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Abstract: The roof–column structural system is utilized for many engineering and architectural
applications due to its structural efficiency. However, it typically requires column locations to be
predetermined, and involves a tedious trial-and-error adjusting process to fulfil both engineering
and architectural requirements. Finding efficient column distributions with the aid of computational
methods, such as structural optimization, is an ongoing challenge. Existing methods are limited, with
continuum methods involving the generation of undesired complex shapes, and discrete methods
involving a time-consuming process for optimizing columns’ spatial order. This paper presents a new
optimization method to design the distribution of a given number of vertical supporting columns
under a roof structure. A computational algorithm was developed on the basis of the optimality-
criterion (OC) method to preserve and removed candidate columns pre-embedded with design
requirements. Three substrategies are presented to improve optimizer performance. The effectiveness
of the new method was validated with a range of roof–column structural models. Treating column
locations as design variables provides opportunities to significantly improve structural performance.

Keywords: support locations; optimization; roof–column system; computational algorithm; finite-
element analysis

1. Introduction

The roof–column structural system creates a simple form of shelter. It is utilized across
many architectural and engineering applications due to its effectiveness in supporting
environmental loads, transmitting the structure’s weight, and reducing solar heat gains [1].
However, determining locations of supporting columns under the roof is a challenging task;
they have direct influence on both architectural appearance and structural performance.

The integrated structural–architectural design was suggested to be an effective strat-
egy for capturing complex requirements from both engineering and architectural perspec-
tives [2]. This includes the utilization of structural optimization, where the optimization
design process achieves specific objectives by changing defined design variables. For
example, a curved frame’s minimal size and shape can be designed with a given applied
load through optimization [3]. Many other applications were all enabled by extensive pre-
ceding work in structural optimization using diverse structural optimization methods [4],
including continuum and discrete techniques.

Continuum methods obtain optimal designs by determining the shapes and locations
of cavities in continuous geometries [5,6]. Many popular topology optimization methods
are part of continuum methods, including the homogenization approach [7], the solid
isotropic material with penalization (SIMP) method [8–10], the bidirectional evolutionary
structural optimization (BESO) method [11–14], and the level set method [15–17]. Although
those continuum methods can maximize the stiffness of a structure with specified design
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constraints, it is difficult to apply them in roof–column structural systems to find optimal
locations of predefined columns, as they include the generation of complex 3D shapes. For
example, the iconic Qatar National Convention Center, designed using the extended ESO
method, has complex treelike columns supporting a simple rectangular roof [18].

Discrete methods obtain optimal designs by determining the optimal spatial order
and connectivity of line-based representations, such as trusses, frames, and equilibrium
configurations of tensegrity structures [19–22]. They typically involve the utilization of
computational algorithms, such as the genetic algorithm (GA) [23], the simulated annealing
(SA) algorithm [24], and particle swarm optimization (PSO) [25]. The key benefit of using
discrete methods is that components in optimal designs can be predetermined, thereby
being widely utilized in structural designs such as space frames with standard member
types [26]. However, existing discrete methods can be computationally expensive due to
many candidate elements, and require a user-defined objective function for optimization
problems that can be difficult to formulate and implement.

This paper proposes a new integrated structural–architectural design method for
automatically finding optimal column locations in roof–column structural systems. The
new method combines the objective function from topology optimization for compliance
minimization with a discrete design domain comprising candidate-supporting columns,
thus capturing architectural requirements and ensuring structural performance. Section 2
describes an optimization algorithm for implementing the new method. Section 3 intro-
duces three substrategies for controlling the optimization tendency in order to obtain
improved results. Section 4 validates the proposed method using a square-roof example.
Section 5 presents research implications using two additional examples with nonregular
roof shapes, followed by a conclusion in Section 6.

2. Optimal Column Locations
2.1. Problem Definition

This paper combines structural analysis with predetermined vertical columns to
find efficient layout distribution of a prescribed number of columns under a flat roof.
Predetermined columns are defined as a predefined column type and allowable locations
where the column type is determined from a given length, Young’s modulus, and cross-
sectional shape.

This section first reviews the limitation of previous methods and introduces the
critical advantages of the new method. Figure 1 shows a comparison between a typical
continuum method and the proposed method using the same roof, loading, and boundary
conditions. The BESO method was selected for representing continuum methods. The
BESO result includes columns with different sizes and shapes, obtained by adding and
removing efficient and inefficient elements, respectively, as shown in Figure 1a,d. The
critical limitation of the BESO method lies in the fact that the optimizer cannot control
the shape of generated columns. Hence, the BESO method is not suitable for the present
problem to realize specified design requirements.

