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Abstract: In this paper, the combination of an indirect self-tuning observer, smart signal modeling,
and machine learning-based classification is proposed for rolling element bearing (REB) anomaly
identification. The proposed scheme has three main stages. In the first stage, the original signal is
resampled, and the root mean square (RMS) signal is extracted from it. In the second stage, the normal
resampled RMS signal is approximated using the AutoRegressive with eXternal Uncertainty (ARXU)
technique. Moreover, the nonlinearity of the bearing signal is solved using the combination of the
ARXU and the machine learning-based regression, which is called AMRXU. After signal modeling
by AMRXU, the RMS resampled signal is estimated using a combination of the proportional multi-
integral (PMI) technique, the variable structure (VS) Lyapunov technique, and a self-tuning network-
fuzzy system (SNFS). Finally, in the third stage, the difference between the original signal and the
estimated one is calculated to generate the residual signal. A machine learning-based classification
technique is utilized to classify the residual signal. The Case Western Reserve University (CWRU)
dataset is used to evaluate anomaly identification performance of the proposed scheme. Regarding
the experimental results, the average accuracy for REB crack identification is 98.65%, 97.7%, 97.35%,
and 97.67%, respectively, when the motor torque loads are 0-hp, 1-hp, 2-hp, and 3-hp.

Keywords: rotating machine; rolling element bearing; indirect self-tuning observer; machine learning–
based classification technique; autoregressive with external uncertainties; machine learning–based
regression; proportional multi-integral technique; variable structure-Lyapunov technique; self-tuning
network-fuzzy system; fault detection; fault classification

1. Introduction

One of the principal mechanical components in global industries is the rotating ma-
chine. With the rapid and daily advancements in technology, new rotating machinery tools
appear that are better, more complicated, and more accurate. Therefore, their functionality
affects safety and operational stability and reliable industrial production. However, due to
the complexity in rotary machinery systems and the multiplicity of parts, the probability
of failure is greatly increased. Among all the components in rotating machines, rolling
element bearings (REBs) are used in a majority of them. Bearings facilitate the movement
of components owing to the rolling action and diminished friction. Their exceptional
anti-friction ability makes them a very important tool wherever there is the challenge of
energy savings [1].

Among all the industrial attention, one absolute concern to ensure reliability and
safety in advanced technical systems is anomaly detection. Timely and correct anomaly
detection prevents disastrous events and increases production efficiency. Furthermore,
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immediate fault diagnosis in REBs can help to figure out the main reasons for product
corruption and can avoid irregularities in the system and/or complete failure [2].

Even though fault detection and diagnosis are acutely challenging and intricate due
to nonlinear parameters in the bearings and in work complexity, bearings are one of the
critical components that can cause 40 to 50% of all failures in rotating machines [3,4].
Accordingly, fault diagnosis for these elements is a necessity.

Within this concept, a maintenance procedure for monitoring the health situation
of machinery is necessary, which makes the optimal decision to prevent or reduce faults
mainly based on condition monitoring information. According to [4,5], for an efficient
machinery health diagnosis program, one of the principal technical processes is data
acquisition.

Numerous sensors are applied over a certain time to find industrial irregularities (for
example, in bearings) based on physical signals called time-series signals [6,7]. A time
series mainly operates as input data with which to train models for industrial anomaly
detection [2,8]. Motivated by the discourse above, the issue of condition-monitoring
procedures becomes important for identifying serious changes that are expressive of
a fault.

Therefore, a multitude of studies have been conducted to monitor the condition of
bearings [9–13]. Subsequently, different methods have been determined for condition moni-
toring in order to recognize and classify bearing faults. These methods are defined based on
vibration signals, acoustic emission signals, and motor current signature analysis [14,15].

Generally speaking, faults in bearings can be classified as follows: (i) the outer bearing
race fault (OURF), (ii) the inner bearing race fault (INRF), (iii) the roller fault (ROLF), and
(iv) the cage fault [15,16]. To recognize, discover, and classify faults in rolling element
bearings, vibration supervising is widely used and is an economical monitoring method.
Nowadays, fundamental monitoring of rolling element bearings generally depends on ana-
lyzing vibration signals due to their great capabilities in describing REB performance [11].
Bearings generate vibration, either due to differing compliance or from the appearance
of a crack. Numerous studies have been carried out on vibration signal analysis, and a
variety of research has been conducted based on the kinds of defects and fault diagnosis
techniques [8,17,18].

Based on the information provided, fault diagnosis in bearings is conducted with
various methods. The manner of signal processing can be leveraged as a known procedure;
other methods exist that lean on data-driven techniques and model-based techniques;
finally, one further method is an amalgamation of the above techniques—the hybrid
method [11,19,20]. What drives us to use the hybrid method is that these other methods
have weaknesses that make them difficult to use. For instance, there are several challenges
for signal-based techniques under an unknown status [19]. Moreover, data-driven tech-
niques have limitations related to massive datasets, while model-based approaches have
difficulties in modeling a system accurately [18–20]. The more robust and accurate fault
diagnostics process should be considered if an uncertain situation exists [11]. To overcome
the mentioned limitations and attain a more effective technique for flaw diagnosis, the
hybrid method is proposed. A combination of the model-based approach, data-driven
method, and signal-based approach is proposed in which diagnosis results are claimed to
be less complicated, more reliable, and accurate [11]. Some examples are as follows: the
combination of signal processing and deep learning techniques has been proposed in [21].
This research has two main stages. First, the hybrid feature pool was generated using enve-
lope spectrum, time domain and wavelet packet transform. Next, the stacked autoencoder
was suggested to perform fault detection and diagnosis. In this work, determining the
number of features and selecting the best features are the main challenges. The combination
of data-driven and modern control algorithms for fault detection and diagnosis has been
presented in [22]. In this research, the second order system was modeled using the linear
AutoRegressive with eXternal input (ARX)-Laguerre technique. The proportional integral
(PI) observer was evaluated for the signal estimation. This technique is linear; however,
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for nonlinear and non-stationary signals such as vibration bearing signals, the accuracy
may decrease. The combination of the modern control algorithm and deep learning ap-
proach has been proposed in [23]. In this research, the rotor signal was modeled using the
ARX-Laguerre technique. The combination of the PI observer and the scalable deep neural
network was also used for signal estimation and fault decision. In this work, the combina-
tion of the signal-based approach for signal modeling and artificial intelligence approaches
for signal estimation, and a machine learning method for classification is recommended as
a hybrid algorithm for fault diagnosis of bearing.

Even though the current and voltage encompass all the information, sometimes fitting
raw signals into some groups of rules and criteria for interpreting the fundamental mes-
sages that come from the signals is very difficult. This is where feature extraction methods
help to dig out beneficial information purposefully from within the considered system. Us-
ing proper feature extraction techniques, researchers can obtain further knowledge on fault
classification, which enables them to provide more efficient methods for this topic [21,24].

