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Featured Application: Here we describe a serum metabolomics signature of bladder cancer cou-
pled with a robust ensemble machine learning algorithm able to effectively discriminate patients
with and without bladder cancer. This signature, if further confirmed and validated on a larger
cohort, could represent a reliable screening test for this disease. Moreover, the signature was able
to discriminate high- and low-grade cancers. The results represent an important clinical contri-
bution since the prognosis of these conditions strongly depends on early detection and grading.

Abstract: Bladder cancer has a high incidence and is marked by high morbidity and mortality. Early
diagnosis is still challenging. The objective of this study was to create a metabolomics-based profile
of bladder cancer in order to provide a novel approach for disease screening and stratification. More-
over, the study characterized the metabolic changes associated with the disease. Serum metabolomic
profiles were obtained from 149 bladder cancer patients and 81 healthy controls. Different ensemble
machine learning models were built in order to: (1) differentiate cancer patients from controls; (2)
stratify cancer patients according to grading; (3) stratify patients according to cancer muscle invasive-
ness. Ensemble machine learning models were able to discriminate well between cancer patients
and controls, between high grade (G3) and low grade (G1-2) cancers and between different degrees
of muscle invasivity; ensemble model accuracies were ≥80%. Relevant metabolites, selected using
the partial least square discriminant analysis (PLS-DA) algorithm, were included in a metabolite-set
enrichment analysis, showing perturbations primarily associated with cell glucose metabolism. The
metabolomic approach may be useful as a non-invasive screening tool for bladder cancer. Further-
more, metabolic pathway analysis can increase understanding of cancer pathophysiology. Studies
conducted on larger cohorts, and including blind trials, are needed to validate results.

Keywords: metabolome; bladder cancer; screening test; machine learning algorithm; cancer metabolism
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1. Introduction

Bladder cancer (BC) was the third most frequent cancer in Europe in 2018 (excluding
skin cancers), with an estimated incidence in the same year of about 197,100 new cases
and a mortality rate of 3.4% for both sexes. The incidence in men is 3–4 times higher than
in women [1]. The highest incidence occurs in people over 60 years old [2]. In addition
to age, other risk factors for the development of BC include cigarette smoking, chronic
exposure to potential carcinogens (such as industrial chemicals: aromatic amines and
nitrosamines), family history of concordant cancers [3,4], pelvic radiation, pharmacological
therapy with cyclophosphamide and thiazolidinediones, chronic infections [5] and long-
term consumption of arsenic-contaminated or chlorinated water [3,4].

Bladder cancer usually begins in transitional cells belonging to the urothelium, i.e., the
inner lining of the bladder. This transitional cell carcinoma (TCC), or urothelial carcinoma,
is the most frequent type [6]. Starting from the urothelium, the cancer can spread into the
bladder wall and reach adjacent tissues and organs [7]. Based on the degree of invasion,
BC is classified into NMIC (non-muscle-invasive cancer) which is confined to the mucosa
and lamina propria of the bladder, and therefore does not invade the muscle (stages Tis, Ta,
T1) and MIC (muscle-invasive cancer) which extends into the muscle (stage T2), into the
perivescical fat layer (stage T3), adjacent tissues (stage T4), or ultimately metastasize to
distant organs (stage M1) [6]. BC can also be classified according to the cellular morphology
and differentiation: well-differentiated (G1), moderately differentiated (G2) and poorly
differentiated (G3) tumor. Tumor grade is an important factor that can affect prognosis
and treatment options because G1 and G2 (classified as low-grade tumors) show better
prognosis and are less likely to become invasive, while G3 (high grade tumors) are more
aggressive [6]. In most patients with BC (approximately 85%), the initial symptom of the
disease is hematuria which is usually intermittent and painless. In a lower percentage
of cases (approximately 20%), the symptomatology consists of bladder irritability: urina-
tion frequency, urgency, and dysuria [5]. In patients with more advanced stages, other
symptoms may be flank pain secondary to lymphadenopathy, ureter obstruction, and less
specific symptoms such as weight loss, fatigue, and anorexia [8]. About 80% of newly
diagnosed cases are classified as NMIC. Compared to MIC, these tumors have a better
prognosis and consequently a significantly higher 5-year survival rate (~90% for NMIC
and <50% for MIC) [3,8]. However, patients with NMIC require a lifetime of follow-up
by cystoscopy because the recurrence rate is very high. Approximately 50–70% of NMICs
recur during the first two years after diagnosis with a 10–20% risk to progress invasively
within 5 years [3,9]. Prognosis and treatment of BC depend on various factors such as: stage,
grade, number and size of tumor(s), whether this is an initial tumor or a recurrence, patient
age, and general health conditions. Generally, NMICs are treated locally by transurethral
resection (TUR), often accompanied by intravesical therapy with chemotherapeutic agents
or immunotherapy [9]. However, patients with MIC need a radical cystectomy, generally
followed by fairly aggressive systemic therapies [10]. Nevertheless, the 5-year survival
rate for MIC remains about 50–70% [10,11]. Biochemical differences between MIC and
NMIC as well as among MICs, are hard to describe due to significant heterogeneity. De-
spite abundant studies describing these differences, it was not until 2020 that a molecular
classification, based on transcriptomics profiling for MIC was proposed [12]. Herein, we
report the results of a metabolomics-based profiling of bladder cancer to elucidate the
metabolic changes generated by bladder cancer, stratifying the disease by stage and grade.
We describe a potential non-invasive approach for BC screening and stratification.

2. Materials and Methods
2.1. Population and Study Design

A prospective, nested case-control, pilot study was conducted from June 2014 to May
2016 on a cohort of 230 subjects enrolled at the Department of Medicine “Scuola Medica
Salernitana” of the University of Salerno. Patients undergoing Trans Urethral Resection of
the Bladder (TURB) or cystoscopy with a histological evaluation of bladder tissue were
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enrolled in the study. One hundred and forty-nine patients were confirmed to be affected by
BC. On the contrary, 81 subjects, for whom the histological evaluation excluded a diagnosis
of BC, were considered as healthy controls.

Three different two-class ensemble machine learning (EML) models were built: one to
discriminate all BC vs. controls (Model I), the second (Model II) to discriminate bladder
cancer grade, i.e., high-grade (G3) (BCH) and low-grade (G1-G2) (BCL), the third to
discriminate cancer muscle invasiveness (MIC vs. NMIC).

The study was approved by the ethics committee IBD “Azienda Ospedaliera Uni-
versitaria San Giovanni di Dio e Ruggi D’Aragona” (IRB No. 775-06/08/2014) and each
participant signed an informed consent to indicate their acceptance to the study rules.

2.2. Data and Sample Collection

Demographic, anamnestic, and clinical characteristics were collected at enrollment
for each patient included in the study and recorded on a dedicated database. Smoking
habits were also recorded; subjects reporting a past smoking habit were considered as
smokers. Subjects with oncological disease not related to the bladder, as well as subjects
with infectious disease and/or liver or kidney failure, were excluded.

Ten milliliters of blood samples were collected before any surgical and/or phar-
macological treatment by means of a red capped Vacutainer® tube. After clotting and
centrifuging at 2500 rpm for 15 min, serum was collected and stored at −80 ◦C until
metabolomic analysis.

2.3. Histopathological Analysis

Archival material of all the tumors in the present series were retrieved from the
files of our institution. The H&E-stained sections of all cases were reviewed and the
diagnoses were confirmed by two pathologists (ADA, AC). Where required, additional
immunohistochemical studies were performed on additional 4-µm-thick sections following
standard protocols [13].