In contrast to continuum methods, the new method can embed design requirements
in the initialization stage using a grid of predetermined columns under the roof, as shown
in Figure 1b,c. In this setup, vertical lines and the planar surface represent columns and the
roof, respectively. As shown in Figure 1e,f, optimization results preserve a prescribed num-
ber of columns and remove other predetermined columns. Different candidate columns
can lead to different final distributions. The following subsections describe the details of
the new optimization method.
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(a) (b)

(e)

(c)

(d) (f)

Non-design 
domain  
(Roof)

Continous 
design 
domain

Discrete design 
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(Candidate columns)

Initial:

Result:

Figure 1. Designing columns under a flat roof using optimization. Subfigures in top row represent
initial setup, including flat roof with (a) a continuous design domain, (b) 3 × 3 discrete design
domain, and (c) 8 × 8 discrete design domain. Subfigures in second row represent optimization
result obtained using (d) bidirectional evolutionary structural optimization (BESO) topology method
and (e,f) proposed new optimization method.

2.2. Problem Statement

The optimization problem can be considered as stiffness maximization (or compliance
minimization) of the overall roof–column system with constraints determining the number
of columns. The mathematical problem statement can be written as follows.

Minimize: C =
1
2

fTu (1)

Subject to: N∗ = ∑
i

xi (2)

0 < xmin ≤ xi ≤ 1 (3)

Ku = f (4)

where compliance C is the objective function that is the inverse measure of the overall
stiffness of a structure; f and u are the global force vector and displacement vector, respec-
tively; xi is the design variable denoting the relative density of the i-th column; xmin = 10−5

is a small value declaring the absence of a column; and K is the global stiffness matrix.
Equation (4) is an additional constraint that ensures the equilibrium of the structure.

2.3. Optimization Algorithm

The optimality-criterion (OC) method is an effective strategy to vary all candidate data
on the basis of a given hypothesis [27]. Solving the optimization problem using the OC
method can simultaneously preserve and remove efficient and inefficient columns. In this
paper, columns were hinged, so they were only loaded in the axial direction; the columns’
axial tress represents the OC method’s candidate data. The relative density of columns can
vary continuously between xmin and 1, as described in Equation (3), and the summation
of all design variables must be equal to a prescribed number, as described in Equation (2).
The optimization process is repeated until the structural system’s compliance is minimized,
which gives clear column distribution where the optimization result includes preserved
and removed columns, with xi being approximately 1 and 0, respectively. Details of the
optimization algorithm are as follows.
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The initial design variable of columns, x0, is first defined as the ratio of the prescribed
number of columns elements, N∗, to the number of candidate columns N, representing
that specified column materials are uniformly distributed to all candidate columns:

x0 = N∗/N (5)

Various methods can solve the optimization problem [28,29]. The OC method [9,27]
was selected in this paper for updating design variable xi, which can be written as

xi
k+1 =



max{xmin, xi
k(1−m)},

if xi
kBi

η ≤ max{xmin, xi
k(1−m)}

min{1, xi
k(1 + m)},

if xi
kBi

η ≥ min{1, xi
k(1 + m)}

xi
kBi

η ,
otherwise

(6)

where xi
k denotes the i-th design variable at the k-th iteration, m = 0.2 is the move limit,

η = 0.5 is a numerical damping coefficient, and Bi
η determines the optimality condition,

which can be defined as
Bi

η = Bi
0.5 = λσi

k (7)

where λ is a Lagrange multiplier, and σi
k is the axial stress of the i-th column at the k-th

iteration. Equation (7) is valid because: (i) Bi is set to consider all elastic strain energy
behaviors, Ui, generated from the i-th column, but the column only generated axial stress.
(ii) The magnitude of Bi does not affect the optimization result due to the utilization
of the Lagrange multiplier, λ. That is to say, Equation (7) is obtained by simplifying
Equations (8) and (9) with the consideration of (i) and (ii).

