E[kσ(A− B)], (2)

where E[.] represents mathematical expectation, kσ is Gaussian kernel function, and σ
describes kernel size. Correntropy measure is similar to renyi quadratic entropy [37] that
is done to detect the similarities between the distributed data and ensure the exclusion
of Gaussian noises present in the lung nodule dataset. The kernel function provided in
equation two is estimated by the given Equation (3).

kσ(.) =
1√
2πσ

exp

(
(.)2

2σ2

)
. (3)

The equation explicates that the correntropy measure is of limited value. The parame-
ter σ in the equation portrays the correlation adjustment factor. ∑ and high order moments
are directly proportionate to each other, where the increased σ value would also strengthen
the higher-order moments. Thus, the equivalent distance would differ from 2 norms to zero
norms if the spread between A and B increases. Henceforth, it distinguishes the irregularity
and irrelevant data from the database precisely. The computation method of correlation
with the lack of data about joint probability distribution function between A and B is given
in Equation (4):

ˆCorrentropyσ(A, B) =
1
N

N

∑
t

kσ(at − bt). (4)

The equations, as mentioned previously (2)–(4), predict the correntropy among the
two single-pixel values. The calculation style of correntropy induced metric connecting two
pixels vectors P=(p1,p2,...,pN)T and Q=(q1,q2,...,qN)T is described in the subsequent Equation (5):

CIM(P, Q) =

(
g(0)− 1

N

N

∑
t=1

g(ei)

) 1
2

=
(

g(0)− 1
N

N

∑
t=1

g(pi − qi)
) 1

2
. (5)

In the above Equation (5), ei depicts the error value which is calculated by Equation (6),
and g(x) is Gaussian kernel which is calculated by using (7).

ei = pi − qi, (6)

g(x)∆ = exp
(
− x2

2σ2

)
. (7)

In the above equation, σ determines the width of the kernel. The square of the Gaussian
probability density function σ2 is variance where σ > 0. The maximum correntropy values
of error ei are calculated as per the following (8):

max
1
N

N

∑
t=1

g(ei). (8)

Appl. Sci. 2021, 11, 2838 7 of 18

The purpose of auto-encoders is to acquire the features with a minimum reconstruction
cost function. The proposed NG-CNN with autoencoder is a deep model with three hidden
layers: encoder and decoder. The layer’s network structure in the pre-processing model
consists of one input layer with d inputs, one hidden layer, one reconstruction layer,
and one activation function. Gaussian noise removal is the primary interest to eliminate
the visual noise from the input lung nodule dataset. By completing the noise removal,
our model ensures an accurate learning rate. The encoder from Gaussian noise removal will
assign the input vector a ∈ Rd to the hidden layer, and we generate the intrinsic activity,
which is portrayed as b ∈ Rh. The inherent activity value b will then shift by a decoder to
the output layer, where the input remodeling is performed. The output derived from the
reconstruction process in the output layer is c ∈ Rd. The mathematical prognosis for values
b and c is produced by:

b = f (Wba + qb), (9)

c = f (Wcb + qc). (10)

Wb is the input supplied to the hidden layer weights, Wc is hidden to output layer
weights, qb is the bias of hidden layer, qc is the bias of output layer, and, finally, f (.) is the
activation function.

σ(x) =
1

1 + e−x . (11)

In Equation (12), the weights of noise removal autoencoder is calculated. The pa-
rameters are given as θ = {W, qb, qc}, which reconstruct the input data values from the
output data values with a standardised rebuilding cost function. The main objective of the
proposed research model is:

Wb = Et
c = W. (12)

The reconstruction cost of Gaussian noise removal autoencoder is equated by (13)
with the concern of mean square error and cross-entropy values among the input vector
and output vector values. The loss function is mean square error, and the noisy CT image
is loaded into the model.

Jcost(θ) = L(a, c) + λ||J f (a)||2F. (13)

In the above equation, λ is positive hyper-parameter that is used to control the
regularization of the deep model parameter values, and Jcost(θ) is the correntropy cost
function. The reconstruction cost function is defined as:

L(a, c) =
1
m

m

∑
t=1

n

∑
k=1

kσ

(
atk− ctk

)
. (14)