2.4. Metabolome Analysis by GC-MS

Serum metabolites were extracted, purified, and derivatized using the MetaboPrep
GC kit (Theoreo srl, Montecorvino Pugliano, Italy) as reported in Troisi et al. [14–18],
prior to GC-MS analysis. Briefly, 50 µL of serum were pipetted into a microcentrifuge
tube containing the extraction solution and the internal standard (2-isopropyl malic acid).
The tubes were vortexed at 1250 rpm for 30 min; the solution was then centrifuged for
5 min at 16,000 rpm at 4 ◦C; 200 µL of resultant supernatant was transferred to a sepa-
rate microcentrifuge tube containing a purification solution and subsequently vortexed
at 1250 rpm for 30 s and then centrifuged for 5 min at 16,000 rpm at 4 ◦C. The super-
natant (175 µL) was then transferred into a glass vial and frozen at −80 ◦C prior to being
freeze-dried overnight. Derivatization of the metabolites in the freeze-dried samples was
conducted in two steps: first 50 µL of methoxylamine hydrochloride in pyridine was
added and vortexed at 1200 rpm for 90 min; secondly, 25 µL of the derivatization solution
containing N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane
(TMCS) was added and the vials were vortexed again at 1200 rpm for another 90 min.
The derivatized metabolites (75 µL) were transferred to a 100 µL vial insert to facilitate
auto-sampler injection. Vials were centrifuged for 5 min at 16,000 rpm at 4 ◦C, before
injection into GC-MS.

Two µL of derivatized samples was injected into the GCMS-2010SE (Shimadzu Corp.,
Kyoto, Japan). Chromatographic separation was achieved with helium as carrier gas
flowing through a 30 m × 0.25 mm CP-Sil 8 CB fused silica capillary GC column with
1.00 µm film thickness (Agilent, J&W, Santa Clara, CA, USA). The initial oven temperature
of 100 ◦C was held for 1 min and subsequently raised at 6 ◦C/min to 320 ◦C and held for
2.33 min. The injector temperature was 280 ◦C and the MS transfer line was held at 290 ◦C.
The gas flow was set to a constant linear speed of 39 cm/s, and the split flow was set to 1:5.
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The mass spectrometer operated with electron impact ionization (70 eV) in full scan mode
with a range of 35–600 m/z and a scanning speed of 3333 amu/sec and a solvent cut time
of 5 min.

Samples were divided in batches, each one made up of 25 samples. Each individual
batch was monitored using 4 controls: a solvent blank injection to monitor for carryover,
an injection of a standard mix, an injection of a pooled sample solution, and a duplicate
injection of a randomly selected sample in the batch. Two µL of hexane was used for the
instrument blank, while the analytical standards mix contains a solution of 15 analytes
(organic acids, sugars, amino acids, steroids and fatty acids) derivatized in the same way
as the unknowns. The pooled sample contained 2 µL of each of 50 randomly selected
derivatized unknowns while the duplicated injection was done using a randomly selected
sample from the batch.

Each analytical batch was validated only if four conditions were met: the solvent
blank did not generate any chromatographic peaks; the peak areas of the 15 analytes in
the analytical standard (normalized by the internal standard area) were within 10% of the
expected value; the standard deviation of peak area (normalized to the internal standard)
for the 100 highest intensity peaks of the repeated injection were ≤15% of the respective
signals in the original injection; and, the pooled sample must cluster with all other pooled
samples within 5% of the total area using a partial least square discriminant analysis
(PLS-DA) model built using all the samples analyzed.

Gas chromatography-mass spectrometry signals consistently found in at least 80% of
the samples were considered. Chromatographic peaks that showed poor signal-to-noise
ratio (and thus displayed poor mass spectral quality) were unable to be confidently identi-
fied and were not considered in the classification models. Mass spectral peak identification
was performed setting the linear index difference max tolerance to 50 and the minimum
matching for NIST library search to 85%. For statistical analysis, results were saved in a
comma separated values file (.csv) and loaded into dedicated software.

2.5. Statistical Analysis

Clinical and anamnestic data distribution were analyzed using the Shapiro-Wilks test.
Age was not-normally distributed. After several failed attempts to normalize the data, the
p-value was determined using the Mann Whitney test. Percentages were compared using
the χ2-test, an α-value of 0.05 was considered statistically significant. For bioinformatic
metabolite analysis, the chromatographic data were collected in a table with one sample per
row and one variable (metabolite) per column (dataset). Metabolite peak areas (normalized
to internal standard) were log base-10 transformed followed by data scaling using the
autoscaling process (mean-centered and divided by standard deviation of each variable).

2.5.1. Classification Models

The transformed and scaled dataset containing the metabolomics results was randomly
divided into two equal parts, using computer assisted randomization, such that each
subset contained the same number of cases and controls. One set was used to train a given
classification model and the other was used to evaluate the diagnostic performance of each
model. Nine different classification models were built and optimized using the training
dataset containing observations where class membership (e.g., case or control) was known
a priori: Partial Least Square Discriminant Analysis (PLS-DA), Naive Bayes (NB), Decision
Tree (DT), Random Forest (RF), k-nearest neighbor (k-NN), Artificial Neural Network
(aNN), Support Vector Machine (SVM), Logistic Regression (LR), and Deep Learning (DL).
Models were built according to Troisi et al. [14].

Next, the classification models were ensembled using a voting scheme weighted by the
classification accuracy of each model. Ensemble learning algorithms were used to generate
a set of classifiers that assigned a weighted vote of each model’s predictions. Ensembling of
all models was performed using RapidMiner Studio version 9.4 (RapidMiner, Boston, MA,
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USA) while PLS-DA and the voting scheme was conducted using R (version 3.5.3) [19] and
subsequently integrated in the data mining algorithm.

Class imbalance was managed by means of Metacost algorithm [20] according to
Troisi et al. [16]. Metacost introduced a misclassification cost matrix coherent with the class size.

2.5.2. Ensemble Machine Learning Score (EML-Score)

For each classification model, the cross-validation accuracy was evaluated. For each
sample and for each classification model, if possible, the classification confidence was also
evaluated in terms of sample vs. centroid class distance. This criterion was also used to
weight each sample assignment. From these parameters a model score was calculated by
multiplying the classification accuracy by the classification distance compared to centroid.
For the subjects classified as BC for model I, BCH for model II, and MIC for model III (the
most clinically severe conditions), those scores were not transformed, while for each CTRL,
BCL, and NMIC classification, those scores were multiplied by -1. Finally, an EML-score
was calculated for each sample by summing all the individual classification model scores.
An EML-score = 0 was considered as a cut-off value to account for situations in which the
votes for and against a specific class assignment were equal. Furthermore, cut-off values
were evaluated as the scores maximizing the Youden’s Index (sensitivity + specificity-1).
Area under receiver operating characteristic curves (AUCROC) were calculated using these
cut-off values.

2.6. Relevant Metabolites
2.6.1. Variables Important in Projection (VIP)

PLS-DA models were also used to achieve a graphical representation of class separa-
tions. To investigate each metabolite’s relevance in class separation we used the variable
importance in projection (VIP) scores that were calculated for each metabolite included in
the PLS-DA model as a weighted sum of squares of PLS loadings, considering the amount
of explained Y-variations in each dimension. The weights depended on the reduction of the
sums of squares across the number of PLS components. The overall coefficient-based im-
portance was calculated based on the average of the metabolite’s coefficients. A VIP-score
cut-off ≥ 2.0 was chosen to select the metabolites that are most relevant for class separation.
The statistical significance of class discrimination determined by PLS-DA was evaluated
by a permutation test performed by randomly replacing the class label 2000 times [21].
Leave-p-out-cross-validation accuracy (with p = 7) was also used to investigate the model
over-fitting [22].