Bi ∝ Ui =
σi

2

2E0
(8)

Bi
0.5 ∝ σi (9)

where E0 is Young’s modulus of the predetermined columns.
Lagrange multiplier λ in Equations (6) and (7) can be determined using a bisection

method to enforce the constraint stated in Equation (2) during optimization;

λ = (αlower + αupper)/2 (10)

where αlower = 0 and αupper = 106 are the lower and upper bound limits, respectively. In
the bisection method, it was assumed that αlower < λ < αupper. To this end, αlower is almost
always zero, and αupper is a large constant. The bounds are updated according to the
summation of current design variables: if ∑i xi < N∗, the lower bound is updated to be
αlower = λ; if ∑i xi > N∗, the upper bound is updated to be αupper = λ. The bisectional
iterative process is repeated until αupper − αlower < 10−8, meaning αlower ≈ αupper ≈ λ,
which satisfies the constraint stated in Equation (3).

When design variable xi is updated from Equations (6)–(10), the Young’s modulus of
columns in a roof–column structural system is determined using the penalization method.
This represents that columns’ axial stiffness can continuously vary throughout optimization
depending on relative density.

Ei
k = xi

pE0 (11)

where Ei
k is the Young’s modulus of the i-th column at the k-th iteration and p is the penalty

exponent. The utilization of Equation (11) enforces the final design variable of columns
to be approximately 1 or 0 with p selected to be 3. When xi = 1, preserved columns have
a design Young’s modulus (Ei

k = E0). When xi ≈ 0, removed columns have a near-zero
Young’s modulus (Ei

k ≈ 0), corresponding to a near-zero axial stiffness.
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The above algorithm provides a basic framework enabling all columns’ design variable
to be effectively and simultaneously updated for finding an optimal distribution of a
prescribed number of columns using the optimality-criterion method on the basis of their
axial stress. Three substrategies are introduced in the following section to improve the
optimization result by systemically controlling the optimization tendency.

3. Controlling Optimization Tendency
3.1. Initial Discrete Candidates

The first substrategy considers the loading area of candidate columns determined
by their initial locations, where columns with a small and large loading area tend to be
removed and preserved, respectively. This can be demonstrated more clearly using 8 × 8
and 6 × 6 candidate columns under the same roof with N∗ = 4, as shown in Figure 2a,b,
respectively. Their final column distributions were different because of the variation of
their initial loading areas around the roof edges. Corner candidate columns in Figure 2b
correspond to a larger loading area, hence generating higher elastic-strain energy since
early iterations during optimization tend to be preserved according to Equation (6). The
compliance of Figure 2b was approximately twice larger than that of Figure 2a, suggesting
that a local optimal solution was found. This paper considered all candidate columns
under the roof, including columns on roof edges, to avoid local optimal solutions caused
by edge columns in the following examples.

Initial:

Result:

(a)

C = 8,391 mJ C = 17,723 mJ

C = 184,615 mJ C = 84,697 mJ

A B

C

Area: C > B > A

C’

B’A’

Area: A > B > C

(b)

Figure 2. Designing column locations under a flat roof using (a) 8 × 8 and (b) 6 × 6 candi-
date columns.

3.2. Roof–Column Relative Stiffness

The second substrategy characterizes the optimization problem, and considers con-
stant relative stiffness between roof and columns. This method was previously demon-
strated by [30], with constant relative stiffness being enforced during optimization to ensure
that the algorithm was solving the equivalent structural system in every iteration. In this
study, implementing constant relative stiffness can effectively improve the optimization
result, as the columns’ axial stiffness can vary throughout optimization to give different
structural systems. This can be achieved by using a material interpolation scheme in the
roof region with the consideration of the penalty exponent, meaning that the roof’s stiffness
can vary throughout optimization.

Yk = ∑
i

xi
pY0/N∗ (12)
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where Yk and Y0 are the Young’s modulus of the roof at the k-th iteration and the initial
state, respectively. Therefore, relative stiffness between roof and columns is determined
as ∑i Ei

k/Yk, which can be used for characterizing optimization problem and structural
system. Yk ≈ Y0 in the optimization result, as ∑i xi

p/N∗ ≈ 1 is satisfied with the utilization
of Equation (2), representing that the roof’s Young’s modulus is the same in the first and
final iteration.