Signal modeling is one of the critical challenges to design the modern control-based
approach for fault diagnosis [25]. The challenge in nonlinear and nonstationary signal
modeling was recently discussed [23,26–29]. Signal modeling can be categorized into
two standard groups: modeling based on the system’s dynamics [29], and data-driven
modeling [18,22,30]. The challenge of vibration signal modeling may be solved by the
mathematical-based approach and five degrees of freedom vibration bearing modeling are
included [29]. In complex systems, modeling with the dynamics-based approach has the
challenge of intricacy.

To reduce the challenge from complexity in dynamics-based system modeling, data-
driven signal modeling such as linear regression with ordinary least squares, AutoRegres-
sive models (AR), the AutoRegressive with eXternal input (ARX) model, random forest,
ARX-Laguerre, multivariate adaptive regression splines, support vector regression, the
neural network, and Gaussian process regression have been suggested [31]. Specially,
in [22,30] the ARX and ARX-Laguerre methods have been used for signal modeling in
second order systems. However, the accuracy of the nonlinear and nonstationary signal
approximation is not good, which is the main challenge of these techniques [22,23,30].

To estimate the original signals, diverse algorithms have been suggested in recent
years. The observation-based technique is one of the powerful mechanisms for signal
estimation [25]. Artificial Intelligence (AI)-based observers and modern control-based
observers are two main groups for signal estimation [19,20]. AI-based observers, such
as the fuzzy logic observer [20], the neural network observer [21], and the neuro-fuzzy
observer [22], have the same challenge (namely, reliability). Modern control-based ob-
servers (including linear-based observers and nonlinear-based observers) have been used
for signal estimations [18,19,32]. The sliding mode observer is one of the most robust
and reliable estimators for fault diagnosis. The application of the sliding mode observer
for fault diagnosis was presented in [18]. Despite its stability, reliability, and robustness,
the sliding mode observer suffers from complexity and the chattering phenomenon. The
next nonlinear-based observer is the feedback linearization approach [33]. However, this
approach solves the issue of the chattering phenomenon; robustness and reliability are
two important drawbacks. Thus, the main challenge of nonlinear modern control-based
observers (such as the sliding mode observer and the feedback linearization observer) is
complexity. To reduce complexity, modern linear control-based observers, such as the pro-
portional integral (PI) observer [22] and the proportional multi-integral (PMI) observer [34],
have been suggested. Although PI observers and PMI observers have good performance in
terms of accuracy and complexity, they have some problems related to robustness about
uncertainties [34]. To address the robustness issue, a combination of PMI observer and
sliding mode approach was used in [34]. The main limitation of this algorithm is to increase
the amount of chattering and signal fluctuations in the presence of variation in torque load
and motor speed.
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To fault and state condition classifications, diverse classification algorithms such as
decision trees [35], nearest neighbor classifiers [36], support vector machines [37], and
ensemble classifiers have been introduced.

In the paper, the hybrid-based fault diagnosis approach is suggested for anomaly
identification of the bearing. The proposed hybrid-based approach has three main steps: (i)
preprocessing and feature extraction step, (ii) signal modeling and estimation step, and (iii)
classification step. Based on the above, the feature extraction technique is considered as the
first stage. In this research, the main stage for designing the hybrid technique for rolling
element bearing crack identification is to compute residual signals, which are calculated
based on the difference between original signals and estimated signals. Modeling is
also the main critical challenge in modern control-based observers for signal estimation.
Subsequently, the first step in estimating a signal using observers is signal modeling to
approximate the state-space function of the signal. Therefore, in the paper, we apply
machine learning-based regression (MBR) to the ARX with uncertainty input (ARXU)
technique for signal approximation, which is called “AMRXU”. After signal modeling, the
original signals are estimated before computing the residual signals. To do this, first, the
PMI observer is recommended. After that, to address the robustness limitation in the PMI,
the variable structure (VS)-Lyapunov is adopted. Apart from reducing the complexity and
increasing the accuracy and robustness of this technique, the flexibility about uncertainties
in various torque loads, motor speeds, or crack sizes can be a weakness. To overcome
this issue, we use the self-tuning hybrid-based observer which is a combination of a self-
tuning AI-based technique and modern control-based approach to improve the positive
points, which is called “AVSPMI”. Next, the residual signals are computed using the
difference between the original signals and the estimated ones. Regarding the accuracy
and robustness of the estimation of the signal, the residual signal levels are different in
dissimilar classes. Finally, we select the SVM technique for classification. The contributions
of this paper can be summarized as follows:

• Indirect signal modeling by extracting the state-space nonlinear function using the
combination of machine learning-based regression and ARXU technique.

• Indirect signal estimation by using the combination of the PI observer, extended
integral term, VS-Lyapunov technique, and self-tuning network-fuzzy system.

• Combination of AMRXU, AVSPMI, and SVM-based approaches for bearing fault
detection and classification.

The remainder of this paper is organized as the follows: The proposed Scheme is briefly
described, and the block diagram of the proposed scheme has been shown in Section 2. The
data acquisition from the Case Western Reverse University (CWRU) dataset is described
in Section 3. Next, the preprocessing is explained in the Section 4. In Section 5, first, a
smart autoregressive signal modeling is proposed over normal signal modeling. Next, a
self-tuning hybrid-based observer is designed for signal estimation in normal conditions.
The signal condition is classified by machine learning-based classifier in Section 6. The
experimental results are presented in Section 7, and the conclusion is presented in Section 8.

2. Proposed Scheme and Block Diagram

Figure 1 shows the overall block diagram of the proposed scheme, which consists of
three main stages: the preprocessing stage, signal approximation and estimation stage, and
fault identification stage.

At first, in the preprocessing stage, the vibration signals are resampled, and next,
the RMS features are extracted from the resampled signals. The second stage is used to
model and estimate the resampled RMS signals. Based on the difference between estimated
signals and original ones, the signals can be classified into different conditions.
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Figure 1. The proposed scheme for fault diagnosis of bearing based on three stages: preprocessing, signal approximation
and estimation, and fault classification.

Thus, to estimate the resampled RMS signal, a modern control-based observation
method is suggested. To build a modern control-based observer, first, the resampled RMS
signal in normal condition needs to be modeled. So, the first step in the second stage is
signal modeling. The combination of AR, external uncertainties inputs (XU), and MBR,
which is denoted as AMRXU in the paper, is suggested for normal resampled RMS signal
modeling. More specifically, the AR technique is used for normal signal modeling. To
increase the robustness and accuracy, the AR technique is combined with the XU technique
to implement the ARXU method for modeling the resampled RMS signal in the healthy
state. This signal is nonlinear and nonstationary. Subsequently, to increase the accuracy of
signal modeling with the property of nonlinearity and nonstationary, the resampled RMS
signal in the normal condition is modeled with a combination of the ARXU and the MBR,
which is denoted as AMRXU.