In Equation (14), m is the number of input training samples of lung nodule scan
images, and n is the training samples’ length. To defend the robustness, we apply Jacobian
norm mapping J f (a). It is a non-linear mapping value of encoding function f. This is
adopted to map the hidden representation which is illustrated as h = f (x) ∈ Rdh. The
summation of extracted features from the lung nodule CT images is calculated as:

||J f (a)||2F =∑
dh
t=1 ∑dx

j=1

(
ϑhi
ϑxj

)2

=
dh

∑
t=1

dx

∑
j=1

(
h1
(
1− h1

)
.wij
)2

= ∑
t=1

dh
(
hi
(
1− hi

))2.
dx

∑
j=1

W2
ij

. (15)

Based on the above-computed norm values, the reconstruction cost of the proposed
feature learning and lung nodule detection has a maximum accuracy percentage. The com-

Appl. Sci. 2021, 11, 2838 8 of 18

putation complexity of the proposed deep NG-CNN model is O(dx.dh). The pseudo-code
of our proposed NG-CNN algorithm for pre-processing step is given in Algorithm 1.

After extracting the features using autoencoder for minimum cost reconstruction,
we will obtain efficient features. Following this, the extracted features are given to the
classifier, i.e., the proposed NG-CNN architecture; the number of layers in the classifier
parts includes three convolutional layers, 3 rectified linear units and three max-pooling
layers with fully connected layer and a softmax layer. Data will be partitioned for testing
and training. Due to adequate validation, the model will remove the noise. In theory,
the mathematical expressions are proved by implementing our proposed deep model in
the various platforms.

Algorithm 1 Pseudocode of pre-processing step in NG-CNN algorithm.

INPUT: Set of lung CT images X = (x1, x2, ..., xN) with ground truth labels
Y = (y1, y2, ..., yN)
OUTPUT: Binary classes 0 or 1 for cancerous and non-cancerous nodules.

1: Read the original images and Initialize the variables and parameters, Wb <- hidden
layer weights, Wc <- output layer weights, qh, qc <- bias of hidden layer and output
layer

2: Calculate the f (.) <- activation function, with respect to the noisy features.
3: Evaluate the kernel function based on positive and bounded value.
4: Calculate CIM between two variables P = (p1, p2, ..., pN)

T and Q = (q1, q2, ..., qN)
T

5: Calculate Error non-linearity that is asymptotically uncorrelated at steady state
ei = pi − qi

6: Calculate cost function as Jcost(θ) = L(a, c) + λ||J f (a)||2F
7: Compute the maximum correntropy measure value error before giving the features to

the auto-encoder.

3.2. Segmentation and Candidate Nodules

After pre-processing, the lung CT scans are segmented to exclude the irrelevant
background. We applied the region seed growing method for segmenting the ROI from the
CT scans. The greyscale image is transformed into a binary image using the threshold of
−340 HU. We employed morphological operations, like erosion and dilation. The erosion
is applied with a disk radius of 2 mm to eliminate the tissues in the walls and parenchyma.
Dilation is practised with a disk radius of 10 mm to retain the nodules that occur in the
cavity. Finally, the original image is superimposed with the binary image to attain the
segmented region of interest. Figure 3 shows the segmented results of the sample lung
slices (a) shows the anatomy scan of a human body, (b) shows the pre-processed image,
(c) shows the binary image based on the threshold. (d,e) shows the results of the CT after
erosion and dilution respectively. Finally, 3(e) shows the superimposed image.

Appl. Sci. 2021, 11, 2838 9 of 18

Figure 3. Sample results of segmented results of a top slice, middle slice, and bottom slice of a lung image of a patient.

3.3. Feature Extraction

After segmentation, the features are extracted based on geometric, intensity, and
contrast. We extracted more than 240 features during the initial phase for all the potential
nodule candidates. The 240 [38] features were shortlisted to 14 classes based on linear
independence and ROC curve criterion. Features classes are based on geometric shapes,
texture, intensity, gradient, spatial context, blobness, Eigen values, border, Radiomic
features, kurtosis, skewness, graylevel, contrast, and Hessian. The intensity features
are extracted based on the histogram values of the CT scan. The geometric features
contains information about size and shape of the nodule. Features, such as radius, area,
perimeter, compactness, roundness, and smoothness, are included as candidate nodular
region. The texture features provide information on the variation of intensity by analyzing
the characteristics, such as roughness and regularity. The selected candidate nodules are
shown in Figure 4, which contains many false positives and false negatives. A deep model
is applied in the section to reduce false positives.

Figure 4. Selected nodule candidates from the features of the lung CT scans.