3.3. Filtering Scheme

The third and final substrategy considers a filter in the optimization algorithm that
can be used for producing a grid-independent solution and influencing optimization
tendency [4]. This is illustrated using a 2D roof–column example in Figure 3. Figure 3a
represents an intermediate state of an optimization process, with 5 columns being preserved
from 9 candidate columns. The 5 remaining columns correspond to a different portion of
a uniformly distributed load (P1 > P2 > P3), where 2× P1 are supported by Columns s2
and s8, 2× P2 are supported by Columns s4 and s6, and 1× P3 is supported by column
s5. As mentioned in Section 3.1, columns with a smaller loading area tend to be removed
first. Therefore, the optimization algorithm obtains the solution by removing Column s5,
as shown in Figure 3b. A filtering technique was introduced for blurring and smoothing
the loading information of columns, which enabled the columns located on the symmetric
axis (s5) with a small loading area to be preserved without losing solution accuracy, as
shown in Figure 3c.

P1 P3 P2P2 P1

s2 s3s1 s5 s6s4 s8s7 s9

s2 s6s4 s8s5

(a)

(c)

(b)

P1 P3P2> >

s2 s5 s8s6s4

Figure 3. Controlling optimization tendency with filter utilization. (a) Intermediate state of optimiza-
tion process. Optimization result generated (b) without a filter and (c) with a filter.

The filter was formulated using the distance between columns as the weight factor to
smooth the axial stress of columns.

σ̃i =
∑j ωijσj

∑j ωij
(13)

ωij = max{0, (rmin − rij)} (14)

where ωij is the linear weight factor, rij is the distance between column centers i and j, and
rmin is the filter radius, as shown in Figure 4. This paper only considered a 3 × 3 filter for
the i-th column in the grid, which is the smallest filtering size, able to capture information
of its 8 surrounding columns. The filter was only employed when a clear distribution of
columns was obtained, as it is used for optimizing the locations of well-defined columns,
as demonstrated in Figure 3. However, the definition of well-defined columns is mathe-
matically vague in intermediate optimization states. The filtering condition was then set
by introducing a parameter ts. This required the axial stress of columns to be ranked on
the basis of their magnitude from high to low. The filter was employed if the summation of
axial stress from the first Ts% of N columns exceeded 50% of total axial stress (0.5 ∑i σi),
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where Ts = 100 ts. This paper utilizes the filtering technique in the following examples.
The effect of different ts is explored in the next section.

rmin

i

3 x 3 filter

Figure 4. A 3× 3 filter for i-th column inside circular region.

4. Numerical Analysis
4.1. Method

To validate the proposed optimization method, numerical finite-element models were
created in commercial software Abaqus, and the computational optimization algorithm was
implemented using Python code. An implicit static general analysis method was used for
structural analysis during optimization. Roof surfaces were meshed with quadrangular S4
shell elements, and columns were simulated using line or beam elements located on mesh
nodes. Intersections of roof–columns and columns–ground were set to be pin connections.
This was achieved by using tie constraints to connect the roof (shell) with all candidate
columns (lines); both ends of the columns were only subject to translation constraints.
Roofs were subject to uniformly distributed loads. Materials were modelled to be linearly
elastic without consideration of plasticity. Young’s moduli for roofs and columns were 63.5
and 210 GPa, respectively. Poisson’s ratio for both materials was set to be 0.3. The mass
density of roofs and columns was 2500 and 7800 kg/m3, respectively. The optimization
solver considered all three improved techniques introduced in Section 3.

4.2. Optimization Results

The entire optimization process was first tested using a simple 5 × 5 × 3 m design
domain, which included a 100 mm thick square roof, and discrete candidate columns
with a predetermined solid square cross-section of 100 × 100 mm, as shown in Figure 5a.
The optimization solver searched for locations of N∗ = 8 columns under the square roof.
Different candidate columns were tested, including a grid of 13 × 13, 15 × 15, 17 × 17,
19 × 19, and 33 × 33 columns. The filtering condition was tested for ts = 0.2 and 0.3, as
shown in Figure 5b,c, respectively.