After modeling the resampled RMS signal in the normal condition, the indirect self-
tuning observer, which is a combination of the modern control-based observer and AI-based
approach, has been designed. Thus, first, the PI observer is implemented when the signal is
modeled by the AMRXU technique (henceforth called AMRXU-PI). After that, to improve
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the accuracy, the AMRXU-PI observer is combined with integral term (I), which is called the
AMRXU-PMI observer. Moreover, to increase the robustness in uncertain conditions (e.g.,
variant motor torque loads and variant bearing crack sizes) the AMRXU-PMI is combined
with a VS-Lyapunov scheme, which is denoted as the AMRXU-VSPMI method. Next,
the indirect self-tuning observer is designed by using the combination of the AMRXU-
VSPMI with the self-tuning network-fuzzy system (SNFS) technique, which is denoted
as AMRXU-AVSPMI. After estimating the resampled RMS signals using the proposed
AMRXU-AVSPMI method, in the third stage, the machine learning technique is used for
fault classification. To do this, first, the residual signals are computed using the difference
between the original and estimated signal. Next, the support vector machine (SVM) is
used for classification such that the residual signals will be classified into four main groups:
normal (NORM), ROLF, INRF, and OURF.

3. Dataset

A CWRU dataset was selected to test the recommended scheme. In this work, a
two-horsepower (hp) induction motor was selected to power the rolling bearings (6205-2RS
JEM from SKF, Gothenburg, Sweden) at various rotational speeds. Moreover, a vibration
sensor with a 48 kHz sampling rate was used for data collection. This dataset has four
classes: NORM, ROLF, INRF, and OURF. Moreover, three different crack sizes are included
(0.007 inches, 0.014 inches, and 0.021 inches) and the data were recorded at 0-hp, 1-hp,
2-hp, and 3-hp torque loads [38]. Table 1 lists the CWRU data descriptions for healthy and
defective states.

Table 1. Case Western Reserve University Vibration Dataset classes, torque loads, and crack sizes [38].

Class Torque Load (hp) Crack Sizes (Inches)

NORM 0, 1, 2, 3 -
ROLF 0, 1, 2, 3 0.007, 0.014, 0.021
INRF 0, 1, 2, 3 0.007, 0.014, 0.021
OURF 0, 1, 2, 3 0.007, 0.014, 0.021

4. Preprocessing

The proposed scheme has three main sections: (a) preprocessing, (b) resampled sig-
nal approximation and estimation, and (c) fault detection and diagnosis. To calculate
signal conditions and the probable types of fault by using an intelligence-based indirect
observer and a machine-learning approach, it may be necessary to calculate one or more
statistical features extracted from the bearing signal. Therefore, in order to extract appro-
priate features, the bearing raw signal is first windowed at exactly the same size. Based
on [38], the range of rotational speeds in the CWRU dataset is 1730 to 1797 revolutions per
minute (RPM) or 28 to 30 revolutions per second (RPS). In addition, the data collection
sampling rate frequency for the CWRU dataset is 48 kHz. So, to cover the bearing con-
ditions, 1200 samples are needed every rotation. Moreover, because the signal length is
120,000 samples, we have 100 windows for each condition. In the next step, the RMS signal
is selected as a feature based on the following definition [12]:

Yrms =

√√√√ 1
N

N

∑
i=1

Y2 (1)

Here, Yrms, N, and Y denote the resampled RMS value for each window, the number
of windows calculated (based on the resampling technique), and the original bearing signal
in each window resampled using the above technique, respectively.
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5. Signal Approximation and Estimation

As seen in Figure 1, the proposed scheme has three main sections: (a) preprocessing,
(b) resampled signal approximation and estimation, and (c) fault classification. Preprocess-
ing was explained in the previous section. In the second section, resampled RMS signals
are approximated and estimated under two main subsections: (i) modeling the normal
resampled RMS signal and (ii) estimating the resampled RMS signals under normal and
abnormal conditions. The following steps are used for signal modeling: an AR design for
resampled RMS normal signal modeling, improvement of the robustness and performance
from the AR technique using defined uncertainty as an external input that is ARXU tech-
nique, (i.e., ARXU), and solving nonlinear bearing signal behavior using the combination
of MBR and ARXU to design AMRXU.

5.1. Combination of ARXU and MBR for Signal Approximation

After resampling and extracting the RMS feature from the original healthy signal, the
AR technique models and extracts the state-space equation from the RMS signal under
normal conditions. The state-space definition of a healthy signal based on the AR technique
is represented using the following equations [39]:

XAR(k + 1) = `XXAR(k) + `eeAR(k) (2)

YAR(k) = `Y
TXAR(k) (3)

eAR(k) = Yn,rms(k)−YAR(k− 1) (4)

Here, XAR(k), YAR(k), and (`X , `Y, `e), respectively, are the state of RMS signal mod-
eling using the AR technique, the output of RMS signal modeling using the AR technique,
and the state-space tuning coefficients based on the AR algorithm. The AR algorithm for
modeling the signal is valuable for the time-series signal. To improve the robustness and
performance against uncertainties, an ARXU is recommended. The mathematical definition
of ARXU is represented as the following equations [39,40]:

XARXU(k + 1) = [`XXARXU(k) + `εεARXU(k)] + `eeARXU(k) (5)

YARXU(k) = `Y
TXARXU(k) (6)

eARXU(k) = Yn,rms(k)−YARXU(k− 1), (7)

εARXU(k) = YARXU(k)−Yn,rms(k) (8)

Here, XARXU(k), YARXU(k), εARXU(k), Yn,rms(k), and (`ε), respectively, are the state of
RMS signal modeling using ARXU, the output of the RMS signal modeling using ARXU, the
uncertainties effect estimation and feedback as inputs to reduce the effect of uncertainties
using ARXU, the original RMS signal for a healthy condition, and the state-space tuning
coefficient based on the ARXU algorithm.

The main obstacle in time-series signal modeling is estimating nonlinear behavior.
Nonlinear behavior modeling of bearings is complicated. To address this issue, MBR is
recommended [41,42]. MBR is a learning technique to approximate the resampled RMS
signal in a normal state. Therefore, the combination of ARXU and MBR is introduced in this
research. The basic concept of the MBR technique is the learning method. The following
function represents the mathematical definition of MBR [42]:

}MBR = ∑
i

(
∂i
+ − ∂i

−)(θi, θ) + Θ. (9)

Here, }MBR, (∂i
+, ∂i

−), (θi, θ), and Θ are the output-modeled RMS resampled normal
signal based on MBR, the Lagrange coefficients, the kernel, and the bias, respectively. Vari-
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ous kernel functions have been introduced in research papers; in this work, the Gaussian
function is selected and represented as follows:

(θi, θ) = e(−
1

2σ2 ‖θi−θ‖2). (10)

Here, σ is variance. Moreover, the minimum value for (∂i
+, ∂i

−) can be calculated
based on the following equation:

min ∑
i

∑
j

(
∂i
+ − ∂i

−)(∂j
+ − ∂j

−)(θi, θ). (11)

