
applied  
sciences

Article

The Effect of Chelate Compounds on the Hydration Process of
MgO–Al2O3 Phase System under Hydrothermal Conditions

Ryszard Prorok 1,*, Jakub Ramult 1, Wieslawa Nocun-Wczelik 2 and Dominika Madej 1

����������
�������

Citation: Prorok, R.; Ramult, J.;

Nocun-Wczelik, W.; Madej, D. The

Effect of Chelate Compounds on the

Hydration Process of MgO–Al2O3

Phase System under Hydrothermal

Conditions. Appl. Sci. 2021, 11, 2834.

https://doi.org/10.3390/app11062834

Academic Editor: Theodore Matikas

Received: 4 February 2021

Accepted: 3 March 2021

Published: 22 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics,
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
jramult@agh.edu.pl (J.R.); dmadej@agh.edu.pl (D.M.)

2 Department of Building Materials Technology, Faculty of Materials Science and Ceramics,
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; wiesia@agh.edu.pl

* Correspondence: rprorok@agh.edu.pl

Featured Application: In the field of the design and production of refractory materials, this work will
allow a better understanding of the changes that take place during the first stage of the heat treatment
of the castables, related to the decomposition of the hydraulic bond in the castables matrix.

Abstract: In refractory castables during heat treatment, there is a dynamic change from a hydraulic
bond to a ceramic bond. During heating, the emission of water takes place; this changes the conditions
inside the material to something similar to the hydrothermal ones. This influences the processes that
occur during the heating of the castables, and in consequence, the properties of the final material.
The aim of the work was to evaluate the influence of the chelate compounds like citric and tartaric
acids, often used in castables as dispersing agents, on the properties of the MgO–Al2O3 phase system
during hydrothermal treatment. The performed tests included an XRD analysis, a thermal analysis
(TG–DSC–EGA), infrared spectroscopy (FTIR), and an SEM–EDS analysis. Based on the obtained
results, it was found that even small amounts of chelate compounds have a strong impact on the
processes under hydrothermal conditions which results in changes in the phase composition of
the materials.

Keywords: castables; hydration; hydraulic binders; heat treatment; refractory

1. Introduction

Castables are a wide group of materials, one of the main features of which is the
heat treatment process during preparation. The reactions of synthesis and sintering of the
materials are activated by high temperatures. Alumina–magnesia spinel is a compound
with a wide application in ceramic materials, as well as an important component of alumina
spinel refractory castables. The solid-state synthesis of the spinel from oxide powders is
the most popular route to obtaining it for an industrial purpose. During this process, the
reaction proceeds according to the Wagner model. According to it, the spinel synthesis
reaction is a diffusion process (counter-directed diffusion of Mg and Al ions while oxide
ions remain on the initial sites), which is activated by the temperature. However, due to a
low diffusion coefficient and also the formation of a diffusion-impeding product layer, the
process of spinel synthesis is very costly [1]. Moreover, the mixing of the spinel component
in the refractories generates problems with obtaining a fully homogeneous distribution in
the material. For those reasons, the so-called insitu synthesis of spinel is used. In this kind
of process, the spinel is generated from the substrates directly in the refractory castables,
during high-temperature heat treatment. However, in this method, the presence of water
modifies the course of the synthesis reaction. The starting substrates are not only oxides but
also hydroxides of magnesium, and aluminum, and the conditions in the material during
the increase in temperature become similar to the hydrothermal ones. This is the difference
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between the classical solid state synthesis of the spinel and the insitu synthesis of this phase
in castables. Although spinel solid state synthesis from oxides is well characterized [1–8],
there is still a lack of knowledge about the insitu synthesis of the spinel in refractory
castables, especially at the early stage of such a reaction at the temperature level where
water vapor can be present.

In refractory castables, oxide powders are used as substrates in spinel synthesis. In
contrast to the solid-state reaction in the castables, the synthesis of the spinel takes place
in several intermediate stages. In the first step, during the preparation of the castable,
the oxide powders hydrate. During the heat treatment, hydraulic compounds undergo
parallel dehydration and also rehydration due to high water vapor pressure, after further
temperature increase; all these hydraulic phases convert to oxides which react to form the
spinel phase. According to [9], this sequence of the reaction influences the properties of
the synthesized spinel. The spinel formed insitu in such a process has a lower formation
temperature, lower crystal size, and is better dispersed in the castables. This provides
outstanding corrosion resistance and improves the high-temperature properties of the
castables [9–11].