3.4. Training the Neural Net

This subsection details the working of CNN and the number of layers of our neu-
ral network. A CNN typically has three layers: a convolutional layer, a pooling layer,
and a fully connected layer. The convolutional layer implements a dot product between
two matrices, where one matrix is the set of learnable parameters otherwise known as
a kernel, and the other matrix is the restricted part of the receptive field. During the
forward pass, the kernel slides over the height and width of the image-producing the
image representation of that sensory region. This produces a two-dimensional model of the
image known as an activation map that gives the kernel’s response at each scan’s spatial
position. The sliding size of the kernel is called a stride. The pooling layer replaces the

Appl. Sci. 2021, 11, 2838 10 of 18

network’s output at specific locations by deriving a summary statistic of the nearby results.
This diminishes the spatial size of the representation, which decreases the required amount
of computation and weights. The pooling operation is processed on every slice of the
model individually. Neurons in this layer have full connectivity with all neurons in the
preceding and succeeding layer, as seen in regular FCNN. The FC layer helps to map the
representation between the input and the output.

Figure 5 depicts our proposed model’s architecture, defining the number of convo-
lutional layers, ReLu layers, max-pooling, and fully connected layers. Our architecture
has three convolutional layers+ ReLu layers and three max-pooling layers with one fully
connected layer and a softmax layer. The first layer, the convolutional layer, maps our lung
image dataset with multi-dimensional filters, which give us the first layer output. This in-
termediate output is fed as an input to the next layer. There are many kinds of pooling
layers: max pooling, average pooling, sum pooling, and so forth. We chose max-pooling as
it gives the maximum value in all the patches from the previous layer. Rectified Linear Unit
is deployed as an activation layer for our proposed NG-CNN, which solves the adverse
value problems and avoids computation expense f(x) = max(x,0).

For our lung nodule dataset, the output can have many classification stages, such as:
(i) the patient has no nodule if the nodule size is less than 1.5 mm, (ii) the patient has a
treatable nodule if the size of the nodule falls within 1.5 mm to 3 mm, and (iii) the patient
has severe nodule if the nodule size is more significant than 3mm. However, there are still
many stages in nodules, as most of them are treatable. If the patient has a nodule of size
more than 1.25 mm thickness in our proposed methodology, then the algorithm’s output
will be positive, stating immediate attention. The outcome will be negative if the nodule
size is less than 1.25 mm, resulting in binary classifications. Finally, the softmax layer is
applied to deal with the classification process, and the function is used to categorize the
probability distribution. Hence, the values are activated from 0 to 1, and the category with
the highest probability is considered output. The experimentation results are provided in
Section 4 exhaustively.

Figure 5. Selected nodule candidates from the features of the lung CT scans.

4. Results & Discussion
4.1. Dataset

We examined our deep model in experiments using an openly available LUNA16
dataset of volume 160 GB. According to the scan, the total number of patients is more than
1600, with variable slices per patient. The dataset contains low dose CT images in DICOM
(Digital Imaging and Communications in Medicine) format for capturing the metadata
of patients and other medical imagery. Medical professionals commonly use DICOM.
The header file is included in the dataset with essential information, such as patient ID
and the slice’s thickness. The LUNA16 dataset has diverse image quality as it is taken
from several hospitals and multiple machines. The labels for the training dataset were
confirmed by pathology diagnosis. Four expert radiologists diagnosed every patient, and
the ground truth label file is annotated. The patient with a nodule size greater than 1.25 mm

Appl. Sci. 2021, 11, 2838 11 of 18

is diagnosed as malignant, and those who have less than 1.25 mm are labeled as benign.
All the patients have an individual folder containing multiple DICOM files with their id.
The training and testing set is annotated along with ground truth labels of patients in CSV
format with nearly 70% of patients without cancer, and the rest 30% diagnosed otherwise.
The annotation file contains 1186 nodules.

4.2. Experimentation

In our paper, we have done experimentation to solve two problems. (1) Early Lung
nodule detection (2) Minimizes the training time and speeds up the model’s convergence.
The initial segment explains the ROC and error rate of our proposed model CNN compared
to other prevailing neural networks. The second part talks about distributed computing
using Apache Spark to converge the algorithm with minimal training time. This gives
a swift opportunity to tune the best hyperparameters for our model. We compared the
results of performance analysis on three different platforms CPU, GPU and Apache Spark.