If (θi, θ) is defined asMij and is based on Equation (11), then

min ∑
i

∑
j

(
∂i
+.∂j

+
)
Mij −

(
∂i
−.∂j

+
)
Mij −

(
∂i
+.∂j

−)Mij +
(
∂i
−.∂j

−)Mij. (12)

Moreover, ifM =
[
Mij

]
∈ Rn×n, ∂ =

[
∂+

∂−

]
2n×1

, and ℵ =

[
M −M
−M M

]
, then

Equation (12) is rewritten as:

min
1
2

∂Tℵ∂ + LT∂. (13)

Here, L =

[
−Y + β
Y + β

]
2n×1

, in which Y and β are the resampled RMS signal under

normal conditions, and the boundary of acceptable signal modeling, respectively. In
addition, bias is determined using the following function:

Θ =
1
s ∑

s∈S

[
Ys −∑

i∈S

(
∂i
+ − ∂i

−)× (θi, θs)− β× sgn
(
∂i
+ − ∂i

−)]. (14)

Here, Ys and S denote the support vector resampled RMS signal in a normal condition,
and the support vector, respectively. The support vector is defined as

S =
{

i
∣∣0 ≤ ∂i

+ − ∂i
− ≤ ∆

}
. (15)

Here, ∆ is a constant. So, the combination of the ARXU and MBR algorithms (or
AMRXU) is represented with the following definitions:

XAMRXU(k + 1) = [`XXAMRXU(k) + `εεAMRXU(k) + `MBR}MBR] + `eeAMRXU(k), (16)

YAMRXU(k) = `Y
TXAMRXU(k), (17)

eAMRXU(k) = Yn,rms(k)−YAMRXU(k− 1), (18)

εAMRXU(k) = YAMRXU(k)−Yn,rms(k). (19)

Here, XAMRXU(k), YAMRXU(k), εAMRXU , and `MBR, respectively, are the state of RMS
signal modeling using AMRXU, the output of RMS signal modeling using AMRXU, the
uncertainties-effect estimation and feedback as inputs to reduce the effect of uncertainties
of using AMRXU, and the state-space tuning coefficient.

5.2. Combination of AMRXU-PMI Observer, VS-Lyapunov Algorithm, and SNFS Technique for
Resampled RMS Signal Estimation

According to Figure 1, after modeling the signal and extracting the nonlinear state-
space equation from the resampled RMS signal in a healthy condition, normal and abnormal
resampled RMS signals are estimated using the proposed self-tuning hybrid-based scheme.
Although the accuracy of resampled RMS normal signal modeling using AMRXU is 98.5%,
for abnormal resampled RMS signals (and for normal resampled RMS signals under torque
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loads of 1 hp, 2 hp, and 3 hp), accuracy in signal modeling decreases. So, the signal
estimation technique is suggested in this work. The proposed algorithm is used to estimate
the resampled RMS signal using the following steps. First, the resampled RMS signals are
estimated using the AMRXU-PI observer, and its mathematical state-space equations are
extracted. In the second step, to improve the accuracy of the AMRXU-PI observer, com-
bining the integral term and the AMRXU-PI observer designs the AMRXU-PMI observer.
Third, to increase the effect of robustness in the AMRXU-PMI observation technique,
the VS-Lyapunov algorithm is used alongside the AMRXU-PMI observer, making the
AMRXU-VSPMI observer. In the last step, to improve accuracy and flexibility in uncertain
situations, an intelligent technique based on the SNFS is used along with AMRXU-VSPMI,
which builds the proposed method: the AMRXU-AVSPMI observer. Thus, the state-space
equations for the AMRXU-PI observer are as follows:

XAMRXU−PI(k + 1) = [`XXAMRXU−PI(k) + `εεAMRXU−PI(k) + `MBR}MBR]
+`eeAMRXU−PI(k) + εAMRXU−PI + `p(YAMRXU−PI(k)−YAMRXU(k)),

(20)

YAMRXU−PI(k) = `Y
TXAMRXU−PI(k), (21)

eAMRXU−PI(k) = Yu,rms(k)−YAMRXU−PI(k− 1), (22)

εAMRXU−PI(k + 1) = εAMRXU−PI(k) + `i(1)(εAMRXU−PI(k)− εAMRXU(k)). (23)

Here, XAMRXU−PI(k), YAMRXU−PI(k), eAMRXU−PI(k), εAMRXU−PI , Yu,rms(k), and(
`p, `i(1)

)
, respectively, are the state estimation of RMS signal modeling, the output esti-

mation of RMS signal modeling, the estimation error, and the uncertainties estimation (all
using the AMRXU-PI observation technique), the unknown resampled RMS signals, and
the state-space tuning coefficients for proportional and integral terms, also based on the
AMRXU-PI observation algorithm. Based on Equation (20), the proportional term is used
to increase the accuracy in state estimation of the RMS signal modeling. Moreover, based
on Equation (23), the integral term is selected to reduce the effect of uncertainties in signal
estimation. To improve the accuracy of the AMRXU-PI observer, the AMRXU-PMI observer
is recommended here. Therefore, based on Figure 1, to estimate the resampled RMS signal
for healthy and faulty conditions, and to improve the accuracy of the AMRXU-PI observer,
in the second step, the AMRXU-PMI observer is selected, and the state-space equations are
as follows:

XAMRXU−PMI(k + 1) = [`XXAMRXU−PMI(k) + `εεAMRXU−PMI(k) + `MBR}MBR]
+`eeAMRXU−PMI(k) + εAMRXU−PMI
+`p(YAMRXU−PMI(k)−YAMRXU(k))

+
[

XAMRXU−PMI(k) + `i(2)(XAMRXU−PMI(k)− XAMRXU(k))
]
,

(24)

YAMRXU−PMI(k) = `Y
TXAMRXU−PMI(k), (25)

eAMRXU−PMI(k) = Yu,rms(k)−YAMRXU−PMI(k− 1), (26)

εAMRXU−PMI(k + 1) = εAMRXU−PMI(k) + `i(1)(εAMRXU−PMI(k)− εAMRXU(k)). (27)

Here, XAMRXU−PMI(k), YAMRXU−PMI(k), eAMRXU−PMI(k), εAMRXU−PMI , and
(
`i(2)

)
,

respectively, are the state estimation of RMS signal modeling, the output estimation of
RMS signal modeling, the estimation error, and the uncertainties estimation (all using
the AMRXU-PMI observation technique), plus the state-space tuning coefficients for the
integral term based on AMRXU-PMI observation algorithm. Based on Equation (24), the
integral term is used to increase the accuracy in state estimation of the RMS signal modeling.
To improve the robustness of the AMRXU-PMI observer, the AMRXU-VSPMI observer is
recommended. Therefore, based on Figure 1, to estimate the resampled RMS signal, and to
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increase the robustness of the AMRXU-PMI observer, in the third step, the AMRXU-VSPMI
observer is selected, and the state-space equations are as follows:

