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Abstract: Waste heat recovery (WHR) systems through organic rankine cycles (ORCs) in anaerobic
digestion plants may improve cogeneration efficiency. Cogeneration unit power output, flue gas
temperature, and mass flow rate are not constant during the day, and the thermal load requested
by digesters shows seasonal variations. For this reason, a proper design of the ORC is required. In
this study, a design methodology is proposed, based on the clustering of the boundary conditions
expected during one year of operation and the anaerobic digestion plant operation. The design
has to be a compromise between part-load operation and nominal power rating. In this study, the
ORC design boundary conditions were partitioned into four representative clusters with a different
population, and the centroid of each cluster was assumed as a potential representative boundary
condition for the cycle design. Four different ORC designs, one for each cluster, were defined through
an optimization problem that maximized the cycle net power output. ORC designs were compared
to those resulting from the seasonal average boundary conditions. The comparison was made based
on the ORC off-design performance. Part-load behavior was estimated by implementing a sliding-
pressure control strategy and the annual production was therefore calculated. ORC off-design was
studied through a detailed Aspen HYSYS simulation. Simulations showed that the power output of
each design was directly connected to the cluster population. The design obtained from the most
populated cluster generated 10% more energy than that from a system designed by taking into
account only the year average conditions.

Keywords: organic rankine cycle; waste heat recovery; operating condition clustering; design
optimization; off-design; Aspen HYSYS

1. Introduction

Anaerobic digestion plants have been spreading in Europe due to the favorable
synergy between energy production and sanitation services [1]. Moreover, subsidies
related to biogas upgrading into biomethane and its injection in the natural gas network,
or its liquefaction, have made anaerobic plants profitable in several European countries [2].
All these issues make anaerobic digestion a promising waste-processing technology from
environmental, energy, and economic points of view [3]. Anaerobic digestion requires
electric energy for sludge piping and handling and thermal energy for maintaining the
correct digestion temperature [4]. Traditionally, biogas-fueled internal combustion engines
(ICEs) are used as cogeneration units [5]. However, micro-gas turbines (mGT) are preferred
in some cases due to the lower maintenance cost and pollutant formation [6]. The thermal
energy produced by cogeneration units is often more than that required by digesters,
especially in hot climates or when a mGT is adopted. The excess thermal energy may be
exploited in a waste heat recovery (WHR) system [7]. Several WHR systems have been
proposed to increase the efficiency of biogas plants. Bruno et al. [8] proposed mGT inlet air
cooling through an absorption chiller that exploits the excess thermal energy in the flue
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gas. Results showed that for anaerobic digestion plants equipped with a mGT, inlet air
cooling is a valid technology from energy and economic points of view. A further study [9]
showed that inlet air cooling effectiveness is strongly dependent on the climate conditions.

In [7,10], it was demonstrated that biogas plants could be optimized to become a
polygenerative system from which cooling, freshwater, and electrical power are obtained.
In a previous study by the authors [11], the biogas plant capability of powering both district
heating and district cooling was analyzed. Results showed that trigeneration was a viable
improvement for an anaerobic digestion system, but the small thermal load required in
mid-seasons penalized the payback period.

Among all the possible WHR solutions for power production, organic rankine cycle
(ORC) is the most diffused and studied. The simplicity [12], flexibility [13], and technologi-
cal maturity [14] of this technology have led to the proliferation of ORC modules in several
countries [15].

In the last few years, several ORCs have been installed in anaerobic digestion plants to
increase electricity production. Many of them have come from downsizing and customiza-
tion of commercial modules [16,17]. In a previous study [18], the authors showed that
ORC is a promising technology to increase anaerobic digestion plant efficiency, even by
adopting commercial modules. In [19], the authors showed that even small modifications
of an anaerobic digestion plant could increase the producibility of a commercial ORC and
the global efficiency of the cogeneration system.

Many authors have focused their research on the optimization of ORC modules for
biogas applications. In [20], Dumont et al. focused on analyzing three different cycle
architectures: subcritical, wet-expansion, and supercritical ORC. The analysis considered
fixed design conditions for the anaerobic digestion plant and the results showed that the
supercritical cycle maximized the investment net present value (NPV). In [21], Mudasar
et al. proposed an ORC coupled to a biogas combustor and chose the best configuration
for fifteen different operating conditions, which might occur due to changes in biogas
composition. The work did not consider the ORC module part-load or off-design operations.
In [22], Benato et al. determined the optimum plant configuration and the optimum ORC
operating fluid among 118 candidates to maximize an ORC performance coupled to a
biogas engine. In [23], Sevinchan et al. presented a system for WHR from a biogas
fueled mGT by using both an ORC and an absorption chiller. The system achieved an
energy efficiency of 72.5% and a second law efficiency of 30.44%. In [24], Hosseini et al.
proposed the optimization at nominal conditions for an ORC powered by the exhaust
gases of a biogas fueled mGT. Several designs were proposed for different mGT operating
conditions. In [25], Linnemann et al. studied an ORC for biogas engine WHR by optimizing
the evaporator geometry. All the studies above-mentioned considered fixed conditions
as boundary conditions for the ORC design, and they neglected any variations in the
anaerobic digestion plant operation. However, anaerobic digesters may change their
thermal requirements daily, with significant seasonal variations [26], thus profoundly
influencing ORC performance.