We trained and evaluated our CNN model using four-fold cross-validation, and sep-
arate untouched data is used for testing. We randomly split the training data into four
subsets of equal size for cross-validation. Hyperparameters are fine-tuned from the vali-
dation results, such as the number of filters K, their spatial extent F, the stride S, and the
amount of zero padding P. TensorFlow is used as a deep learning library used in our CNN
model with Nvidia GeForce GTX 750 GPU setup with 16 GB RAM. To deal with multiple
format, DICOM files libraries, such as pydicom, matplotlib, and NumPy, are used. The CT
image’s pixel size is 512 × 512 with a depth of 195, which is very large and cannot be
fed directly into our model because of the high computational cost. Pre-processing of the
dataset is done to resize the data and control uniformity among all the patient’s scans.
The slices provided in the dataset’s scans are not uniform, even though the image is of
similar size. Our proposed CNN model used three convolutional layers. ReLU is used as
an activation layer in our work [39], three max-pooling layers, along with pre-processing
noise removal layer.

Furthermore, we handled one fully connected layer and a softmax layer as an acti-
vation function. The pixel size is resized to 99 × 99 without padding to minimize the
computing complexity. In the max-pooling layer, the lung scan’s pixel size is 49 × 49 as the
upsampling layer is used to reduce the pixel values. This reduction is entirely based on
the trained samples from which the region of interest is detected. We set the batch size to
160 with a complete training image set of 25,600. 15 × 15 convolution filter and 2 × 2 for
pooling operation are applied in our algorithm, and the stride is chosen randomly with
a pixel size of 7 × 7. In the second denoising layer, the pixel size is 48 × 48 and 24 × 24
during max pooling for the second time. Finally, in the third convolutional layer, the lung
image is 23 × 23 and max pooled to 11 × 11. We apply noise removal as a pre-processing
step where the pixel size is reduced to 23 × 23. Furthermore, after each convolutional layer,
we use noise removal in every iteration for visual noise elimination.

The softmax layer of our methodology is 2 × 1. Our dataset size is 160 GB in total, and
for training, we used 1595 patients. The quantity of slices for each patient varies according
to the scans taken at the hospital. The slices per patient are put into a particular number
of chunks. The input batch size is 160, and 40 iterations per epoch are used to train the
samples with a learning rate of 10−2 and gradually decayed over the process.

The iterations are set to 10,000 with 250 epochs and four-fold cross-validation. We eval-
uated our accuracy percentage based on the number of epochs. Similarly, for the ROC
curve, training accuracy, validation accuracy, training loss, and validation loss number of
epochs are taken as x-axis for better percentage comparison. The performance is improved
by choosing the best hyperparameters, such as the number of nodes, size, and the number
of the filter from cross-validation results. Classification diagnostic accuracy, sensitivity,
specificity, and area under the receiver operator characteristic curve (AUC) of the model
performance is compared with various neural network models, such as Convolutional Auto
Encoder Deep Learning Framework (CAE-DLF), Convolutional Neural Network (CNN),

Appl. Sci. 2021, 11, 2838 12 of 18

and Deep Belief Network (DBN). The accuracy of the diagnostic exam in the medical field
is determined by sensitivity and specificity. The former shows the number of patients
with the disease, and the following measures the false positive rate, which is misdiagnosis.
The classification is analyzed using the receiver operator characteristic curve and area
under the receiver operator character curve [40].

Sensitivity =
TP

TP + FN
∗ 100%, (16)

Speci f icity =
TN

TN + FP
∗ 100%, (17)

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100%. (18)

As mentioned earlier, we used four-fold cross-validation to choose optimal hyper-
parameters for our NG-CNN model. We ensured that training and testing datasets are
from different patients to get an actual accuracy percentage. CNN, NG-CNN, CAE-DLF,
and DBN are trained and tested with the same dataset. Figure 6 shows the validation and
training loss for our proposed NG-CNN model in the top-left graph. The validation loss
is 0.7256, which is higher than the training loss of 0.5148. The values are achieved after
applying dropout to reach the minimum difference between training and validation loss.
The bottom figures, Figure 6c,d, depict our proposed model’s test accuracy and ROC curve
with other deep models.

The test accuracy for our model is 0.9452. This accuracy percentage is more significant
than the convolutional neural network without any noise removal step. The test accuracy
percentages for our proposed model NG-CNN and other comparative methods are given
in Table 1. Table 2 shows a comparison of the precision of NG-CNN with various neural
network algorithms. Thus, it proves that medical images with visual noise reduction aim at
better feature learning and accurate prediction of the lung cancer nodules. We compared the
ROC curve for three deep neural models with our proposed model in Figure 6d. The x-axis
indicates 1-Specificity, and the Y-axis indicates sensitivity. The figure represents the average
graph of ROC achieved by four-fold cross-validation. Our proposed method, NG-CNN,
has an AUC of 0.896, which performs better than other neural network models. Since
higher AUC indicates maximum performance on average, NG-CNN gives less validation
loss. Table 3 compares the sensitivity and false-positive rate with other models.