According to the MgO–Al2O3–H2O phase system, at low temperatures, characteristic
for preparing and curing castables, the reaction of magnesium oxide and alumina oxide
with water leads to the formation of magnesium hydroxide, aluminum hydroxide, and
Mg/Allayered double hydroxides (LDH) and in the case of the presence of CO2 in the
system also of hydrotalcite. The hydration reaction of Al2O3 in ambient temperature in
the refractory castables isusually connected with transition alumina. During the rapid
hydration of transition alumina at elevated pH, the main crystalline product is bayerite
rather than gibbsite. In these conditions, α-Al2O3 is inert, but this could change depending
on the conditions like pH, temperature and water vapor pressure. Magnesium oxide is
transformed to brucite as one stable polymorph of magnesium hydroxide and both MgO
and Al2O3 can create DHL or hydrotalcite-like compounds [12,13].

Due to the presence of MgO in the castables, aids are also used that influence the
hydration process, like amorphous silica, chelate compounds, etc. These compounds
strongly modify the hydration process. Chelates like citric and tartaric acids modified
the hydration process in this system. In a high pH environment, which is characteristic
for systems with MgO, citric as well as tartaric acids dissociated. The dissociation of
thesecompounds depends on the pH of the environment and for pastes from MgO–Al2O3–
H2O system, it exceeds 10. In such conditions, both the citric and tartaric acids are present
in the fully dissociated forms, C6H5O7

3− and C4H4O6
2−. This providesthem with the

ability to adsorb the positive charges on the surface of the grains and create a complex with
metal ions in solution. The neutralization of the net surface charge and coordination of
the Mg/Al ions prevent magnesium oxide grains fromdissolution and precipitation of the
hydroxides and decrease the rate of hydration process in a water solution. However, during
the heat treatment at an elevated temperature, reactions in this system are accelerated by
the high-water vapor pressure that prevails in castables [13–17].

Reactions that occurat the early stage of the heat treatment of the castables have a
key role in shaping the properties of thesematerials. This, in consequence, decides about
the course of many high-temperature reactions like the spinel synthesis. The aim of this
study was to evaluate the effect of the two most popular chelating agents used in castables,
citric and tartaric acids, on the phases coexisting in the MgOAl2O3–H2O system, under
hydrothermal conditions. Hydrothermal conditions are designed to simulate conditions
that are prevailing in large volume castables precast units during the heat treatment.

2. Materials and Methods

High-purity, reagent grade magnesium oxide powder (MgO ≥ 98% from Acros Or-
ganics, Geel, Belgium), commercial reactive alumina powder (d50 ≤ 0.6 µm, Al2O3 ∼=
99.8%, RG 4000 from Alamtis, Leetsdale, PA, USA), citric acid (C6H8O7·H2O ≥ 99.5% from
POCH, Gliwice, Poland), and tartaric acid (C4H4O6 ≥ 99% from POCH) were used as raw
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materials. Pictures of the raw materials are shown in Figure 1. The magnesium oxide and
alumina powder were mixed at a 1:1 molar ratio, and their samples’ compositions are
presented in Table 1.

Figure 1. Raw materials used in the experiment: (a) alumina powder RG 4000; (b) magnesium oxide
powder; (c) citric acid; and (d) tartaric acid.

Table 1. Composition of the studied samples.

Sample A2O3
(% mas.)

MgO
(% mas.)

Citric Acid
(% mas.)

Tartaric Acid
(% mas.)

Sum
(% mas.)

1 71.67 28.33 - - 100

2 70.95 28.05 1 - 100

3 70.95 28.05 - 1 100

Powders of the raw materials were homogenized by mechanical mixing in a planetary
mill using rubber mixing elements, pressed into pellets (diameter 20 mm, under the
pressure of 20 MPa), and subjected to a hydrothermal synthesis at the temperature of
240 ◦C, under autogenous water vapor pressure for 8 h.

The samples, obtained after a hydrothermal treatment, have a powder form. The
samples were washed several times with cold acetone to remove free water. Samples for
the thermal analysis, XRD analysis as well as FTIR analysis were subjected to grinding in a
mortar grinder to obtain powder samples under 0.063 mm.