XAMRXU−VSPMI(k + 1) = [`XXAMRXU−VSPMI(k) + `εεAMRXU−VSPMI(k) + `MBR}MBR]
+`eeAMRXU−VSPMI(k) + εAMRXU−VSPMI
+`p(YAMRXU−VSPMI(k)−YAMRXU(k))

+
[

XAMRXU−VSPMI(k) + `i(2)(XAMRXU−VSPMI(k)− XAMRXU(k))
]
,

(28)

YAMRXU−VSPMI(k) = `Y
TXAMRXU−VSPMI(k), (29)

eAMRXU−VSPMI(k) = Yu,rms(k)−YAMRXU−VSPMI(k− 1), (30)

εAMRXU−VSPMI(k + 1) = εAMRXU−VSPMI(k) + `i(1)(εAMRXU−VSPMI(k)− εAMRXU(k))
+`VS × sgn ‖ (εAMRXU−VSPMI(k)− εAMRXU(k)) ‖ .

(31)

Here, XAMRXU−VSPMI(k), YAMRXU−VSPMI(k), eAMRXU−VSPMI(k), εAMRXU−VSPMI ,
and (`VS), respectively, are the state estimation of RMS signal modeling, the output esti-
mation of RMS signal modeling, the estimation error, and the uncertainties estimation (all
using the AMRXU-VSPMI observation technique), plus the state-space tuning coefficients
for variable structure robust terms based on the AMRXU-VSPMI observation algorithm.
Based on Equation (28), the variable structure robust term is used to increase robustness
in the uncertainty estimation of RMS signal modeling. To improve the flexibility and
accuracy of signal estimation in the presence of uncertainties, a combination of SNFS and
AMRXU-VSPMI (the AMRXU-AVSPMI observer) is introduced. The SNFS technique is
used to reduce the effect of uncertainties using optimization of the system’s behavior.
Regarding Equation (31), the uncertainty index performance (UIP) is represented by the
following function:

UIPAMRXU−VSPMI =
1
k

k

∑
1
(εAMRXU−VSPMI(k)− εAMRXU)

2 (32)

To minimize the UIP, the SNFS technique is introduced. The TSK fuzzy logic technique
can be represented with the following equation [43]:

εSNFS(k) =
∑k εAMRXU−VSPMI(k)×e(−0.5 ∑k (

∅(k)−Ck
σ )

2
)

∑k e(−0.5 ∑k (
X(k)−Ck

σ )
2
)

= ∑k εAMRXU−VSPMI(k)×γk
∑k γk

(33)

Here, εSNFS(k), Ck,∅(k) and σ denote uncertainty estimation using SNFS, the mem-
bership functions selection, the enteral point of the membership value, and the variance,
respectively, and γk is represented with

γk = e
(−0.5 ∑

k
(
∅(k)−Ck

σ )
2
)

(34)

Regarding Equation (32), UIP in the SNFS is

UIPSNFS =
[∑k

1(εAMRXU−VSPMI(k)− εAMRXU)× γk]
2

[∑k
1 γk]

2 . (35)
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Moreover, to minimize UIPSNFS based on gradient descent, we have

(UIPSNFS)min = ∂
∂Ck
× [

k
∑
1
(εAMRXU−VSPMI(k)− εAMRXU)× γk]

2

+ ∂
∂γk

×[
k
∑
1
(εAMRXU−VSPMI(k)− εAMRXU)]

2
∂γk
∂Ck

,

= 2(εAMRXU−VSPMI(k)− εAMRXU)

×γk(εAMRXU−VSPMI(k)− εAMRXU)× γk × ∂γk
∂Ck

.

(36)

Regarding Equation (36), by updating Cr and σ, we can minimize UIPSNFS. That
means the performance from TSK fuzzy logic improves. Therefore, the adaptive Ck and σ
are represented as follows [44]:

Ck,t+1 = Ck,t −∅k,t
∂UIPSNFS

∂Ck,t
. (37)

and
σk,t+1 = σk,t −∅k,t

∂UIPSNFS
∂σk,t

. (38)

Here, ∅k,t is the tuning coefficient. Therefore, based on Figure 1, to improve the
flexibility and accuracy of signal estimation in the presence of uncertainties in the AMRXU-
VSPMI observer, in the last step, the AMRXU-AVSPMI observer is selected, and the
state-space equations are as follows:

XAMRXU−AVSPMI(k + 1) = [`XXAMRXU−AVSPMI(k) + `εεAMRXU−AVSPMI(k) + `MBR}MBR]
+`eeAMRXU−AVSPMI(k) + εAMRXU−AVSPMI
+`p(YAMRXU−AVSPMI(k)−YAMRXU(k)) + [XAMRXU−AVSPMI(k)
+`i(2)(XAMRXU−AVSPMI(k)− XAMRXU(k))

] (39)

YAMRXU−AVSPMI(k) = `Y
TXAMRXU−AVSPMI(k), (40)

eAMRXU−AVSPMI(k) = Yu,rms(k)−YAMRXU−AVSPMI(k− 1) (41)

εAMRXU−AVSPMI(k + 1) = εAMRXU−AVSPMI(k) + `i(1)(εAMRXU−AVSPMI(k)− εAMRXU(k))
+`VS × sgn ‖ (εAMRXU−AVSPMI(k)− εAMRXU(k)) ‖ +`SNFSεSNFS(k).

(42)

Here, XAMRXU−AVSPMI(k), YAMRXU−AVSPMI(k), eAMRXU−AVSPMI(k), εAMRXU−AVSPMI,
and (`SNFS), respectively, are the state estimation of RMS signal modeling, the output
estimation of RMS signal modeling, the estimation error, and the uncertainties estimation
(all using the AMRXU-AVSPMI observation technique), plus the state-space tuning coef-
ficients for the SNFS term. Based on Equation (42), the estimation of uncertainty using
the SNFS term increases accuracy and flexibility in the uncertainty estimation of RMS
signal modeling.

6. Fault Decision

After modeling the resampled RMS signal in a normal condition using the proposed
AMRXU technique, and after estimating the normal and faulty resampled RMS signals
using the proposed AMRXU-AVSPMI observation technique, the fault decision technique
is used for anomaly detection and diagnosis. This procedure has two main subsections: (a)
determination of the residual signal (the difference between the original resampled RMS
signal in normal and abnormal states and the estimated signals), and (b) fault detection
and classification using a machine learning–based approach, such as an SVM [44,45].