On the basis of the observed results in Figure 5b,c, variation in the number and
locations of candidate columns could lead to different final distributions of the 8 prescribed
columns. The selection of ts changes the optimization solution. When an appropriate ts is
selected, such as 0.2, similar final distributions of columns can be obtained from different
candidate configurations, as shown in Figure 5b. On the other hand, when ts is selected
to be 0.3, diverse final distributions of columns can be generated to enrich architectural
diversity, as shown in Figure 5c. Although those diverse results may not guarantee global
minimal compliance from an engineering perspective, the new optimization method is still
an effective tool for finding unexpected optimal distributions of columns under a roof from
a large number of potential combinations, which is highly beneficial from an integrated
structural–architectural design point of view. Optimization results are further examined in
the following subsection.
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(a)

13 × 13 15 × 15 17 × 17 19 × 19 33 × 33

(b)

(c)

3 m

5 m
5 m

C = 1,266 mJ C = 1,168 mJ C = 1,340 mJ C = 1,271 mJ C = 1,173 mJ

 ts = 0.2 

C = 1,168 mJ C = 5,472 mJ C = 5,849 mJC = 1,266 mJ C = 1,173 mJ

 ts = 0.3

Figure 5. Finding 8 optimal column locations under a square roof. (a) Three-dimensional illustration
of candidate columns. Optimization results of ts = (b) 0.2 and (c) 0.3.

4.3. Result Validation

To demonstrate the efficiency of the proposed method, optimization results from
Figure 5 are compared with manual results in Figure 6, which were generated from user-
defined column locations arranged in “ring” and random configurations, as shown in
Figure 6a,b, respectively. The ring-configuration selection was due to the shape similarity to
the optimization results possessing small compliance in Figure 5. Small-to-large rings were
tested, and the purpose of utilizing manual ring configurations was to systemically examine
whether the optimization solver had obtained a near-global optimal solution, as highlighted
in Figure 5. Furthermore, the utilization of random configurations demonstrated that there
were many other potential combinations of column locations, representing a tedious trial-
and-error process.

Compliance comparison across different methods is summarized in Figure 6c. First, it
was confirmed that the optimization solver successfully obtained a near-global optimal
solution using 15 × 15 candidate columns, which had the smallest compliance across all
tests. This suggests that a parametric study may be needed if the global optimal solution is
part of the design requirements for future applications. Second, the compliance of random
tests was much greater than that of the optimization results. The averaged compliance
of random tests from Figure 6b was approximately 370 and 154 times larger than the
optimization results from Figure 5b (ts = 0.2) and Figure 5c (ts = 0.3), respectively. This
again confirmed the efficiency of the optimization method for automatically finding column
locations and avoiding extremely large compliance.

The proposed method is therefore effective in enabling the rapid design of column loca-
tions under a flat roof, which has high potential to be combined with complex architectural
designs, including irregular roof shapes, discussed in the following section.
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Ring

C = 13,414 mJ C = 7,080 mJC = 39,166 mJ C = 21,910 mJ C = 1,309 mJ

Random

C = 22,897 mJ C = 149,930 mJC = 6,055 mJ C = 8,569 mJ C = 2,113,326 mJ

13 × 13 15 × 15 17 × 17 19 × 19 33 × 33

(a)

(b)

(c)

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

13 x 13 15 x 15 17 x 17 19 x 19 33 x 33 Avg

C
om

pl
ia

nc
e 

(m
J)

Optimisation:  ts = 0.2 
Optimisation:  ts = 0.3 
Manual: Ring 

Manual: Random 

1,243.6

2,985.6

16,575.8

460,155.4

Avg

Figure 6. Manual test results of square-roof example with 8 columns arranged in (a) ring and (b)
random configurations. (c) Summary of comparison compliance.

5. Extended Designs
5.1. Eye-Shaped Roof

The shape of the eye-shaped roof, as shown in Figure 7a, was inspired by Santiago
Calatrava’s works [31]. The new optimization algorithm was used for finding locations of
N∗ = 6 columns in a 3.3 × 9 × 3 m design domain. The eye-shaped roof had a thickness of
100 mm. A total of 1712 candidate columns were used, which had a predetermined circular
section with a 37.5 mm radius and 5 mm wall thickness. ts was 0.2, and other parameters
were set to be the same as those in Section 4.

(c)

C = 17,379 mJC = 2,758 mJC = 2,249 mJC = 2,049 mJ C = 46,149 mJ

(a) (b)

C = 1,271 mJ

1.8 m

1

2

3

4

5

6

1

2

3

4

5

6

Figure 7. Designing column locations under eye-shaped roof. (a) Design domain. (b) Optimization
result. (c) Manual results.
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The optimization result is shown in Figure 7b, which had the lowest compliance
compared with a set of manual results, as shown in Figure 7c. This demonstrates a high
degree of design efficiency in finding column locations under a complex roof shape to obtain
improved structural performance. A more complicated roof shape with a nonsymmetrical
profile is examined in the following subsection.