To identify the samples’ phase changes corresponding to the used additives, the X-ray
diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal analysis, i.e.,
thermogravimetry (TG), differential scanning calorimetry (DSC), and evolved gas analysis–
mass spectrometry (EGA–MS), were simultaneously used. The chemical composition and
the microstructure of the samples were characterized by scanning electron microscopy
(SEM) with energy dispersive spectroscopy (EDS).

The thermal analysis was carried out usinga Simultaneous Thermo Analyzer (STA)
TG–DSC NETZSCH STA 449F5 Jupiter coupled to QMS 403 D Aëolos (Erich NETZSCH
GmbH & Co. Holding KG, Selb, Germany). The provided sample mass ~30 mg was heated
to 1000 ◦C in airflow (50 mL/min) at a heating rate of 10 ◦C/min, in a corundum crucible.

The XRD measurement was carried out using an X’PertProPANalytical X-ray diffrac-
tometer, in the range of 5–90 2θ, with Cu Kα radiation, with 0.02◦ per step and a time of 3 s
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per step. Data analysis was made by HighScore Plus software (Panalytical) with the PDF-2
database supported by the ICDD (The International Centre for Diffraction Data, Newtown
Square, PA, USA), the full list of reference patterns is provided in Table 2.

Table 2. Phase composition of the studied samples.

Sample Designation Identified Phase Reference Pattern

1

α-Aluminum oxide Al2O3 01-088-0826

BoehmiteAlO(OH) 01-083-2384

Aluminum oxide hydrate 11Al2O3*1.79H2O 01-070-0384

Double magnesium aluminum hydroxide
hydrate Mg6Al2(OH)18*4.5H2O 00-035-0965

Brucite Mg(OH)2 00-044-1482

2

Aluminum oxide Al2O3 01-088-0826

BoehmiteAlO(OH) 01-083-2384

Aluminum oxide hydrate 11Al2O3*1.79H2O 01-070-0384

Double magnesium aluminum hydroxide
hydrate Mg6Al2(OH)18*4.5H2O 00-035-0965

Brucite Mg(OH)2 00-044-1482

PericlaseMgO 00-004-0829

3

Aluminum oxide Al2O3 01-088-0826

BoehmiteAlO(OH) 01-083-2384

Aluminum oxide hydrate 11Al2O3*1.79H2O 01-070-0384

Double magnesium aluminum hydroxide
hydrate Mg6Al2(OH)18*4.5H2O 00-035-0965

Brucite Mg(OH)2 00-044-1482

PericlaseMgO 00-004-0829

The IR bands were recorded using a Bruker Vertex 70v FTIR spectrometer at a spectral
range of 400–4000 cm−1. Measurements were carried out on pelletized ca. 0.5 wt.% powder
samples in a KBr matrix.

The microstructure images were carried out using a Nova Nano SEM 200 FEI (FeiEu-
rope Company, Eindhoven, Netherlands). Measurements were recorded using a low
vacuum detector (LVD) using secondary electrons (SE). Chemical analysis was carried out
using an EDS analyzer (EDAX corporate, Mahwah, NJ, USA).

3. Results

According to the XRD analysis shown in Figure 2 and summarized in Table 2, the
phase composition is very similar for each sample. The XRD spectra indicate the presence
of a number of hydrated phases in each sample. Brucite (Mg(OH)2) is the first of the phases
connected with magnesium oxide, the second identified phase is double magnesium and
aluminum hydroxide hydrate (Mg6Al2(OH)18·4.5H2O). In the samples, aluminum oxide
hydroxide (AlO(OH)) and a form of hydrated aluminum oxide with a formula close to
11Al2O3·1.79H2O were also observed. The non-hydrated oxides in the studied samples
were aluminum oxide (Al2O3), present in each sample, and traces of MgO for the sample
with the addition of chelates. Based on this result, it can be stated that magnesium oxide,
in the experimental conditions, completely reacted with water for sample 1 while some
traces of it remained in the sample with the addition of citric and tartaric acids. According
to the XRD analysis, there were no traces of aluminum hydroxide in the samples, although,
in the experimental conditions, bayeriteshould have probably appeared [13]. In the place
of aluminum hydroxide, boehmite can be identified, and magnesium aluminum hydroxide
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hydrate can be observed. However, the amount of the double magnesia alumina hydroxide
is rather low in respect to boehmite, it suggests that that if aluminum hydroxide appears
during the hydrothermal treatment, it converts into boehmite rather than into double
magnesium and aluminum hydroxide. Depending on the author, gibbsite formation takes
place in the temperature of at least ca. 130–150 ◦C (these are the lowest values provided in
the literature). When the temperature exceeds these values, direct formation of boehmite
starts to be preferable [18–21]. According to [22], gibbsite in the experimental conditions
could be decomposed with the creation of boehmite around 230 ◦C, but bayerite with the
temperature of decomposition around 280–300 ◦C should still be stable. This suggests
that when increasing the temperature to the maximum assumed value (240 ◦C) in the
experiment, the hydration process proceeds with gibbsite synthesis as an intermediate
stage. It should also be noted that in the temperature range of this experiment, the water
vapor pressure does not affect the alumina hydration [18,21].