Table 1. Comparison of classification test accuracy of NG-CNN with existing methods.

ep NG-CNN CAE-DLF DBN CNN

50 0.5879 0.5124 0.5469 0.6789
100 0.78632 0.6645 0.6214 0.7356
150 0.8021 0.6987 0.6987 0.78541
200 0.8432 0.7421 0.7548 0.8632
250 0.9584 0.8952 0.79215 0.9452

Table 2. Comparison of Precision of NG-CNN with existing methods.

ep NG-CNN CAE-DLF DBN CNN

50 93.3150 90.3701 88.0467 95.7059
100 92.1970 89.1087 96.1765 96.5224
150 95.7167 95.9751 87.0868 99.7587
200 95.0442 91.4021 87.1534 98.6222
250 97.4947 89.9001 93.8550 97.5653

Appl. Sci. 2021, 11, 2838 13 of 18

Table 3. Performance summary of NG-CNN with existing methods.

Methods Sensitivity Specificity

NG-CNN 91.3974 90.325
CAE-DLF 84.8537 79.215

DBN 88.6088 75.215
CNN 89.2759 89.214
[41] 71.0 60.0
[42] 80.0 75.0
[43] 90.0 88.0
[44] 76.0 73.0

(a) (b)

(c) (d)

Figure 6. Comparison of the proposed method (NGN-ACDNN) Non-Gaussian Noise aware Autoencoder Convolu-
tional Deep neural network with other deep models (CAE-DLF) Convolutional Autoencoder Deep Learning Framework,
(CNN) Convolutional neural Network, (DBN) Deep Belief Network: (a) describes the Training loss and Validation loss
for our proposed CNN model; (b) describes the Training accuracy and Validation accuracy for our proposed CNN model;
(c) describes the Comparison of test accuracy of our proposed model with other deep neural network models; (d) describes
the ROC curve comparison of our model with others.

4.3. Performance Analysis

For uniform platform comparison, we carried out the experiments in Ubuntu 14.04
Linux OS, Apache Spark v2.3.0, and Python v3. The size of the dataset is extensively large,
which makes it challenging to work. The lung’s raw image size is 512 × 512, roughly
40 million pixels, which take up 1 GB of system memory to load the data. A significant
hindrance is to load the patient’s data for every training step and iteration. Loading the
data takes up even more time than training the same. Detailed experimentation was done
by comparing it with Apache Spark, GPU, and CPU. The accuracy of the deep learning

Appl. Sci. 2021, 11, 2838 14 of 18

model is directly proportional to the size of the training data. When astronomical data is
fed, the network architecture shows impressive performance. Training a massive amount
of data on a single machine is computationally challenging. If the dataset cannot fit into a
single machine’s memory, training the neural network in distributed clusters will save the
training time and memory. Hence, to analyze the training time and efficiency, comparative
experiments on data parallelism is conducted in this section.

Spark operations that sort, group, or join data by value need to transfer data between
partitions when constructing a new DataFrame from an existing one between stages,
in a process called a shuffle. With a physical plan for CPUs, the DataFrame data is
transformed into RDD row format and usually processed one row at a time. Spark supports
columnar batch, but in Spark 2.x, only the Vectorized Parquet and ORC readers use
it. Figure 7 shows that data is grouped by value and exchanged between partitions
(white rectangles) when creating a new DataFrame (blue rectangles) from an existing one
between stages. Spark deep learning usually parallelize the dataset instead of the model
itself. Figure 8 shows the general architecture of the distributed spark cluster. The data is
distributed among the Spark workers. The gradients are updated via the parameter server
in each iteration. Since the lung dataset we used is comparatively medium-sized, and one
server was enough to process it, we did not parallelize the workers’ deep learning model.
Lung image data is parallelized among the workers by parameter averaging. Training the
model in a cluster consists of the following steps.

• Parameters, such as weight, and biases are randomly initialized based on NG-CNN
architecture.

• First copy of the parameters is distributed to all the Spark worker nodes.
• The lung image dataset is divided upon the worker nodes, and they train their subset

of data.
• Update the calculated parameters after a certain number of iterations from the

server node.
• Repeat from step 2 till the training converges.

The equation for parameter averaging in case of 2 worker nodes is given below.