6.1. Residual Signal

The residual signal is the difference between the original resampled RMS signal and
the estimated signal. By comparing residual signals from healthy, ball fault, inner fault,
and outer fault states, the condition is detected. The residual signals of the AMRXU-PMI
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observer, RAMRXU−PMI(k), the AMRXU-VSPMI observer, RAMRXU−VSPMI(k), and the
proposed AMRXU-AVSPMI observer, RAMRXU−AVSPMI(k), respectively, are determined
as follows:

RAMRXU−PMI(k) = Yu,rms(k)−YAMRXU−PMI(k) (43)

RAMRXU−VSPMI(k) = Yu,rms(k)−YAMRXU−VSPMI(k). (44)

and
RAMRXU−AVSPMI(k) = Yu,rms(k)−YAMRXU−AVSPMI(k). (45)

6.2. Fault Classification

Once the residual signal of healthy and faulty resampled RMS signals is obtained
by the AMRXU-PMI observer, the AMRXU-VSPMI observer, and the proposed AMRXU-
AVSPMI observer, the SVM is used for classification. The principal concepts of the SVM
are explained in [45,46]. In this work, four conditions for bearing fault diagnosis are ROLF,
INRF, and OURF conditions. For each condition, the torque load changes from 0 hp to 3 hp.
The crack sizes for ROLF, INRF, and OURF are 0.007, 0.014, and 0.021 inches. For each
condition, the RMS resampled residual signal is segmented into 100 samples. The training
set included 75% of the sample data, and the testing set included the other 25%. The details
on the training and testing datasets are depicted in Table 2. Table 3 shows a summary of
the proposed scheme for the rolling element bearing fault diagnosis.

Table 2. Details of the dataset for training and testing based on the SVM.

Classes (NORM, ROLF, INRF, OURF)

Number of samples per class 100
Number of training samples per class 75
Number of testing samples per class 25

Number of samples per test 400
Number of training samples per test 300
Number of testing samples per test 100

Table 3. Summary of the proposed scheme’s implementation.

Steps Explanation, with Equation Number(s) in Parentheses

1 Resampling and RMS feature extraction (1).
RMS Signal Modeling

2 Signal modeling using AR technique (2–4).

3 Increase the accuracy and robustness of AR using the combination of AR
and ARXU (5–8).

4 Improve the performance of ARXU under nonlinear conditions using the
combination of ARXU and MBR that is called AMRXU (16–19).

RMS Signal Estimation
5 Signal estimation using the AMRXU-PI technique (20–23).

6 Increasing the accuracy of AMRXU-PI using the AMRXU-PMI method
(24–27).

7 Increasing the robustness of the AMRXU-PMI method using the
AMRXU-VSPMI technique (28–31).

8 Increasing the reliability, flexibility, and accuracy of AMRXU-VSPMI using
the proposed SNFS scheme that is called AMRXU-AVSPMI (39–42).

Fault Decision
9 Determination of residual signals (45).

10 Classification and identification of the signal states (faults) using the SVM.

7. Experimental Results

The CWRU dataset was chosen to test the recommended scheme [38]. To test the
quality of the proposed AMRXU-AVSPMI technique, the method was compared with
state-of-the-art techniques, including AMRXU-VSPMI and AMRXU-PMI. All simulations
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are performed in MATLAB 2015a software with the system configuration of Intel (R) core
™ i7-8700U, 8 GB RAM, 3.2 GHz processor, and 64-bit Windows 10 operating system.

Figure 2 illustrates the original vibration signals in bearings under all conditions. As
seen in the figure, when crack sizes are 0.007, 0.014, and 0.021 inches, the ROLF, INRF, and
OURF overlap, causing misclassifications in fault diagnosis. Based on Figure 2, it can be
seen that the classification of the original raw signals is very difficult because these signals
are overlapped in abnormal conditions. To address this issue, the proposed algorithm
is recommended.
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Figure 4 shows the error in signal modeling using the AR technique, the ARXU
method, and the proposed AMRXU algorithm for resampled RMS signals in a normal state.
In Figure 4, the accuracy of the normal resampled RMS signal modeled using AR is around
51.33%; by ARXU, it is around 85.5%, and based on AMRXU, the accuracy is 98.5%. Thus,
the linear AR and ARXU approaches are not accurate enough to model the nonlinear and
nonstationary signals. To address this issue, the nonlinear signal modeling approach using
proposed AMRXU is suggested in this work. The mean square error (MSE) of the RMS
resampled normal signal modeling using the AMRXU for training, validation, and testing
is presented in Figure 5. From the figure, we can observe that MSE curves sharply decrease
within the first 7 epochs until they reach the MSE level of near 0.01. Then, for the next
17 epochs, some oscillations can be approximated, and these curves converge to an MSE
level of around 0.0079.
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The AMRXU-PMI and AMRXU-VSPMI methods are inherently linear estimators
and the most significant advantage for them is that we can perform model structure
and parameter identification rapidly. The performance of signal pattern recognition in
these techniques appears to be satisfactory. However, to increase the performance of
fault diagnosis, pattern identification and crack size detection, the AMRXU-AVSPMI is
suggested in the paper. Figure 6 shows the effect of the SNFS technique and training the
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inputs on the RMS error of signal estimation. In this case, the SNFS algorithm has 34 nodes,
32 linear parameters, 18 nonlinear parameters, and eight fuzzy rules. The elapsed time in
this SNFS design is 0.223 s. To have the minimum RMS error, the first, second, and third
inputs need to have 15-, 12-, and 9-times training, respectively.
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Figure 7 shows the power of estimation algorithms for signal classification using the
proposed scheme (AMRXU-AVSPMI), the AMRXU-VSPMI technique, and the AMRXU-
PMI method.
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As seen in Figure 7, with the proposed AMRXU-AVSPMI technique, which is an adap-
tive hybrid-nonlinear observer, the RMS signal amplitude for the four classes is detectable.
In the AMRXU-PMI method, which is a linear observer, the distinction between the in-
ner and outer faults is either very low or indistinguishable. These conditions improved
somewhat with the AMRXU-VSPMI technique, which is a robust observer, but were less
detectable than with the proposed AMRXU-AVSPMI observer.

To test the accuracy of each state’s identification, a combination of the proposed
scheme (AMRXU-AVSPMI) with an SVM (AMRXU-AVSPMI+SVM) is compared against
AMRXU-VSPMI+SVM and AMRXU-PMI+SVM. The fault identification and classification
performance for the methods mentioned above are assessed by using important met-
rics [46], such as averaged recall (Recav), averaged precision (Precav), averaged F1-score
(F1av), and total fault identification and classification accuracy (FICA). We also use these
metrics to test the robustness of the proposed methods. These metrics are defined as the
following equations:

Recav =
∑K

k=1 TPk

∑K
k=1(TPk + FNk)

× 100; (46)
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Precav =
∑K

k=1 TPk

∑K
k=1(TPk + FPk)

× 100; (47)

F1av = 2× (Precav × Recav)× 100/(Precav + Recav); (48)

FICA =
∑K

k TPVk

N
× 100. (49)

where, TPk, FPk, FNk, N are the true-positive value for the class of k, false-positive value for
the class of k, and false-negative value for the class of k, and the data samples, respectively.
Also, K is the number of classes, and k is the index of class such that k = 1, . . . , K. To
test the robustness of the above algorithms, the results are tested in 10 experiments and
summarized in Table 4.