2.6.2. Volcano Plot

Differences in metabolite peak areas between two conditions were also investigated by
means of a volcano plot, obtained by plotting the negative log of the p-value on the y axis
and the log2 of the fold change (FC) between the two conditions on the x axis. Thus, data
points with low p-values (highly significant) appear toward the top of the plot and data
points with higher FC values at the margins of the plot. The log2 of the FC was used so that
changes in both directions appear equidistant from the center. Plotting points in this way
resulted in two regions of interest on the plot: those points that are found toward the top
that are also far to either the left- or right-hand sides. These represent values that display
large magnitude FCs (hence being left or right of center) with the difference showing high
statistical significance (hence being toward the top).

For each relevant metabolite (either VIP-score >2.0 or in one of the two relevant
volcano plot zones), the Human Metabolome Database (HMDB) ID number was deter-
mined [23]. The metabolic pathways associated with these metabolites were analyzed using
the MetScape application [24].
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2.6.3. Genetic Algorithm

Metabolites were also evaluated in terms of their global ability to participate in the
model training using a genetic algorithm (GA) approach according to Troisi et al. [25]. This
algorithm mimics Darwinian forces of natural selection to optimize values of a function [26].
An initial set of potential metabolites was considered, and their corresponding classification
performance using each of the 9 investigated classification models (called “fitness”) was
calculated. According to the evolutive analogy, each solution represents an individual
and the body of individuals could be considered as a population. The metabolite sets
(individuals) which showed the best fitness values were randomly combined producing
new generations. Combinations of individuals were subjected to crossover and random
mutations. The process was repeated producing several new generations, subsequently
achieving better performance with each generation. GA was built using RapidMiner ver-
sion 9.4. GA-selected metabolites were represented by heatmap clustering the metabolites
on the basis of their Minkowski distance using a Ward hierarchical approach [27].

3. Results

Results were obtained by analyzing serum samples from 230 subjects. Age and sex
distribution was not statistically different between the three studied classes (healthy sub-
jects [CTRL], high-grade [BCH], and low-grade [BCL] bladder cancer patients). On the
contrary, current or past cigarette smoking was more frequent in bladder cancer (BCH and
BCL) patients compared to controls. Moreover, muscle invasive cancer was correlated with
more frequent high-grade cancer compared to low grade. The characteristics of the three
classes of subjects are summarized in Table 1.

Table 1. Enrolled subject characteristics.

Low Grade Bladder
Cancer (BCL) (n = 55)

High Grade Bladder
Cancer (BCH) (n = 94)

Control
(n = 81)

Age (years) 1 68.4 (64.0–73.0)/46–87 73.3 (69.0–79.0)/49–88 67.3 (58.0–73.0)/47–87
Men 46 (83.6%) 81 (86.2%) 67 (82.7%)

Women 9 (16.4%) 13 (13.8%) 14 (17.3%)
Non muscle invasive

cancer (NMIC)
55 (100%)

(46 pTa; 9 pT1) 3
69 (73.4%) §

(27 pTa; 42 pT1) NA 2

Muscle invasive
cancer (MIC) 0 26 (26.6%) NA

Smokers 33 (60.0%) * 56 (59.6%) * 20 (24.7%)
No-Smokers 22 (40.0%) * 38 (40.4) * 61 (75.3%)

1 Means (Interquartile Range)/Min-Max. 2 NA: Not Applicable. 3 pTa: biopsy proven noninvasive papillary
carcinoma; pT1: biopsy proven tumor spreader to the connective tissue. * Indicates statistical differences (p < 0.05)
compared to controls subjects. § Indicates statistical differences (p < 0.05) comparing low- and high-grade bladder
cancer patients.

Statistical analysis revealed that 19 metabolites showed a statistically different fold
change ≥ ±2 (Figure 1A) in CTRL vs. all BC patients. These metabolites are: phos-
phate, glycine, diethylene glycol, urea, oxalic acid, pyroglutamic acid, propanoic acid,
glyceraldehyde-3-phosphate, dihydroxyacetone phosphate, ornithine, proline, glutamic
acid, phenol, valine, phenylalanine, 1-methylhypoxanthine, arachidic acid, glutamine,
and creatinine.
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1 
 

 

  Figure 1. (A) Volcano plot comparing metabolite signals in healthy subjects (CTRL) and bladder cancer patients (BC): A. phosphate, B. glycine, C. diethylene glycol, D. urea, E. oxalic acid,
F. pyroglutamic acid, G. propanoic acid, H. glyceraldehyde-3-phosphate, I. dihydroxyacetone phosphate, J. ornithine, K. proline, L. glutamic acid M. phenol, N. valine, O. phenylalanine,
P.1-methylhypoxanthine, Q. arachidic acid, R. glutamine, S. creatinine; (B) Volcano plot comparing metabolite signals in high-grade (BCH) and low-grade (BCL) BC patients: A. amino
malonic acid, B. valine, C. proline, D. pentanoic acid; (C) Heatmap of the metabolites selected by the genetic algorithm (Glucose 1 and Glucose 2 represent two different derivatization
products obtained by the sylanization process).
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Analyzing only BC patients divided into high- and low-grade indicates that only
4 metabolites showed a statistically significant fold change ≥ ±2. These were: amino mal-
onic acid, valine, proline, and pentanoic acid (Figure 1B). Moreover, Figure 1C reports the
GA selected metabolites, showing a reduced abundance of glucose, citric, stearic, glutamic
and phenylpyruvic acid in BC serum as well as an increased amount of propanoic, oxalic,
and lactic acid, glyceraldehyde-3-phosphate, dihydroxyacetone phosphate, ornithine, and
glycine (Figure 1C).

The PLS-DA scatter plots showing the graphical representation of the classifications
are reported in Figure 2. PLS-DA classification models attempt to discriminate patients
based on the presence or absence of BC (Figure 2A1), cancer grading (high [BCH] or
low [BCL]) (Figure 2B1) and muscle invasiveness (non-muscle invasive cancer [NMIC] or
muscle-invasive cancer [MIC]) (Figure 2C1).

Figure 2 (panels A2, B2, C2, and A3, B3) shows histograms related to the permutation
test assessing the models’ significance and the metabolites showing a VIP-score higher than
2.0. According to the permutation test, only CTRL vs. BC and BCH vs. BCL PLS-DA models
had a p-value < 0.05, while NMIC vs. MIC model resulted without statistical significance.
Fitting the R2 value and its cross-validated homologue Q2 resulted, respectively, in 0.901
and 0.842 for CTRL vs. BC model, 0.534 and 0.357 for BCH vs. BCL model, 0.201 and −0.07
for NMIC vs. MIC model.

CTRL vs. BC classification resulted in 10 VIP signals, (Figure 2A3): glycolic acid,
lignoceric acid, phosphate, alanine, glyceraldehyde-3-phosphate, dihydroxyacetone phos-
phate, stearic acid, xylose, hippuric acid and ornithine. Grading classification (BCH vs.
BCL, Figure 2B3) resulted in 14 VIP metabolites: glutaric acid, 1-methylhypoxanthine,
pentanoic acid, 2-hydroxy-3-methyl butyric acid, galactose, lactose, mannose, phenyllactic
acid, mannitol, norvaline, propylene glycol, butanoic acid, tartaric acid, amino malonic acid.
Because the permutation test was not statistically significant in the muscle invasiveness
model, no VIP metabolites could be selected. All selected metabolite codes according to
the Human Metabolome Data Base (HMDB) are reported in supplementary Table S1.