Wi+1 =
1
2

2

∑
j=1

Wi+1,j, (19)

where W represents the parameters, and i indicates the current values and j the updated
values. Similarly, in case of 4 worker nodes and one server, the parameter averaging would
take place as follows:

Wi+1 =
1
4

4

∑
j=1

Wi+1,j. (20)

The worker nodes hold a copy of our neural network model, and the lung images are
distributed among the nodes. The hyper-parameters such as the learning rate, number of
epochs and iterations, number of hidden layers and neurons are changed according to each
training results. In Figure 9a, Spark with a four-node cluster shows equal performance to
GeForce GPU. Time taken to process the input images are taken in the y-axis, whereas the
various platforms used for comparison are taken on the x-axis. The in-memory computation
and Resilient Distributed Dataset (RDD). This provides a functional interface to partition
the data across the cluster.

We converted the Dicom scan image of the patients into RDDs for loading and pass-
ing through the nodes. We adopted HDFS as a file storage system for our lung nodule
dataset and Spark for training the model. Even though a single node spark did not show
promising results than a single GPU, clustered nodes can process the images in a few
seconds. Overall, for our model and the training dataset, a GPU can process and train
the images in 1678 s. Figure 9b shows the variation in batch size with all the model
configurations. The throughput metrics are all in MB per second. For this investigation,

Appl. Sci. 2021, 11, 2838 15 of 18

we only considered the best results from each category.The main focus was to present the
throughput difference between Spark and GPU and CPU TensorFlow. We found that model
workload remains almost stable for Spark and GPU, yet Spark gives better throughput
marginally in Figure 9c,d.

Figure 7. Example of a Spark shuffle.

Figure 8. General architecture of Distributed Apache Spark and deep model.

When the dataset is tremendous and could not fit into single GPU memory, we can
use distributed spark clusters to achieve convergence faster. TensorFlow on Spark provides
fast processing in a distributed environment. The batch size of the data and the learning
rate should be fixed according to the training accuracy to increase the throughput. In such
a case, before a model gives an impressive performance, it needs to be trained repeatedly
to achieve the proper hyper-parameters. Hence, Spark distributed training leads to better
results when the deep neural network is complex and the dataset size is large. If we have
shallow architecture and can fit the training data into a single machine, parallelism leads to
computational overhead. We can adapt this setting to serverless architecture, as well. AWS,
Microsoft Azure, and Google Cloud Platform are three gigantic heads in Cloud platforms.
All three of them use Apache Spark on their cloud run for distributed parallel computing.
Apache Spark performs well than GPU and has fault tolerance for a dataset. Spark has a
replication system that allows it to reconstruct the data frames by itself in failure or crash.
Spark also comes with built-in tools for machine learning algorithms and deep learning
models, which lets us apply the ML model directly on batch data or real-time streaming
data without any latency. It can be scaled horizontally and vertically without major hassle
in coding and our experimentation results. Nevertheless, in the case of GPU, scaling is
tedious, both concerning cost and coding.

Appl. Sci. 2021, 11, 2838 16 of 18

(a)

(b)

(c) (d)

Figure 9. A set of four subfigures: (a) describes the Performance comparison between Apache Spark, GPU, and CPU;
(b) describes the Performance comparison between Apache Spark, GPU, and CPU by varying the batch size; (c) describes
the Throughput of model workload; (d) describes the Throughput comparison between spark and GPU.

5. Discussions & Future Work

This research intends to identify lung nodules using a deep model trained using the
Apache Spark environment. Our paper enhanced the accuracy for detecting the lung
nodules in patients scans by our proposed deep learning model NG-CNN. By eliminating
the visual Gaussian noise in the CT scans, we can classify the lung scans’ nodules at an
early stage, which is notably crucial in predicting the disease to save a life. In addition
to our proposed model, we also performed a performance evaluation to find the most
reliable platform to run the deep learning model. Apache Spark shows promising results
when integrated with distributed TensorFlow. As mentioned above, Spark has in-memory
processing as it keeps intermediate results in RAM and built-in libraries for data analysis,
machine learning, streaming live data, and graph analysis. Moreover, it also offers lazy
evaluation and maintains a series of transformations with fault-tolerance. Hence, unless we
perform the tasks, Spark can memorize the overall transformations. Spark has data locality,

Appl. Sci. 2021, 11, 2838 17 of 18

better deal with failures and stragglers, and on top of everything, it is open-source. It’s
modern yet simple to use APIs to manage CPU, memory, and storage resources down to
a granular level. Apache Spark is one of the most popular open source project in the Big
Data landscape.