Figure 2. X-ray diffraction spectra of studied samples (1—reference sample; 2—sample with citric
acid addition; and 3—sample with tartaric addition).

It needs to be emphasized that double magnesium and aluminum hydroxide hydrate
easily form hydrotalcite-like compounds in the presence of carbon dioxide. However, there
is no evidence of such a reaction on the XRD spectra, although the crystal structures of
both phases are very similar [10,23].

Based on the results of the thermal analysis, it can be observed that the course of
changes in the case of samples with acids additions is almost the same, while for the
reference sample it varies (Figure 3).

For each sample, three main endothermic effects connected with the loss of mass
of the samples can be observed. The first of those effects is placed around 186–202 ◦C
and can be connected with the first step of decomposition of double magnesium and
aluminum hydroxide and emission of interlayer water. These findings are confirmed on
the EGA–MS curve (m/z = 18), where the effect from water ions is observed. Moreover, the
non-symmetrical character of this effect (longer arm for the lower range of temperatures)
can indicate the amorphous character of double magnesium aluminum hydroxide hydrate
or/and decomposition in this temperature range an additional phase, probably aluminum
oxide hydrate [10,24].
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Figure 3. Thermal analysis of studied samples, (a) TG-DSC, (b) TG-EGA.

At around 390 ◦C, another endothermic effect occurs, probably connected with the
dihydroxylation of brucite and the second step of the decomposition of double magnesium
and aluminum hydroxide hydrate. This effect is connected with the emission of CO2 with the
maximum at ca. 413 ◦C (Figure 3b, EGA curve for m/z = 44); this could be the evidence of the
last stage of decomposition of hydrotalcite-like compounds. Despite the results of the XRD
analysis, the short range of the temperature of this effect as well as the profile of the TG curve
with a sharp loss of mass in this region do not fully support this claim, as some amount of
poorly crystalline hydrotalcite-like phase maybe present in the samples [9,10,24,25]. At the
temperature around 530 ◦C, the decomposition of boehmite follows [10].

Each of the above effects is connected with mass loss shown in Figure 4. During
the first endothermal effects (up to 250 ◦C), the loss of mass of the samples was from
around 0.81% mass for a sample without any additions, up to 1.82% for sample number
3 with an addition of tartaric acid. In the second effect, the loss of mass of the samples
increases, also a sample with tartaric acid addition has the highest loss around 10.93%
while the reference sample has only a loss of 10.35%. Taking into consideration that
in the samples with an addition of chelates, MgO does not fully hydrate, it shows a
strong influence of decomposition of double magnesium and aluminum hydroxide hydrate
or/and hydrotalcite on a loss of mass in this range. Conversely, in the last identified
effect, sample 1 has the highest loss of mass around 3.73% while the sample with tartaric
acid has a loss of around 2.04%. The losses of mass and temperatures of the individual
effects suggest that the qualitative phase composition is the same for each sample, and the
depth of each effect is proportional to the content of the individual phases. This claim is
supported by an XRD analysis. This is why, when taking into consideration the results of
the thermal analysis, it can be stated that the addition of acids to the MgO–Al2O3–H2O
system changes the phase composition in respect to its quantitative composition.

The summary of the thermal effect with the loss of mass from the thermal analysis is
shown in Table 3.