After sample separation in two equal parts, one was used to train each of 9 classifi-
cation models and one to test them by evaluating the classification performances. These
performances are reported in Table 2.
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2 

 

 
Figure 2. Partial least square discriminant analysis (PLS-DA) models score plot used to classify (panel A) healthy and
bladder cancer subjects; (panel B) bladder cancer patients according to their grade (high-grade BCH, or low grade BCL);
and (panel C) bladder cancer patients according to the muscle invasiveness (non-muscle invasive NMIC, or muscle invasive
MIC). The percentage of explained variance was reported in parentheses on each axis. Row 1 reports the PLS-DA score
plot, while row 2 shows the histogram of the permutation test results in terms of R2 and Q2. Row 3 reports the metabolites
having a VIP-score ≥ 2.0. In A3, the blue bars represent metabolites increased in CTRL, while the red bars represent the
metabolites decreased in CTRL with respect to BC. In B3, the blue bars represent the metabolites increased in BCH, while the
red bars represent the metabolites decreased in BCH with respect to the BCL. *** indicates statistically significant (p < 0.001).
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Table 2. Diagnostic performance: Presence of Bladder Cancer (Model I), Grading (Low-grade vs. High-grade) (Model II)
and muscle invasivity (non-muscle invasive vs. muscle invasive) (Model III) of each classification model and the respec-
tive ensembles.

S 1 Sp PPV NPV PLR NLR A

M
od

el
I

Decision Tree 0.97 ± 0.01 0.96 ± 0.02 0.98 ± 0.01 0.95 ± 0.04 26.28 0.03 0.97
PLS-DA 1.00 ± 0.00 0.96 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 27.00 0.00 0.99

Naïve Bayes 0.81 ± 0.03 0.99 ± 0.01 0.99 ± 0.01 0.74 ± 0.04 65.78 0.19 0.87
Random Forest 0.97 ± 0.01 0.98 ± 0.02 0.99 ± 0.01 0.95 ± 0.02 39.41 0.03 0.97

k-NN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00
aNN 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 81.00 0.00 1.00

Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00
SVM 1.00 ± 0.00 0.98 ± 0.02 0.99 ± 0.01 1.00 ± 0.00 40.50 0.00 0.99

Deep Learning 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 81.00 0.00 1.00
Ensemble 1.00 ± 0.00 0.98 ± 0.02 0.99 ± 0.01 1.00 ± 0.00 40.50 0.00 0.99

M
od

el
II

Decision Tree 0.94 ± 0.03 0.85 ± 0.05 0.92 ± 0.03 0.89 ± 0.04 6.44 0.07 0.91
PLS-DA 0.64 ± 0.05 0.89 ± 0.04 0.91 ± 0.04 0.60 ± 0.05 5.96 0.41 0.73

Naïve Bayes 0.46 ± 0.05 0.93 ± 0.04 0.91 ± 0.04 0.50 ± 0.05 6.29 0.59 0.63
Random Forest 0.98 ± 0.01 0.56 ± 0.07 0.79 ± 0.04 0.94 ± 0.04 2.24 0.04 0.83

k-NN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00
aNN 0.99 ± 0.01 0.35 ± 0.06 0.72 ± 0.04 0.95 ± 0.05 1.51 0.03 0.75

Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00
SVM 0.98 ± 0.01 0.27 ± 0.06 0.70 ± 0.04 0.88 ± 0.08 1.35 0.08 0.72

Deep Learning 0.86 ± 0.04 0.80 ± 0.05 0.88 ± 0.03 0.77 ± 0.06 4.31 0.17 0.84
Ensemble 0.79 ± 0.06 0.83 ± 0.07 0.87 ± 0.05 0.73 ± 0.08 4.56 0.26 0.80

M
od

el
II

I

Decision Tree 1.00 ± 0.00 0.20 ± 0.13 0.93 ± 0.03 1.00 ± 0.00 1.25 0.00 0.94
PLS-DA 0.51 ± 0.05 0.50 ± 0.11 0.86 ± 0.04 0.15 ± 0.04 1.03 0.97 0.51

Naïve Bayes 0.49 ± 0.05 0.90 ± 0.07 0.97 ± 0.02 0.24 ± 0.05 4.91 0.57 0.55
Random Forest 1.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.03 ND 1.00 ND 0.85

k-NN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00
aNN 1.00 ± 0.00 0.30 ± 0.10 0.89 ± 0.03 1.00 ± 0.00 1.43 0.00 0.90

Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 ND 0.00 1.00
SVM 1.00 ± 0.00 0.10 ± 0.07 0.86 ± 0.03 1.00 ± 0.00 1.11 0.00 0.87

Deep Learning 1.00 ± 0.00 0.50 ± 0.11 0.92 ± 0.02 1.00 ± 0.00 2.00 0.00 0.93
Ensemble 1.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.03 ND 1.00 ND 0.85

1 S: Sensitivity; Sp: Specificity; PPV: Positive Prognostic Value; NPV: Negative Prognostic Value; PLR: Positive Likelihood Ratio; NLR:
Negative Likelihood Ratio; A: Accuracy; PLS-DA: Partial Least Square Discriminant Analysis; k-NN: k-nearest neighbors; aNN: Artificial
Neuronal Net; SVM: Support Vector Machine; ND: Not Determinable.

Model I (CTRL vs. BC) accuracy ranged from 87% to 100%, Model II (BCH vs. BCL)
accuracy ranged from 63% to 100%, while model III (NMIC vs. MIC) accuracy ranged from
51% to 100%). ANN, k-NN, LR and DL showed the best accuracies among the individual
models while the ensemble models showed 99%, 81% and 84% accuracy for model I, II
and III, respectively. Sensitivity and specificity of the first two ensembled models (I and II)
were balanced (100% and 99% for model I and 80% and 84% for model II), while ensemble
model III showed a lack of specificity.

According to EML-score evaluation, EML-score = 0 was used as cut off to evaluate the
diagnostic performance, as reported in Table 2. Moreover, Youden’s evaluations of the best
cut off value [28] based on the test data subset were also performed for the three models.
Figure 3 reported these cut off values, the ROC curves and the performance in terms of
sensitivity, specificity, and accuracy of the EML models based on these cut offs. Again,
Model III (NMIC vs. MIC) showed no statistical difference both in terms of ROC curve and
in terms of EML-score value between the two classes.

Metabolites selected from the PLS-DA models and volcano plots were also used to
perform a metabolite-set enrichment analysis (Figure 4).
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Figure 3. Ensemble machine learning (EML) models discriminating healthy and bladder cancer subjects (Model I); bladder
cancer patients according to their grade (high-grade BCH, or low grade BCL) (Model II) and bladder cancer patients
according to the muscle invasiveness (non-muscle invasive NMIC, or muscle invasive MIC) (Model II). Panel (A) reports
the Receiver Operating Characteristic (ROC) curves obtained using the cut-off evaluated by means of the Youden’s Index
(red line in B1). Panel (B) reported the EML-scores among the studied classes.
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Relevant metabolites from model I showed a complex interplay of several metabolic
pathways: aminoacyl-tRNA biosynthesis; arginine biosynthesis; glutathione metabolism;
nitrogen metabolism; glutamine and glutamate metabolism; alanine, aspartate and gluta-
mate metabolism; phenylalanine metabolism; glyoxylate and dicarboxylate metabolism
and arginine and proline metabolism. The full list of involved pathways is reported in
supplementary Table S2. Metabolites from model II are relevant to galactose, amino sugar,
and nucleotide sugar metabolism. The full pathway list is reported in Table S3.

4. Discussion

Here we report the diagnostic performance of three machine learning ensemble models
derived from the statistical comparison of the serum metabolomic fingerprints of subjects
with and without BC. Detailed comparison of many hundreds of serum metabolites illus-
trates biochemical differences in patients on the basis of presence or absence of BC and,
among the BC cases, by grade (high grade vs. low grade), showing an accuracy of 99% and
80%, respectively. The same approach was not able to discriminate between patients based
on muscle invasiveness of the cancer.