5.2. Bean-Shaped Roof

The bean-shaped roof, as shown in Figure 8a, was inspired by Kazuyo Sejima’s
designs [32]. The optimization algorithm was used for finding locations of N∗ = 7 columns
in a 9 × 6.5 × 3 m design domain. A total of 1159 candidate columns were used with a
square cross-section of 100 × 100 mm. Other parameters were unchanged from those in
the previous example.

The optimization result, as shown in Figure 8b, had the lowest compliance compared
with a range of manual results, as shown in Figure 8c. This again confirmed that the
proposed method could be effectively adopted for diverse roof shapes in novel architec-
tural designs.

3 
m

C = 2,717 mJ

(b)

(c)

(a)

1 2

3

4

5 6
7

1 2

3

4

5 6

7

C = 5,136 mJ C = 15,948 mJC = 10,362 mJ C = 49,389 mJC = 4,247 mJ

Figure 8. Designing column locations under bean-shaped roof. (a) Design domain. (b) Optimization
result. (c) Manual results.

5.3. Pavilion with Bean-Shaped Roof

This paper proposes a new pavilion design based on a bean-shaped roof’s optimization
result for demonstrating research implications, as shown in Figure 9. Figure 9a shows
that a simple roof–column structural system is capable of providing adequate protection
against environmental loads and sunlight. Column locations fulfil both engineering and
architectural requirements, where structural performance was optimized and analyzed
using the finite-element method, and the number of columns and their allowable locations
were predetermined by the designer. Furthermore, curved panels can be installed under the
roof to increase the level of protection, as shown in Figure 9b. The proposed optimization
method offers a new method for determining shapes and locations of curved panels on the
basis of a selected intermediate state’s stress distribution. For example, curved panels in
Figure 9b was designed by connecting locations of high-stress columns at the 12th iteration,
as shown in Figure 9c. However, further study is needed to develop this.
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Iteration 1
σmax σmin

Iteration 5 Iteration 12
(c)

Iteration 20 Iteration 32

(a) (b)

Figure 9. Design of pavilion with bean-shaped roof. (a) Roof–column structural system. (b) Installa-
tion of curved panels. (c) Intermediate optimization results.

5.4. Discussion

The investigation into efficient column locations under flat roofs showed that the
proposed method could effectively remove inefficient candidate columns. Allowable
locations depend on the roof’s mesh layout, where columns were connected to the grid
points; a finer mesh corresponds to a large number of candidate columns. Examples in
Sections 5.1 and 5.2 both had over 1000 candidate columns. However, computational costs
were low. The OC method allowed for both examples to obtain their results within 1 hour
using less than 100 iterations.

This study considered compliance minimization of a roof–column structural system
without considering the roof’s deflection. However, stiffer results (with smaller compli-
ance values) may correspond to smaller deflections, which may be achieved using more
support columns. If deflection limitations are part of the design requirements, minimizing
roof deflection can also be formulated as a different objective function. Simultaneously
minimizing the compliance of the structural system and roof deflection may require a
multiobjective optimization algorithm. Future study is needed to develop this.

6. Conclusions

This study presented a new optimization method to design column locations under
a flat roof. The new method was developed on the basis of the optimality-criterion (OC)
algorithm, which allowed for all columns’ relative density to be simultaneously updated
throughout optimization. The optimality condition was set on the basis of the columns’
axial stress, as columns were hinged and only loaded in the axial direction. Three sub-
strategies were developed to improve optimizer performance. First, adjusting locations
of candidate columns gives different loading areas, where columns with small and large
loading areas tend to be removed and preserved, respectively. Second, enforcing con-
stant relative stiffness between roof and columns ensures that the algorithm solves the
equivalent structural system during optimization. Third, employing a filter can result in a
grid-independent solution without losing solution accuracy. The key finding of this study
is that optimizing column locations significantly reduces structure compliance.

The new method was validated using a variety of roof–column structural models
ranging from simple to complex roof shapes: square, eye-shaped, and bean-shaped roofs.
The optimization algorithm was highly capable of finding efficient column layout distribu-
tions from a large number of potential combinations. Manual column location analysis was
carried out to confirm that the optimizer had successfully obtained optimal designs. Lastly,



Appl. Sci. 2021, 11, 2775 12 of 13

this paper demonstrated the practical application of the proposed method in a pavilion
design.
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