Comparing the loss of mass in each effect, it can be noticed that in the two first effects,
the loss is arranged in order from sample number 1, 2 and 3 at the end. In the case of the
third effect, the order is the opposite. The relative content of the phases in each studied
sample can be investigated by an XRD analysis by the comparison of the characteristic
diffractive lines for each sample. Aluminum oxide has its main diffraction line at 35.137◦

2θ (ICSD 01-088-0826) and as the main substrate, can indicate the overall content of the
reacted aluminum phases. As it is shown in Figure 5a, sample 2 with citric acid additions
has the highest intensity of the diffractive line and associated with it the highest amount of
Al2O3, a slightly lower amount is in the sample with tartaric acid and the lowest amount
of aluminum oxide in the reference sample. Taking into consideration the spectral lines for
other phases, these relationships are also visible. Consequently, for the main diffraction
line for boehmite shown in Figure 5b, the intensity changes in opposition to aluminum
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oxide. Reference sample 1 has the highest intensity, followed by the sample with citric
acid and at the end is the sample with tartaric acid. This confirms the findings of the
thermal analysis, where losses of mass in the last endothermic effect associated with the
decomposition of boehmite were in the same order. In the case of Mg-containing phases,
the results also show a strong relationship between the addition of citric and tartaric acids
and the composition of each sample. In the case of brucite (due to the overlapping of its
main diffractive line with peaks for others phases, the second most intensive diffractive
line was utilized), we can observe (Figure 5c) that the addition of acids decreases its content
in the samples but simultaneously increases the amount of double magnesium aluminum
hydroxide hydrate in relation to the reference sample (Figure 5d). The relation in the case
of brucite would be in agreement with both the observed amount of double magnesium
aluminum hydroxide hydrate and the traces of MgO in samples with chelates addition
revealed in the XRD analysis.

1 

 

 

Figure 3.  

 

 

Figure 4.  

 

 

Figure 4. Thermogravimetric analysis of the studied samples with a loss of mass in a specific range
of temperature.

Table 3. Summary of the thermal effect and a loss of mass in a specified range oftemperature.

Sample Character of the
Effect

Temperature of Maximum of
the Effect * (◦C)

Range of Temperatures of the
Effect ** (◦C)

Mass Loss Connected
with the Effect (%)

1
Endothermic 186.1 40–250 0.81

Endothermic 394.4 250–450 10.35

Endothermic 535.9 450–1000 3.73

2
Endothermic 201.8 40–250 1.75

Endothermic 390.1 250–450 10.90

Endothermic 529.4 450–1000 2.30

3
Endothermic 197.5 40–250 1.82

Endothermic 393.2 250–450 10.93

Endothermic 532.6 450–1000 2.04

* based on a DSC curve. ** based on a TG curve.

Taking into consideration the results from the XRD analysis and thermal analysis, the
strong influence of acid additions on the hydration process of the studied samples under
hydrothermal conditions can be stated.
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Figure 5. Comparison of the characteristic XRD peaks for a specified phase: (a) Al2O3; (b) AlO(OH); (c) Mg(OH)2;
and (d) Mg6Al2(OH)18·4.5H2O.

The spectra of FTIR spectroscopy shown in Figure 6 reveal several bands characteristic
for hydrated phases that can confirm the previous results. The broad bands in the range of
3000–3700 cm−1 are mainly connected with hydroxyl groups (–OH), bonded with the metal
hydroxide layers. Worthy of notice is the sharp envelope of this band, which indicates
a high degree of crystallinity of the studied samples in this aspect. First of these bands,
around 3695 cm−1 is present in each sample, whichis connected with –OH groups in
octahedral brucite layers [9,26]. Around 3200–3250 cm-1 as well as 3400–3450 cm−1 are
often located bands assigned to non-structural water vibration [27], although in the range
of around 3450 cm−1 according to [9,24] where the stretching vibrations of the –OH groups
attached to Mg and Al ions are also located. Band ca. 3086–3088 cm-1 can be attributed to
the –OH bond [28].

Bands connected with bending vibrations of water molecules are located around
1639–1647 cm−1 [10,29]. While the bands around 1370–1460 cm−1 can be attributed to
stretching vibrations from the carbonate anion [9,10]. These vibrations are often connected
with hydrotalcite. Taking into consideration these bands as well as the results of the
thermal analysis, it can be stated that in the studied samples, there is some hydrotalcite-
like phase. Comparing the relative intensity of this band in the spectra for each sample,
it can be noticed that the higher relative intensity of these bands occurs in the samples
with the additives. This suggests that in this samples content of hydrotalcite like phase
is higher. Worthy of notice is that some authors [15] connect the band ca. 1380 cm-1 with
deformation vibrations of C–O in adhered tartaric acid to the crystals of the ceramic phases.