Results presented herein indicate that several serum metabolites and metabolic path-
ways are associated with BC. Analysis of the network of metabolic pathways that connect
molecules, combined with a powerful machine learning algorithm, allows group sepa-
ration and offers a new method to noninvasively screen for BC, as well as provide new
biochemical insights based on the affected metabolomic pathways. The BC metabolome
was characterized by lower levels of glucose, citric acid, and glutamine. On the contrary,
lactic acid, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate increased in
BC patients. The resultant low glucose and high lactic acid due to cancer metabolism has
been established since 1920 [29]. The Nobel laureate Otto Warburg was the first researcher
who speculated about the advantages of anaerobic glycolysis for cancer due to the higher
speed of this metabolism, and the low oxygen availability during rapid cancer growth [30].
Furthermore, relatively recent evidence indicates that bypassing the tricarboxylic acid cycle
(TCA) is an efficient strategy for cancer cells which effectively mitigates ROS production
and reduces cancer cell apoptosis [31].

Reduction of different glycolytic enzymes have been reported in tumors, including
bladder cancer [32–34]. This results in unfettered energy production for tumor cells. Many
cancer cells are able to subvert the feedback mechanisms that normally allosterically
inhibit rate-controlling enzymes in glycolysis. In a normal cell, phosphofructokinase (PFK)
is inhibited by ATP, limiting the glycolytic pathway when the cell is rich in energy. In
cancer cells, high glucose concentrations increase the synthesis of fructose 2,6-bisphosphate
from fructose 6-phosphate by 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases.
Fructose 2,6-bisphosphate can override ATP-mediated PFK inhibition via the Warburg
effect, whereby, increased expression of glucose transporters [35] as well as high activity of
hexokinase [36] increases the concentration of fructose 2,6-bisphosphate which allosterically
activates PFK. In addition, the specific PFK isozymes overexpressed in cancer cells are
less sensitive to the ATP inhibition [37]. As a result of this poor ATP sensitivity, both
dihydroxyacetone phosphate and 3-phopshoglyceraldeyde were up-regulated as reported
in our metabolomics signature (Figure 5). Due to the Warburg effect, glycolysis does
not proceed via the TCA, while pyruvate is shunted through lactate production aided
by increasing lactate dehydrogenase (LDH) expression. LDH was considered a poor
prognostic marker in BC because it reflects both high cytolysis levels and the high shunting
rate of pyruvate [38].
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Figure 5. Metabolic representation of Warburg-related modifications in a typical bladder
cell which could explain the metabolic perturbations observed in the analyzed serum sam-
ples. Blu lines represent reactions generally slower in cancer cells, while red lines reaction
generally faster. Orange squares indicated metabolite increased in our bladder cancer co-
hort, while purple squares indicated metabolites showing lower concentrations in bladder can-
cer patients. Abbreviations: GLUT = Glucose Transporter; MCT = Monocarboxylate transporter;
DHAP = Dihydroxyacetone phosphate; GAP = Glyceraldehyde-3-phosphate.

These characteristic cancer biochemical pathways are represented by the serum
metabolome described herein. Moreover, the elevated levels of phenylpyruvate and pheny-
lacetate we report could be the result of the increased expression of LDH. The high reported
levels of lactic acid in our metabolomics signature could also reflect a more sophisticated
cancer metabolic pathway. Lactic acid could also affect the T-cells adjacent to the cancer.
The activation of these cancer-associated immune cells depends on anaerobic glycolytic
metabolism, leading to high production and excretion of lactic acid. The increased extra-
cellular levels of lactic acid contrast that produced by the T-cells, in an against-gradient
force [31,39,40] which slows the T-cell activation. Moreover, because lactic acid produc-
tion increases in many hypoxic conditions, it promotes the IL-8-driven angiogenesis [41].
Neo-angiogenesis supports neoplasm growth by supplying cells with increased nutrients
and oxygen.

Another Warburg-related effect illustrated by the BC serum metabolomic signature is
the lower glutamine and citric acid levels in BC patients: indeed, it could be considered a
“glutamine addiction” [42].

The conversion of pyruvate to lactate by LDH drastically decreases acetyl-CoA pro-
duction that is crucial in cancer to produce the fatty acids needed to build the new cell
membranes. For this reason, the bypass of the TCA is often not complete in many cancer
cells. Indeed, pyruvate from glycolysis could enter in a truncated TCA cycle that ends
as citrate which is shuttled from the mitochondria to the cytosol (see Figure 5). This is a
survival strategy to ensure enough acetyl-CoA for fatty acid synthesis. This truncated TCA
cycle results in a build-up of metabolites that need to be countered. In bladder cancer, as
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well in other cancers, glutamine solves this issue. Glutamine is converted to glutamate and
then to a-ketoglutarate, a TCA intermediate [31]. DeBerardinis et al. [43] found, although
glucose is the precursor for >90% of secreted lactate in cancer cells, oxidative conversion
of glutamine accounts for as much as 40% of TCA cycle intermediates and 30% of the
generated energy. This leads to a great glutamine consumption by cancer cells, which could
explain the lower glutamine levels found in our BC patients.

Several studies have shown that different methods are able to identify the metabo-
lomic profiles of BC from cell lines, tissues, urine or serum [44]. Of these, Zou et al. [45]
developed a plasma pseudotargeted metabolomic method based on GC-MS-SIM to study
the plasma metabolic profile of BC patients, wherein, they showed alterations in the pentose
phosphate pathway (PPP) and nucleotide and fatty acid synthesis.

Loras et al. [46] examined changes in the urinary metabolome of NMIC patients before
and after TURBT using liquid chromatography combined with time of flight mass spectrom-
etry, revealing perturbed phenylalanine, arginine, proline, and tryptophan metabolisms as
putative biomarkers of recurrence risk.

Urinary metabolic changes of BC patients were also studied using gas chromatography-
mass spectrometry by Zhou et al. [47]. Although our study differed by biological matrix, a
slightly older population, and no information about genetic background or food habits were
reported, a few comparisons are appropriate. Metabolites 2-hydroxy-3-methyl pentanoic,
aminomalonic, glyceric, glycolic, hippuric, and lactic acid as well as glycerol, glycine,
phosphate, threonine, and xylose showed different mean concentrations in CTRL and BC
patients in both studies. Conversely, aspartic, galactonic, glutamic, oxalic, stearic, and
tartaric acid as well as creatinine, galactose, lactose, ornithine, phenylalanine, proline,
uridine, and valine concentrations were significantly different between our CTRL and BC
samples. This difference was not seen in the urinary signature reported by Zhou et al. [47].
Indi Kouznetsova et al. [48], compared urine samples from early stage BC patients versus
late-stage BC patients. Alterations in galactose, starch, and sucrose metabolism appeared
linked to early-stage, while changes in glycine, serine, threonine, arginine, proline, glyc-
erophospholipid, and galactose metabolism seemed to be present in late-stage BC patients.
Using these findings, they developed a machine-learning classification model, able to
predict metabolite class with an accuracy of 82.54% and an area under precision-recall
curve (PRC) of 0.84 on the training set.

A similar approach was performed by Shao et al. [49], who selected six putative
bladder cancer markers by comparing the urinary metabolomic profiles of affected pa-
tients versus controls using UPLC-TOF-MS analysis. Basing on metabolomic profiles and
the six marker candidates, a machine learning model, decision trees, was built, obtain-
ing an accuracy of 76.60%, a sensitivity of 71.88%, and a specificity of 86.67% from an
independent test.

The increased concentrations of phenol, diethylene and propylene glycol here reported
in BC patients could be due to a higher exposure to these molecules or the metabolism of
related pollutants. Additionally, the smoking habits of our enrolled cohort could, at least
partially, explain this result.