Table 4. The Recav, Precav, F1av, and FICA averaged over 10 experiments.

Methods
Metrics

Recav (%) Precav (%) F1av (%) FICA (%)

AMRXU-AVSPMI+SVM 97.9 97.84 97.84 97.8
AMRXU-VSPMI+SVM 95 94.83 94.84 94.8

AMRXU-PMI+SVM 90.9 90.9 90.9 90.85

Figure 8 shows the boxplots of the FICA metric over 10 experiments for AMRXU-
AVSPMI+SVM, AMRXU-VSPMI+SVM, and AMRXU-PMI+SVM. From Figure 8, it is ob-
served that the classification accuracy of the proposed method (AMRXU-AVSPMI+SVM) is
the most robust because it does not deviate meaningfully from the average of FICA, which
validates the repeatability of the test. For AMRXU-VSPMI+SVM, the deviation of FICA is
not very high; however, the average accuracy is lower than that of the proposed method.
Unlike the proposed method, the AMRXU-PMI+SVM boxplot has a significant deviation
from the average of the FICA. From Figure 8, we know that the combination of the AVSPMI
observation technique, the modeling algorithm using AMRXU, and the SVM classifier can
improve the classification and identification performance and fault diagnosis stability and
robustness. Figures 9–12 show the average of confusion matrices for 10 experiments to
observe the specific details about the fault diagnosis performance when the torque load
varies from 0 hp to 3 hp.
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Table 5 and Figure 9 demonstrate the accuracy of state identification when the
torque load is 0 hp based on the proposed scheme (AMRXU-AVSPMI+SVM), AMRXU-
VSPMI+SVM, and AMRXU-PMI+SVM.

Table 5. The accuracy in state identification (torque load: 0 hp).

Technique AMRXU-
AVSPMI+SVM

AMRXU-
VSPMI+SVM AMRXU-PMI+SVM

Crack Sizes (in.) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
NORM (%) 100 100 100 100 100 100 100 100 100
ROLF (%) 100 100 100 96 92 96 96 92 84
INRF (%) 96 100 96 92 92 96 92 88 84
OURF (%) 96 96 100 96 96 92 80 88 92

Average (%) 98 99 99 96 95 96 92 92 90

From Figure 9, it is clear that AMRXU-VSPMI+SVM and AMRXU-PMI+SVM have
high misclassification problems, especially between the inner and outer faults. The
proposed AMRXU-AVSPMI+SVM reduced this challenge. Moreover, the average accu-
racy of state identification when the torque load was 0 hp from the proposed AMRXU-
AVSPMI+SVM, AMRXU-VSPMI+SVM, and AMRXU-PMI+SVM was 98.65%, 95.67%, and
91.35%, respectively. Thus, the proposed AMRXU-AVSPMI+SVM improved the average
state identification accuracy compared to AMRXU-VSPMI+SVM and AMRXU-PMI+SVM
by around 2.98% and 7.3%, respectively.

Table 6 and Figure 10 demonstrate the accuracy in state identification when the torque
load was 1 hp based on the proposed scheme (AMRXU-AVSPMI+SVM), on AMRXU-
VSPMI+SVM, and on AMRXU-PMI+SVM.

Table 6. The accuracy in state identification (torque load: 1 hp).

Technique AMRXU-
AVSPMI+SVM

AMRXU-
VSPMI+SVM AMRXU-PMI+SVM

Crack Sizes (in.) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
NORM (%) 100 100 100 100 100 100 100 100 100
ROLF (%) 96 100 100 92 92 96 88 92 88
INRF (%) 92 96 96 92 92 92 92 84 88
OURF (%) 100 96 96 96 92 92 80 88 92

Average (%) 97 98 98 95 94 95 90 91 92
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Based on Figure 10 and Table 6, it is clear that AMRXU-PMI+SVM had a misclassifi-
cation problem, especially between inner and outer faults, which the proposed AMRXU-
AVSPMI+SVM method reduced. Furthermore, the average accuracy in state identification
when the torque load was 1 hp with the proposed AMRXU-AVSPMI+SVM, with AMRXU-
VSPMI+SVM, and with AMRXU-PMI+SVM was 97.7%, 94.65%, and 91%, respectively.
Thus, the proposed AMRXU-AVSPMI+SVM improved average state identification accuracy
compared to AMRXU-VSPMI+SVM and AMRXU-PMI+SVM by around 3.05% and 6.7%,
respectively. Table 7 and Figure 11 demonstrate the accuracy in state identification when
the torque load was 2 hp based on the proposed scheme (AMRXU-AVSPMI+SVM), on
AMRXU-VSPMI+SVM, and on AMRXU-PMI+SVM.

Table 7. The accuracy of state identification (torque load: 2 hp).

Technique AMRXU-
AVSPMI+SVM

AMRXU-
VSPMI+SVM AMRXU-PMI+SVM

Crack Sizes (in.) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
NORM (%) 100 100 100 100 100 100 100 100 100
ROLF (%) 100 100 100 92 96 96 92 92 92
INRF (%) 92 96 96 92 92 96 88 88 84
OURF (%) 96 92 96 92 92 92 84 88 88

Average (%) 97 97 98 94 95 96 91 92 91

In Table 7 and Figure 11, we can see that AMRXU-PMI+SVM and AMRXU-VSPMI+SVM
had misclassification and overlap problems with inner and outer faults, but the proposed
AMRXU-AVSPMI+SVM method reduced overlapping. Besides, the average accuracy in the
state identification when the torque load was 2 hp in the proposed AMRXU-AVSPMI+SVM,
AMRXU-VSPMI+SVM, and AMRXU-PMI+SVM was 97.35%, 95%, and 91.35%, respec-
tively. Thus, the proposed AMRXU-AVSPMI+SVM improved average state identification
accuracy from AMRXU-VSPMI+SVM and AMRXU-PMI+SVM by around 2.35% and 6%,
respectively. Finally, Table 8 and Figure 12 show the accuracy in state identification when
the torque load was 3 hp based on the proposed scheme (AMRXU-AVSPMI+SVM), on
AMRXU-VSPMI+SVM, and on AMRXU-PMI+SVM.

Table 8. The accuracy of state identification (torque load: 3 hp).