Our model is trained with the available open-source dataset. The accuracy can be
improved further when the model is deep with many convolutional layers. The dataset
needs to be enriched by using data augmentation, which will increase the dataset’s size in
our future work. Thus, the model will not over-fit the data with deep layers and also gives
maximum accuracy. Our future work involves data augmentation for dataset increment
and training the model in a deeper network.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis,
investigation, resources, data curation, writing—original draft preparation, writing, review and
editing, N.J.V.; supervision, D.R.S.; project administration, C.S.N.; funding acquisition, C.S.N. All au-
thors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1I1A1A01063278).

Data Availability Statement: The dataset we used in our research is publicly available dataset and
can be downloaded from the following website, https://luna16.grand-challenge.org/Data/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paul. Key Statistics for Lung Cancer. Version 1.6.0. Available online: https://www.cancer.org/cancer/non-small-cell-lung-

cancer/about/key-statistics.html (accessed on 15 May 2019).
2. Zhou, Z.H.; Jiang, Y.; Yang, Y.B.; Chen, S.F. Lung cancer cell identification based on artificial neural network ensembles.

Artif. Intell. Med. 2002, 24, 25–36.
3. Boroczky, L.; Zhao, L.; Lee, K.P. Feature subset selection for improving the performance of false positive reduction in lung nodule

CAD. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 504–511.
4. Tajbakhsh, N.; Suzuki, K. Comparing two classes of end-to-end machine-learning models in lung nodule detection and

classification: MTANNs vs. CNNs. Pattern Recognit. 2017, 63, 476–486.
5. Sivakumar, S.; Chandrasekar, C. Lung nodule detection using fuzzy clustering and support vector machines. Int. J. Eng. Technol.

2013, 5, 179–185.
6. Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson Education Limited: Malaysia, 2016.
7. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
8. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436.
9. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international

conference on Multimedia, Brisbane, Australia, 12 October 2015; ACM: New York, NY, USA, 2015; pp. 689–692.
10. Polacin, A.; Kalender, W.A.; Marchal, G. Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology

1992, 185, 29–35.
11. Huang, B.; Law, M.W.M.; Khong, P.L. Whole-body PET/CT scanning: Estimation of radiation dose and cancer risk. Radiology

2009, 251, 166–174.
12. Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Craft, A.W.;

et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective
cohort study. Lancet 2012, 380, 499–505.

13. Ilango, G.; Gowri, B.S. Noise from CT–Images. International Journal of Applied Information Systems (IJAIS) ISSN: 2249-0868.
Available online: https://www.techrepublic.com/resource-library/company/international-journal-of-applied-information-
systems-ijais/ (accessed on 31 January 2021).

14. Kijewski, M.F.; Judy, P.F. The noise power spectrum of CT images. Phys. Med. Biol. 1987, 32, 565.
15. Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration

without Clean Data. arXiv 2018, arXiv:1803.04189.
16. Eigen, D.; Rolfe, J.; Fergus, R.; LeCun, Y. Understanding deep architectures using a recursive convolutional network. arXiv 2013,

arXiv:1312.1847.
17. Johnsirani Venkatesan, N.; Nam, C.; Ryeol Shin, D. Lung Nodule Classification on CT Images Using Deep Convolutional Neural

Network Based on Geometric Feature Extraction. J. Med. Imaging Health Inform. 2020, 10, 2042–2052.
18. Yang, Y.; Xiang, P.; Kong, J.; Zhou, H. A GPGPU compiler for memory optimization and parallelism management. ACM Sigplan

Not. 2010, 45, 86–97.

https://luna16.grand-challenge.org/Data/
https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html
https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html
https://www.techrepublic.com/resource-library/company/international-journal-of-applied-information-systems-ijais/
https://www.techrepublic.com/resource-library/company/international-journal-of-applied-information-systems-ijais/

Appl. Sci. 2021, 11, 2838 18 of 18

19. Fung, J.; Mann, S. OpenVIDIA: Parallel GPU computer vision. In Proceedings of the 13th Annual ACM International Conference
on Multimedia, Singapore, 6–11 November 2005; ACM: New York, NY, USA, 2005; pp. 849–852.

20. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65.

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105.

22. Kalinovsky, A.; Kovalev, V. Lung Image Segmentation Using Deep Learning Methods and Convolutional Neural Networks; Center of Ball
State University: Muncie, Indiana, 2016.

23. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495.

24. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. arXiv 2015, arXiv:1505.07293.

25. Yang, H.; Yu, H.; Wang, G. Deep learning for the classification of lung nodules. arXiv 2016, arXiv:1611.06651.
26. Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans.