Furthermore, the involvement of small chain fatty acids such as butyrate and pro-
pionate could be due to microbiome differences between BC and healthy controls [50].
Microbiomes play a key role in cancer development and promotion [51]. Specifically,
the effects of the microbiome on the BC metabolome has been reported [52–54]. Oresta
et al. [52] reported a significant difference in urine microbiota of patients with bladder
cancer compared to healthy controls highlighting a dysbiosis involvement in tumor trans-
formation. Moreover, they reported that BCL displayed a reduction in the abundance of
Sphingobacteriaceae, Bifidobacteriaceae, and Enterobacteriaceae, while BCH showed decreased
Bifidobacterium and Ruminococcus, which are known to protect from inflammation, and
increased Corynebacterium, a potential opportunistic bacteria highlighting dysbiosis associ-
ation with aggressive tumors.
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Moreover, norvaline which is a microbial metabolite, produced especially by E. coli in
low oxygen environmental [55], a common condition in rapid growth cancer, was found to
be elevated in BCH patients.

To date, there are no standard screening evaluations for BC and only symptomatic
subjects undergo further investigation, including urine cytology, pelvic ultrasonography,
office endoscopic and biopsy [56]. Urine cytology shows high sensitivity (greater than 90%)
for BCH, although negative findings do not exclude malignancy. Moreover, renal calculi
and urinary tract infections can lead to false-positive results [57].

The reported ensemble classification model for the differentiation of symptomatic
(with hematuria) but otherwise healthy patients from BC patients has shown good diag-
nostic performance. Moreover, the serum metabolic trajectory of investigated BC patients
supports a consistent Warburg effect on these cells, aiding researchers investigating glycol-
ysis inhibiting drugs [31].

Ensemble approaches to machine learning in cancer diagnosis were also investigated
by Onan [58]. Six ensemble methods were studied (Bagging, Dagging, Ada Boost, Multi
Boost, Decorate, and Random Subspace) within 14 ML algorithms for automatic detection
of breast cancer using features computed from digitized images of fine needle aspirate
(FNA) of a breast mass. Results illustrate that ensemble learning improved the global
predictive performance compared to the single classifiers.

Due to the pilot nature of our study, the classification performances of the single and
EML models cannot be considered definitive. Both a higher number of enrolled patients
and a blind evaluation of BC negative patients are two pivotal steps to fully validate the
proposed metabolomics signature and bioinformatic method. On this premise, the EML we
propose could represent a strength of our study because it is a reliable, accurate, and specific
alternative to single classification models for dealing with dataset dimension variations
and class imbalances [59]. Furthermore, EML can efficiently be implemented in high-
performance computer architectures such as parallel and multithreaded computers [60].

Compared to other methods of BC screening, our serum metabolome approach has
great potential because of the non-invasiveness and demonstrated accuracy. Limitations of
the study include the small sample size and the known diagnosis of all subjects (which was
necessary to train and test the accuracy of our models). Larger, blind validation studies
should be performed to confirm our preliminary data.

5. Conclusions

Our pilot study has identified a complex network of serum metabolites that signif-
icantly correlate with the presence of bladder cancer. This signature seems to be strictly
related to the Warburg effect and demonstrates good performance to identify patients
with BC and to differentiate between high- and low-grade cancers. Larger studies, includ-
ing clinical double-blinded trials, and screening of the healthy population, are needed to
confirm our preliminary results.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/6/2835/s1. Table S1: Metabolite selected as relevant from VIP-score criterion (>2.0) volcano
plot (FC > 1 or <−1 and p-value <0.05) and Genetic algorithm in both Models I and II. Table S2:
Metabolite-set Enrichment Pathways analysis results derived from the metabolites selected by VIP-
score and Volcano plot in CTRL vs. KB comparison (Model I). Table S3: Metabolite-set Enrichment
Pathways analysis results derived from the metabolites selected by VIP-score and Volcano plot in
KBL vs. KBH comparison (Model II).

https://www.mdpi.com/2076-3417/11/6/2835/s1
https://www.mdpi.com/2076-3417/11/6/2835/s1


Appl. Sci. 2021, 11, 2835 16 of 18

Author Contributions: Conceptualization, J.T., A.C. (Angelo Colucci), G.S. (Giovanni Scala) and
V.A.; methodology, S.R. S.S. G.S. (Gianmarco Silvestre); formal analysis, P.C., J.T. and A.C. (Angelo
Colucci); investigation, A.C. (Angelo Colucci), F.M. (Francesco Maiorino), M.F., F.M. (Federica
Mastella), A.C. (Alfonso Califano), G.S. (Giammarco Silvestre), A.C. (Alessandro Caputo) and A.D.;
resources, J.T. and G.S. (Giovanni Scala); data curation, J.T., P.C., S.R. and S.S.; writing—original draft
preparation, J.T., A.L.; writing—review and editing, V.A., P.C., S.R. and S.S.; visualization, J.T. and
A.L.; supervision, V.A., A.D. and A.C. (Angelo Colucci); project administration, G.S. (Giovanni Scala);
funding acquisition, G.S. (Giovanni Scala). All authors have read and agreed to the published version
of the manuscript.

Funding: This project was funded by POR Campania FESR 2014/2020—Project “Campania Oncoter-
apie” grant n. B61G18000470007.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Azienda Ospedaliera
Universitaria San Giovanni di Dio e Ruggi D’Aragona (protocol code 775, 6 August 2014).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: J.T. and G.S. (Giovanni Scala) are employed in companies (Theoreo Srl and
Hosmotic Srl, respectively) dealing with the development and market of diagnostic tests based on
the metabolomics. All the other authors have no conflict of interest.

References
1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer Incidence

and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. Eur. J. Cancer 2018, 103, 356–387.
[CrossRef]

2. Bladder Cancer: Diagnosis and Management of Bladder Cancer. BJU Int. 2017, 120, 755–765. [CrossRef]
3. Burger, M.; Catto, J.W.F.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.;

Shariat, S.; et al. Epidemiology and Risk Factors of Urothelial Bladder Cancer. Eur. Urol. 2013, 63, 234–241. [CrossRef]
4. Daneshmand, S. Epidemiology and Risk Factors of Urothelial (Transitional Cell) Carcinoma of the Bladder. UpToDate. 2016.

Available online: http://www.uptodate.com/contents/epidemiology-and-risk-factors-of-urothelial-transitional-cell-carcinoma-
of-the-bladder (accessed on 6 July 2017).

5. Abraham, J.; Gulley, J.L.; Allegra, C.J. The Bethesda Handbook of Clinical Oncology; Lippincott Williams & Wilkins: Philadelphia, PA,
USA, 2012.