Technique AMRXU-
AVSPMI+SVM

AMRXU-
VSPMI+SVM AMRXU-PMI+SVM

Crack Sizes (in.) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
NORM (%) 100 100 100 100 100 100 100 100 100
ROLF (%) 100 96 100 92 96 96 92 88 92
INRF (%) 96 96 96 92 92 88 84 88 80
OURF (%) 96 96 96 92 88 92 84 88 84

Average (%) 98 97 98 94 94 94 90 91 89

The average fault pattern identification by the proposed AMRXU-AVSPMI+SVM,
by AMRXU-VSPMI+SVM, and by AMRXU-PMI+SVM is demonstrated in Table 9. In
Table 9, the accuracy in fault pattern detection from the proposed scheme, compared with
AMRXU-VSPMI+SVM, increased for ROLF, INRF, and OURF defects by 5%, 3.34%, and
3.66%, respectively. Moreover, the accuracy in fault pattern detection from the proposed
scheme, compared with AMRXU-PMI+SVM, for ROLF, INRF, and OURF defects improved
by 8.67%, 9%, and 9.99%, respectively. Moreover, the average crack size detection in
ROLF, INRF, and OURF from using AMRXU-AVSPMI+SVM, AMRXU-VSPMI+SVM, and
AMRXU-PMI+SVM is shown in Tables 10–12, respectively.
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Table 9. The average accuracy in fault pattern identification from the proposed AMRXU-
AVSPMI+SVM compared to AMRXU-VSPMI+SVM and AMRXU-PMI+SVM.

Method/Fault NORM ROLF INRF OURF

AMRXU-AVSPMI+SVM 100% 99.34% 95.67% 96.33%
AMRXU-VSPMI+SVM 100% 94.34% 92.33% 92.67%

AMRXU-PMI+SVM 100% 90.67% 86.67% 86.34%

Table 10. The average accuracy in roller crack size detection using the proposed AMRXU-
AVSPMI+SVM compared to AMRXU-VSPMI+SVM, and AMRXU-PMI+SVM.

Method/Crack Size 0.007 in. 0.014 in. 0.021 in. Average

AMRXU-AVSPMI+SVM 99% 99% 100% 99.33%
AMRXU-VSPMI+SVM 93% 94% 96% 94.33%

AMRXU-PMI+SVM 92% 91% 89% 90.67%

Table 11. The average accuracy for inner crack size detection using the proposed AMRXU-
AVSPMI+SVM compared to AMRXU-VSPMI+SVM and AMRXU-PMI+SVM.

Method/Crack Size 0.007 in. 0.014 in. 0.021 in. Average

AMRXU-AVSPMI+SVM 94% 97% 96% 95.67%
AMRXU-VSPMI+SVM 92% 92% 93% 92.33%

AMRXU-PMI+SVM 89% 87% 84% 86.67%

Table 12. The average accuracy for outer crack size detection from the proposed AMRXU-
AVSPMI+SVM compared to AMRXU-VSPMI+SVM and AMRXU-PMI+SVM.

Method/Crack Size 0.007 in. 0.014 in. 0.021 in. Average

AMRXU-AVSPMI+SVM 97% 95% 97% 96.33%
AMRXU-VSPMI+SVM 94% 92% 92% 92.67%

AMRXU-PMI+SVM 82% 88% 89% 86.33%

Table 10 shows the average accuracy in roller crack size detection using AMRXU-
AVSPMI+SVM, AMRXU-VSPMI+SVM, and AMRXU-PMI+SVM. In this table, accuracy
in roller crack size detection based on AMRXU-AVSPMI+SVM, AMRXU-VSPMI+SVM,
and AMRXU-PMI+SVM was 99.33%, 94.33%, and 90.67%. In addition, the average accu-
racy in inner crack size detection using AMRXU-AVSPMI+SVM, AMRXU-VSPMI+SVM,
and AMRXU-PMI+SVM is illustrated in Table 11. In this table, accuracy in inner crack
size detection based on the AMRXU-AVSPMI+SVM improved (compared with AMRXU-
VSPMI+SVM and AMRXU-PMI+SVM) by 3.34% and 9%, respectively. Moreover, the
average accuracy from outer crack size detection using AMRXU-AVSPMI+SVM, AMRXU-
VSPMI+SVM, and AMRXU-PMI+SVM is illustrated in Table 12. In this table, accuracy
from outer crack size detection with AMRXU-AVSPMI+SVM improved in comparison
with AMRXU-VSPMI+SVM and AMRXU-PMI+SVM by 3.66% and 10%, respectively.

The main reason that the accuracy of the fault diagnosis in the AMRXU-VSPMI and
AMRXU-PMI algorithms is less than that of the proposed AMRXU-AVSPMI is due to the
nature of the linear observation (AMRXU-VSPMI and AMRXU-PMI) algorithms. When
these procedures are applied to the nonlinear and non-stationary such as bearing signals,
the estimation error is developed compared to the nonlinear AMRXU-AVSPMI observation
method. However, according to the concept of robustness, the performance of AMRXU-
VSPMI is better than the AMRXU-PMI. Subsequently, the proposed hybrid framework
is suitable for accurate fault diagnosis of the bearing in different crack sizes and torque
loads in comparison with the other referenced methods. From the experimental results, it
is obvious that the combination of the AVSPMI observation technique with the AMRXU
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modelling approach can improve the performance of the fault diagnosis in comparison
with the linear observation technique. However, from Tables 9–12, we can see that the
inner and outer performance for fault pattern identification and crack size detection should
be improved. Moreover, the preprocessing unit in the presence of the noisy signal must be
improved by using filter techniques.

8. Conclusions

In the paper, a methodology has been developed to improve the fault diagnosis of a
bearing by utilizing a hybrid observation. This methodology has been applied to a real case
of an experimental CWRU dataset. Furthermore, within this method, the hybrid-based sig-
nal modeling for the normal resampled RMS signal using a smart autoregressive modeling
approach with 98.5% accuracy was suggested. Moreover, to generate robust and reliable
residual signals, the adaptive variable structure-Lyapunov proportional multi-integral
observer was adopted. The support vector machine was recommended for the classifi-
cation of residual signals. According to the experimental results, the average accuracy
for crack size identification was 98.65%, 97.7%, 97.35%, and 97.67%, respectively, when
the motor torque loads were 0 hp, 1 hp, 2 hp, and 3 hp. In addition, the average pattern
identification for NORM, ROLF, INRF, and OURF was 100%, 99.34%, 95.67%, and 96.33%,
respectively. The results suggest that the proposed approach was useful for the diagnosis
of bearing failures. On the other hand, this approach could also be recommended in other
systems such as condition monitoring. In that case, it would be important to consider
some important factors such as the sampling rate frequency and motor rotational speeds to
adapt the preprocessing stage since the accuracy of the fault diagnosis depends on them. In
future work, we will focus on the improvement of the robustness, reliability, and precision
of the proposed scheme. One of the possible directions for the improvement is to discover
the robust function approximation by using a combination of the mathematical-based tech-
nique and data-driven-based signal modeling approach. Another direction is to improve
the estimation algorithm by using the nonlinear architecture of the observation approach
where we can combine the nonlinear robust observer with a deep learning approach to
increase the performance of signal estimation and classification and reduce the complexity.
Furthermore, the problem of different conditions/datasets should be analyzed, and the
proposed algorithm needs to be validated by using the vibration and acoustic emission
datasets with various motor speeds, torque loads, and crack sizes.
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