Appl. Sci. 2021, 11, 2834 9 of 13

The band at 1072 cm−1 corresponds to symmetric bending vibrations of the Al–O–H mode
in boehmite [28].

Figure 6. FTIR spectra of studied samples.

Bands ca. 740, 780, 830–860 cm−1 are attributed to Al–O vibrations mode in boehmite.
Vibrations of M–O and M–OH (where M is a metal ion—Al or Mg) in octahedral metal layer
are associated with the region around 400–650 cm−1. Bands ca. 552 cm−1 are connected
with Al–OH and 600–650 cm−1 with Mg–OH translations mode [9,10,28].

The FTIR analysis confirms the results from the thermal analysis and XRD analysis;
moreover, it indicates the presence of the hydrotalcite-like phase in the studied samples.

The SEM–EDS analysis shows only slight differences between the samples. The mi-
crostructure of the samples shown in Figure 7 consists of two kinds of granularly shaped
grains. The smaller ones are loosely connected with each other and create a matrix for
larger grains. According to the EDS analysis, their chemical composition is varied, and
larger aggregates have a higher amount of aluminum with an admixture of magnesium
and various levels of oxide. This suggests boehmite or/and aluminum oxide as the main
component(s) of these grains. While smaller aggregates have a higher content of magne-
sium and a high level of oxide, this indicates that magnesium hydroxide and/or double
magnesium and aluminum hydroxide hydrate are the main components of these grains.
These findings are in agreement with the result of the previous analysis.

Figure 7. SEM images of the studied samples: (a) sample 1; (b) sample 2; and (c) sample 3.
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4. Discussion

This work explains the reactions and the process that occur under hydrothermal
conditions in the MgO–Al2O3–H2O system with chelates addition. The aim of the utilization
of the hydrothermal conditions was to simulate the conditions that prevail during the first
stage of the high temperature heat treatment of the refractory castables up to ca. 500–600 ◦C.
In this range of temperature, most of the hydraulic phases undergo a decomposition with the
creation of ceramic phases. Newly created ceramic phases are often altered in comparison
with the original raw materials used in the castables’ composition. They have smaller
crystallites and are better dispersed and connected with each other, thanks to the synthesis
of many new phases like spinel, etc., which takes place at a lower temperature. Chelates like
citric and tartaric acid are often used in castables as dispersing agents: from the presented
result, it was found that chelates affect the hydration behavior of MgO and Al2O3.

According to the XRD analysis results (Figure 2), it can be stated that among other
hydraulic phases, samples are also consisting of double magnesium aluminum hydroxide
hydrate. However, the thermal analysis shows (Figure 3b) the emission of carbon dioxide in
the temperature range of 280–550 ◦C is probably connected with the second endothermic
effect at ca. 390 ◦C. Moreover, the FTIR analysis (Figure 6) shows some amount of carbonate
ions in the structure of the samples (wide bands around 1370–1460 cm−1). This could
indicate hydrotalcite as one of the components of the samples. According to [10,24], the
emission of carbon dioxide in hydrotalcite takes place in the range of 400–580 ◦C and the
loss of mass connected with that is small and stretched over a long range of temperatures.
However, taking all the facts into consideration, it can be stated that the hydrated double
phase present in the samples is a mixture of double magnesium aluminum hydroxide
hydrate with a poorly crystalline hydrotalcite-like phase. This would explain lack of this
phase on the XRD spectra. Based on this, it can be stated that the studied samples are
composed of aluminum oxide, aluminum oxide hydrate, boehmite, brucite, and a mixture of
poorly crystalline hydrotalcite-like phase and double magnesia alumina hydroxide hydrate.
Moreover, in the samples with an addition of chelates, traces of MgO are also present.