Geosci. Remote Sens. 2016, 54, 1349–1362.
27. Gruetzemacher, R.; Gupta, A. Using Deep Learning for Pulmonary Nodule Detection & Diagnosis. 2016. Available online:

https://aisel.aisnet.org/amcis2016/Intel/Presentations/3/ (accessed on 31 January 2021).
28. Setio, A.A.A.; Traverso, A.; De Bel, T.; Berens, M.S.; van den Bogaard, C.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.;

Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in
computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13.

29. Song, Q.; Zhao, L.; Luo, X.; Dou, X. Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images.
J. Healthc. Eng. 2017, 2017, 8314740 .

30. Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.;
Marchianò, A.; et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep.
2017, 7, 46479.

31. Lo, S.C.; Lou, S.L.; Lin, J.S.; Freedman, M.T.; Chien, M.V.; Mun, S.K. Artificial convolution neural network techniques and
applications for lung nodule detection. IEEE Trans. Med Imaging 1995, 14, 711–718.

32. Anirudh, R.; Thiagarajan, J.J.; Bremer, T.; Kim, H. Lung nodule detection using 3D convolutional neural networks trained on
weakly labeled data. In Medical Imaging 2016: Computer-Aided Diagnosis; International Society for Optics and Photonics. 2016;
Volume 9785, p. 978532. 32. Available online: https://accucoms.com/publishers/international-society-for-optics-and-photonics/
(accessed on 31 January 2021).

33. Gupta, A.; Thakur, H.K.; Shrivastava, R.; Kumar, P.; Nag, S. A Big Data Analysis Framework Using Apache Spark and Deep
Learning. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA,
USA, 18–21 November 2017; pp. 9–16.

34. Team, D. Deeplearning4j: Open-source distributed deep learning for the jvm. Apache Softw. Found. Licens. 2016, 2. Available
online: https://mgubaidullin.github.io/deeplearning4j-docs/ (accessed on 31 January 2021).

35. Li, P.; Luo, Y.; Zhang, N.; Cao, Y. HeteroSpark: A heterogeneous CPU/GPU Spark platform for machine learning algorithms.
In Proceedings of the 2015 IEEE International Conference on Networking, Architecture and Storage (NAS), Boston, MA, USA,
6–7 August 2015; pp. 347–348.

36. Moritz, P.; Nishihara, R.; Stoica, I.; Jordan, M.I. SparkNet: Training deep networks in Spark. arXiv 2015, arXiv:1511.06051.
37. Zhong, G.; Wang, L.N.; Ling, X.; Dong, J. An overview on data representation learning: From traditional feature learning to

recent deep learning. J. Financ. Data Sci. 2016, 2, 265–278.
38. Messay, T.; Hardie, R.C.; Rogers, S.K. A new computationally efficient CAD system for pulmonary nodule detection in CT

imagery. Med. Image Anal. 2010, 14, 390–406.
39. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.
40. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International

Conference on MACHINE Learning, Pittsburgh, PA, USA, 1 January 2016; ACM: New York, NY, USA, 2006; pp. 233–240.
41. Riccardi, A.; Petkov, T.S.; Ferri, G.; Masotti, M.; Campanini, R. Computer-aided detection of lung nodules via 3D fast radial

transform, scale space representation, and Zernike MIP classification. Med. Phys. 2011, 38, 1962–1971.
42. Guo, W.; Li, Q. High performance lung nodule detection schemes in CT using local and global information. Med. Phys.

2012, 39, 5157–5168.
43. Cascio, D.; Magro, R.; Fauci, F.; Iacomi, M.; Raso, G. Automatic detection of lung nodules in CT datasets based on stable 3D

mass–spring models. Comput. Biol. Med. 2012, 42, 1098–1109.
44. Van Ginneken, B.; Setio, A.A.; Jacobs, C.; Ciompi, F. Off-the-shelf convolutional neural network features for pulmonary nodule

detection in computed tomography scans. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging
(ISBI), Brooklyn, NY, USA, 16–19 April 2015; pp. 286–289.

https://aisel.aisnet.org/amcis2016/Intel/Presentations/3/
https://accucoms.com/publishers/international-society-for-optics-and-photonics/
https://mgubaidullin.github.io/deeplearning4j-docs/

	Introduction
	Related Works
	Our Proposed Methodology
	Pre-Processing
	Segmentation and Candidate Nodules
	Feature Extraction
	Training the Neural Net

	Results & Discussion
	Dataset
	Experimentation
	Performance Analysis

	Discussions & Future Work
	References