6. Redondo-Gonzalez, E.; de Castro, L.N.; Moreno-Sierra, J.; Maestro de las Casas, M.L.; Vera-Gonzalez, V.; Ferrari, D.G.; Cor-
chado, J.M. Bladder Carcinoma Data with Clinical Risk Factors and Molecular Markers: A Cluster Analysis. BioMed Res. Int.
2015, 2015, 1–14. [CrossRef] [PubMed]

7. El Mohsen, M.; Shelbaia, A.; El, S.G. Sequential Chemoimmunotherapy Using Mitomycin Followed by Bacillus Calmette-Guerin
(MCC+ BCG) versus Single-Agent Immunotherapy (BCG) for Recurrent Superficial Bladder Tumors. UroToday Int. J. 2010, 3.
[CrossRef]

8. Park, J.C.; Citrin, D.E.; Agarwal, P.K.; Apolo, A.B. Multimodal Management of Muscle Invasive Bladder Cancer. Curr. Probl.
Cancer 2014, 38, 80–108. [CrossRef]

9. Yokomizo, A.; Kanimoto, Y.; Okamura, T.; Ozono, S.; Koga, H.; Iwamura, M.; Tanaka, H.; Takahashi, S.; Tsushima, T.; Kanayama,
H.; et al. Randomized Controlled Study of the Efficacy, Safety and Quality of Life with Low Dose Bacillus Calmette-Guérin
Instillation Therapy for Nonmuscle Invasive Bladder Cancer. J. Urol. 2016, 195, 41–46. [CrossRef]

10. Stein, J.P.; Lieskovsky, G.; Cote, R.; Groshen, S.; Feng, A.-C.; Boyd, S.; Skinner, E.; Bochner, B.; Thangathurai, D.; Mikhail, M.; et al.
Radical Cystectomy in the Treatment of Invasive Bladder Cancer: Long-Term Results in 1054 Patients. J. Clin. Oncol. 2001, 19,
666–675. [CrossRef] [PubMed]

11. Grossman, H.B.; Natale, R.B.; Tangen, C.M.; Speights, V.O.; Vogelzang, N.J.; Trump, D.L.; deVere White, R.W.; Sarosdy, M.F.;
Wood, D.P., Jr.; Raghavan, D. Neoadjuvant Chemotherapy plus Cystectomy Compared with Cystectomy Alone for Locally
Advanced Bladder Cancer. N. Engl. J. Med. 2003, 349, 859–866. [CrossRef] [PubMed]

12. Kamoun, A.; de Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.;
Choi, W.; et al. A Consensus Molecular Classification of Muscle-Invasive Bladder Cancer. Eur. Urol. 2020, 77, 420–433. [CrossRef]
[PubMed]

13. Caputo, A.; D’Antonio, A.; Memoli, D.; Sabbatino, F.; Altieri, V.; Zeppa, P. Ki67 in Gleason Pattern 3 as a Marker of the Presence
of Higher-Grade Prostate Cancer. Appl. Immunohistochem. Mol. Morphol. 2021, 29, 112–117. [CrossRef]

http://doi.org/10.1016/j.ejca.2018.07.005
http://doi.org/10.1111/bju.14045
http://doi.org/10.1016/j.eururo.2012.07.033
http://www.uptodate.com/contents/epidemiology-and-risk-factors-of-urothelial-transitional-cell-carcinoma-of-the-bladder
http://www.uptodate.com/contents/epidemiology-and-risk-factors-of-urothelial-transitional-cell-carcinoma-of-the-bladder
http://doi.org/10.1155/2015/168682
http://www.ncbi.nlm.nih.gov/pubmed/25866762
http://doi.org/10.3834/uij.1944-5784.2010.06.06
http://doi.org/10.1016/j.currproblcancer.2014.06.001
http://doi.org/10.1016/j.juro.2015.08.075
http://doi.org/10.1200/JCO.2001.19.3.666
http://www.ncbi.nlm.nih.gov/pubmed/11157016
http://doi.org/10.1056/NEJMoa022148
http://www.ncbi.nlm.nih.gov/pubmed/12944571
http://doi.org/10.1016/j.eururo.2019.09.006
http://www.ncbi.nlm.nih.gov/pubmed/31563503
http://doi.org/10.1097/PAI.0000000000000835


Appl. Sci. 2021, 11, 2835 17 of 18

14. Troisi, J.; Sarno, L.; Landolfi, A.; Scala, G.; Martinelli, P.; Venturella, R.; Di Cello, A.; Zullo, F.; Guida, M. Metabolomic Signature of
Endometrial Cancer. J. Proteome Res. 2018, 17, 804–812. [CrossRef] [PubMed]

15. Troisi, J.; Sarno, L.; Martinelli, P.; Di Carlo, C.; Landolfi, A.; Scala, G.; Rinaldi, M.; D’Alessandro, P.; Ciccone, C.; Guida, M.
A Metabolomics-Based Approach for Non-Invasive Diagnosis of Chromosomal Anomalies. Metabolomics 2017, 13, 140. [CrossRef]

16. Troisi, J.; Landolfi, A.; Sarno, L.; Richards, S.; Symes, S.; Adair, D.; Ciccone, C.; Scala, G.; Martinelli, P.; Guida, M. A Metabolomics-
Based Approach for Non-Invasive Screening of Fetal Central Nervous System Anomalies. Metabolomics 2018, 14, 77. [CrossRef]

17. Troisi, J.; Raffone, A.; Travaglino, A.; Belli, G.; Belli, C.; Anand, S.; Giugliano, L.; Cavallo, P.; Scala, G.; Symes, S.; et al. Development
and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women. JAMA Netw.
Open 2020, 3, e2018327. [CrossRef] [PubMed]

18. Troisi, J.; Cavallo, P.; Richards, S.; Symes, S.; Colucci, A.; Sarno, L.; Landolfi, A.; Scala, G.; Adair, D.; Ciccone, C.; et al. Non-Invasive
Screening for Congenital Heart Defects Using a Serum Metabolomics Approach. Prenat. Diagn. 2021. [CrossRef] [PubMed]

19. R Development CORE TEAM, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2008.

20. Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 155–164.

21. Rubingh, C.M.; Bijlsma, S.; Derks, E.P.P.A.; Bobeldijk, I.; Verheij, E.R.; Kochhar, S.; Smilde, A.K. Assessing the Performance of
Statistical Validation Tools for Megavariate Metabolomics Data. Metabolomics 2006, 2, 53–61. [CrossRef]

22. Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; van Duijnhoven, J.P.M.; van Dorsten, F.A.
Assessment of PLSDA Cross Validation. Metabolomics 2008, 4, 81–89. [CrossRef]

23. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al.
HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [CrossRef] [PubMed]

24. Karnovsky, A.; Weymouth, T.; Hull, T.; Tarcea, V.G.; Scardoni, G.; Laudanna, C.; Sartor, M.A.; Stringer, K.A.; Jagadish, H.V.;
Burant, C.; et al. Metscape 2 Bioinformatics Tool for the Analysis and Visualization of Metabolomics and Gene Expression Data.
Bioinformatics 2012, 28, 373–380. [CrossRef]

25. Monteleone, P.; Monteleone, A.M.; Troisi, J.; Dalle Grave, R.; Corrivetti, G.; Calugi, S.; Scala, G.; Patriciello, G.; Zanetti, A.; Maj, M.
Metabolomics Signatures of Acutely Ill and Short-Term Weight Recovered Women with Anorexia Nervosa. Mol. Psychiatry 2019.
[CrossRef] [PubMed]

26. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
27. Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [CrossRef]
28. Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and Its Associated Cutoff Point. Biom. J. 2005, 47, 458–472.