According to the thermal analysis (Figure 4), FTIR analysis (Figure 6) as well as
the XRD analysis results (Figure 5d), the influence of the chelates on the amount of the
mixture of hydrotalcite-like phase and double magnesia alumina hydroxide hydrate can be
observed. With the addition of acids, the amount of this mixture increases by around 1%
(based on the TG curve), which is confirmed by the XRD analysis (Figure 5d), where the
intensity of the diffractive lines for the double magnesia and alumina hydroxide hydrate is
higher for these samples. Moreover, the FTIR analysis shows a higher relative intensity of
the bands from carbonate anion, connected with hydrotalcite-like phase, for the samples
with acids additions. Simultaneously, we can observe the XRD spectra traces of MgO and
also a decrease in the amount of brucite (Figure 5c) for samples 2 and 3. This difference,
based on the TG curve, is around 0.6%, but this is connected both with the decomposition
of brucite as well as the mixture of hydrotalcite-like phase and double magnesia alumina
hydroxide hydrate. These latter compounds decrease the difference in mass loss between
the reference sample and the samples with the additives. Taking all these facts into
consideration, it can be stated that the addition of acids increases the content of the double
hydroxide and hydrotalcite-like phase, and decreases the amount of brucite. These aspects
can be connected with a well-known anti-hydration effect of chelate compounds. The
mechanism of their action is connected with the adsorption and changing of the surface
electric charge of ceramic phases as well as the creation of coordination compounds with
metal ions preventing the fast precipitation of hydrated phases. During the hydration of
MgO, the surface of the grains is protonated by protons from water, after that it creates
a complex with –OH groups from water which dissolve in water [30]. This increases the
pH and is followed by the dissociation of the citric as well as tartaric acid. Citric acid in
pH above 8 is fully dissociated to form C6H5O7

3−, similarly, the tartaric acid in a fully
dissociated form has the formula C4H4O6

2−. Both of them have high potential to adsorb
on the MgO grains and decrease their hydration; while in the solution, they coordinate
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Mg and Al ions inhibiting their precipitation as hydroxide [14,16]. This last effect probably
promotes the synthesis of the layered hydroxide-like hydrotalcite and double magnesia
alumina hydroxide hydrate.

This aspect looks similar in the case of alumina, the samples with the addition of
chelates have a lower content of boehmite (according to the thermal analysis by around
1.4 and 1.7% for samples 2 and 3, respectively) but higher in aluminum oxide (Figure 5a).
This could also be connected with the transformations of aluminum hydroxide and/or
aluminum oxide. Based on the conducted analysis, in the studied samples there was no
evidence of alumina hydroxide compound, although it was an expected intermediate
phase, during the increasein the temperature to the maximum value (240 ◦C) assumed
in the experiment. According to the different authors, gibbsite transforms to boehmite
in temperatures from 130 ◦C [20], 150 [19] or 220–230 ◦C while to bayerite these were at
around 280–300 ◦C [22]. Moreover, some authors state that under temperatureexceeding
130–150 ◦C, boehmite can be directly created from the alumina as a stable phase [18–21].
Based on that, it can be concluded that the absence of the aluminum hydroxide is connected
with its fast decomposition to boehmite during the experiment (during the increase in
temperature up to the assumed 240 ◦C), but this conclusion needs further investigation.

Nevertheless, this work proves that the presence of chelate compound modified the
behavior of the castables during the heat treatment. This is connected with the changes of
the content of the hydraulic phases, the increase in the content of hydrotalcite and double
magnesium and aluminum hydroxide hydrate, with a simultaneous decrease in brucite
and boehmite content. These facts can be used in the better matching of heat treatment
conditions during the preparation of the castables. Moreover, some of these compounds
like hydrotalcite and double magnesium and aluminum hydroxide hydrate may decrease
the synthesis temperature of the spinel phase [9]. This is probably connected with the
thermal decomposition of these compounds with the creation of an amorphous, metastable,
mixed oxide solution [24]. By controlling the processes in the studied range of temperatures,
we can influence the reactions that occur at a higher temperature and finally the properties
of the castables.

5. Conclusions

The current work based on the obtained results shows a strong influence of even small
amounts of citric and tartaric acids on the hydration of the MgO–Al2O3 system under
hydrothermal conditions. Based on this study, several conclusions can be drawn:

- The addition of citric and tartaric acid does not change the phase composition a lot, but
change the content of each phase in the samples during the hydrothermal treatment;

- The citric and tartaric acid additives show an anti-hydration effect in relation to MgO;
- The citric and tartaric acid additives decrease the content of boehmite and probably

brucite in relation to the reference sample;
- The citric and tartaric acid additives increase the content of mixture double magnesium

aluminum hydroxide hydrate and hydrotalcite-like phases in relation to the reference
sample;

- There are probably no significant differences between tartaric and citric acid with
regard to their influence on the studied samples in the experimental conditions.

The obtained results can be useful for a better understanding of the changes that take
place during the heat treatment of refractory castables.
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