[CrossRef]
29. Hsu, P.P.; Sabatini, D.M. Cancer Cell Metabolism: Warburg and Beyond. Cell 2008, 134, 703–707. [CrossRef]
30. Warburg, O.H. Über Den Stoffwechsel Der Tumoren: Arbeiten Aus Dem Kaiser Wilhelm-Institut Für Biologie, Berlin-Dahlem; Kaiser-

Wilhelm-Institut für Biologie/Julius Springer: Berlin, Germany, 1926.
31. Coller, H.A. Is Cancer a Metabolic Disease? Am. J. Pathol. 2014, 184, 4–17. [CrossRef]
32. Massari, F.; Ciccarese, C.; Santoni, M.; Iacovelli, R.; Mazzucchelli, R.; Piva, F.; Scarpelli, M.; Berardi, R.; Tortora, G.; Lopez-Beltran,

A.; et al. Metabolic Phenotype of Bladder Cancer. Cancer Treat. Rev. 2016, 45, 46–57. [CrossRef]
33. Afonso, J.; Santos, L.L.; Longatto-Filho, A.; Baltazar, F. Competitive Glucose Metabolism as a Target to Boost Bladder Cancer

Immunotherapy. Nat. Rev. Urol. 2020, 17, 77–106. [CrossRef]
34. Altenberg, B.; Greulich, K.O. Genes of Glycolysis Are Ubiquitously Overexpressed in 24 Cancer Classes. Genomics 2004, 84,

1014–1020. [CrossRef]
35. Medina, R.A.; Owen, G.I. Glucose Transporters: Expression, Regulation and Cancer. Biol. Res. 2002, 35, 9–26. [CrossRef] [PubMed]
36. Marín-Hernández, A.; Rodríguez-Enríquez, S.; Vital-González, P.A.; Flores-Rodríguez, F.L.; Macías-Silva, M.; Sosa-Garrocho, M.;

Moreno-Sánchez, R. Determining and Understanding the Control of Glycolysis in Fast-Growth Tumor Cells. FEBS J. 2006, 273,
1975–1988. [CrossRef]

37. Vora, S.; Halper, J.P.; Knowles, D.M. Alterations in the Activity and Isozymic Profile off Human Phosphofructokinase during
Malignant Transformation in Vivo and in Vitro: Transformation- and Progression-Linked Discriminants off Malignancy. Cancer
Res. 1985, 45, 2993–3001.

38. Wu, M.; Lin, P.; Xu, L.; Yu, Z.; Chen, Q.; Gu, H.; Liu, C. Prognostic Role of Serum Lactate Dehydrogenase in Patients With
Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 677. [CrossRef]

39. Mendler, A.N.; Hu, B.; Prinz, P.U.; Kreutz, M.; Gottfried, E.; Noessner, E. Tumor Lactic Acidosis Suppresses CTL Function by
Inhibition of P38 and JNK/c-Jun Activation. Int. J. Cancer 2012, 131, 633–640. [CrossRef]

40. Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.; et al.
Inhibitory Effect of Tumor Cell-Derived Lactic Acid on Human T Cells. Blood 2007, 109, 3812–3819. [CrossRef] [PubMed]

41. Végran, F.; Boidot, R.; Michiels, C.; Sonveaux, P.; Feron, O. Lactate Influx through the Endothelial Cell Monocarboxylate
Transporter MCT1 Supports an NF-KB/IL-8 Pathway That Drives Tumor Angiogenesis. Cancer Res. 2011, 71, 2550–2560.
[CrossRef]

42. Wise, D.R.; Thompson, C.B. Glutamine Addiction: A New Therapeutic Target in Cancer. Trends Biochem. Sci. 2010, 35, 427–433.
[CrossRef]

http://doi.org/10.1021/acs.jproteome.7b00503
http://www.ncbi.nlm.nih.gov/pubmed/29235868
http://doi.org/10.1007/s11306-017-1274-z
http://doi.org/10.1007/s11306-018-1370-8
http://doi.org/10.1001/jamanetworkopen.2020.18327
http://www.ncbi.nlm.nih.gov/pubmed/32986110
http://doi.org/10.1002/pd.5893
http://www.ncbi.nlm.nih.gov/pubmed/33440021
http://doi.org/10.1007/s11306-006-0022-6
http://doi.org/10.1007/s11306-007-0099-6
http://doi.org/10.1093/nar/gkx1089
http://www.ncbi.nlm.nih.gov/pubmed/29140435
http://doi.org/10.1093/bioinformatics/btr661
http://doi.org/10.1038/s41380-019-0573-3
http://www.ncbi.nlm.nih.gov/pubmed/31700192
http://doi.org/10.1080/01621459.1963.10500845
http://doi.org/10.1002/bimj.200410135
http://doi.org/10.1016/j.cell.2008.08.021
http://doi.org/10.1016/j.ajpath.2013.07.035
http://doi.org/10.1016/j.ctrv.2016.03.005
http://doi.org/10.1038/s41585-019-0263-6
http://doi.org/10.1016/j.ygeno.2004.08.010
http://doi.org/10.4067/S0716-97602002000100004
http://www.ncbi.nlm.nih.gov/pubmed/12125211
http://doi.org/10.1111/j.1742-4658.2006.05214.x
http://doi.org/10.3389/fonc.2020.00677
http://doi.org/10.1002/ijc.26410
http://doi.org/10.1182/blood-2006-07-035972
http://www.ncbi.nlm.nih.gov/pubmed/17255361
http://doi.org/10.1158/0008-5472.CAN-10-2828
http://doi.org/10.1016/j.tibs.2010.05.003


Appl. Sci. 2021, 11, 2835 18 of 18

43. DeBerardinis, R.J.; Thompson, C.B. Cellular Metabolism and Disease: What Do Metabolic Outliers Teach Us? Cell 2012, 148,
1132–1144. [CrossRef]

44. Amara, C.S.; Vantaku, V.; Lotan, Y.; Putluri, N. Recent Advances in the Metabolomic Study of Bladder Cancer. Expert Rev. Proteom.
2019, 16, 315–324. [CrossRef]

45. Zhou, Y.; Song, R.; Zhang, Z.; Lu, X.; Zeng, Z.; Hu, C.; Liu, X.; Li, Y.; Hou, J.; Sun, Y.; et al. The Development of Plasma
Pseudotargeted GC-MS Metabolic Profiling and Its Application in Bladder Cancer. Anal. Bioanal. Chem. 2016, 408, 6741–6749.
[CrossRef]

46. Loras, A.; Trassierra, M.; Sanjuan-Herráez, D.; Martínez-Bisbal, M.C.; Castell, J.V.; Quintás, G.; Ruiz-Cerdá, J.L. Bladder Cancer
Recurrence Surveillance by Urine Metabolomics Analysis. Sci. Rep. 2018, 8, 9172. [CrossRef]

47. Zhou, Y.; Song, R.; Ma, C.; Zhou, L.; Liu, X.; Yin, P.; Zhang, Z.; Sun, Y.; Xu, C.; Lu, X.; et al. Discovery and Validation of Potential
Urinary Biomarkers for Bladder Cancer Diagnosis Using a Pseudotargeted GC-MS Metabolomics Method. Oncotarget 2017, 8,
20719–20728. [CrossRef] [PubMed]

48. Kouznetsova, V.L.; Kim, E.; Romm, E.L.; Zhu, A.; Tsigelny, I.F. Recognition of Early and Late Stages of Bladder Cancer Using
Metabolites and Machine Learning. Metabolomics 2019, 15, 94. [CrossRef]

49. Shao, C.-H.; Chen, C.-L.; Lin, J.-Y.; Chen, C.-J.; Fu, S.-H.; Chen, Y.-T.; Chang, Y.-S.; Yu, J.-S.; Tsui, K.-H.; Juo, C.-G.; et al. Metabolite
Marker Discovery for the Detection of Bladder Cancer by Comparative Metabolomics. Oncotarget 2017, 8, 38802–38810. [CrossRef]
[PubMed]

50. Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the
Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [CrossRef] [PubMed]

51. Gunjur, A. Cancer and the Microbiome. Lancet Oncol. 2020, 21, 888. [CrossRef]
52. Oresta, B.; Hurle, R.; Lazzeri, M.; Frego, N.; Saita, A.; Faccani, C.; Fasulo, V.; Casale, P.; Pozzi, C.; Guazzoni, G.F.; et al.

Characterization of the Urinary Microbiota in Bladder Cancer Patients. J. Clin. Oncol. 2020, 38, 535. [CrossRef]
53. Cimadamore, A.; Santoni, M.; Massari, F.; Gasparrini, S.; Cheng, L.; Lopez-Beltran, A.; Montironi, R.; Scarpelli, M. Microbiome

and Cancers, With Focus on Genitourinary Tumors. Front. Oncol. 2019, 9, 178. [CrossRef]
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