Moreover, ambient temperature variation during the day influences the exhaust gas
temperature of a mGT cogeneration unit and therefore the ORC evaporation tempera-
ture [11]. These phenomena should be considered during the ORC design to assess its
actual performance. In [27], Sung et al. partly considered this issue by proposing different
sizes for an ORC + mGT system by considering the actual plant off-design in twelve differ-
ent average conditions, one for each month of the year. The system was optimized, and
the off-design of both mGT and ORC was analyzed to determine the best configuration.
The analysis considered the seasonal modification of the digester thermal load, but did not
consider the daily variations of cogenerator performance.

This study proposed a methodology to fill the literature gap regarding the design of
an ORC as a WHR unit for a biogas-fueled cogeneration unit. The design was performed
by considering the digester load, the varying ambient conditions, and cogeneration unit
operation. As a case study, the operating data presented in [11] for an anaerobic diges-
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tion plant near Pisa (central Italy) were considered. The ORC design was performed by
clustering the plant data in four representative clusters and by defining four different
designs, one for each cluster centroid. The ORC designs were compared among each other
and with the designs related to the year average, winter average, and summer average
operating conditions. The objective of the comparison was to select the design with the
highest annual production. The comparison purpose was to demonstrate that careful
choice of boundary conditions leads to an improved ORC design by maximizing the energy
produced in the year. In particular, the energy production increase in comparison to the
choice of annual average operating conditions was assessed to quantify the advantage of
using the proposed design strategy based on a clusterization procedure.

In theory, ORC design and off-design performance may be jointly considered, and
they could be optimized together to maximize the annual production. In practice, this may
result in a complex problem from an optimization point of view. The optimization would
directly search for a trade-off between ORC power rating and operating hours since both
parameters should be maximized. The reason for this trade-off is that a too-large power
rating may yield a low production due to part-load operation. However, the search for
the optimal configuration from both design and off-design operating conditions may be
approximated by carefully choosing the design boundary conditions. The design can be
divided into two steps:

• a set of representative boundary conditions is selected for the design optimization
problem through clusterization.

• The design optimization problem is solved with a standard approach: the ORC
power output is maximized for the given set of boundary conditions. As a previous
study demonstrated, this may be efficiently and reliably done with general-purpose
solvers [28].

After this, the ORC off-design performance was simulated, and the yearly production
was calculated to verify the proposed methodology. A detailed off-design model was
created to do this by using Aspen HYSYS, a state-of-the-art software for off-design system
simulations.

In summary, the paper aims at demonstrating that data clustering is a useful strategy
to determine the design boundary conditions for maximizing the annual energy production,
but in a simplified, yet effective way.

2. Case Study
2.1. Reference Layout

This work refers to an existing anaerobic digestion plant located near Pisa (central
Italy), whose configuration is presented in Figure 1.

The plant is based on two anaerobic digesters with a total capacity of 4600 m3. The
plant is operated for the co-digestion of municipal sewage from the wastewater treatment
plant and the organic waste from the municipality collection (referred to as sludge). The
nominal plant capacity is 10.8 t/h of sludge. Digesters operate at a constant temperature of
37 ◦C (mesophilic digestion), producing biogas with a final methane concentration of 65%.
The biogas is desulfated, stored in a gasometer, and then used to power a Capstone CR600
microturbine [29], designed to work with biogas, consisting of three modules of 200 KWel
each, for a total of 600 KWel.

The produced electrical power meets the internal plant need. The turbine exhaust
gases are sent to a heat exchanger, where they transfer heat to an intermediate water circuit
that heats the incoming sewage. The thermal energy in excess is dissipated by diverting
part of the mass flow before the heat exchanger. Before entering the heat exchanger, a part
of sludge inside the reactors is recirculated and mixed with incoming sewage to avoid
overheating. The recirculation ratio, defined as the ratio between the mass flow rate of
sludge recirculated and the mass flow rate of sludge entering the plant, was around 23:1.
The high recirculation ratio allowed for the sludge temperature in the heating system to be
kept near 37 ◦C without damaging the digestion substrate.
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Figure 1. Reference anaerobic digestion biogas facility layout. For further details, the reader should refer to [11].

The plant behavior was simulated in a previous study through a hybrid steady-state
and dynamic model [11]. From the model, operating data on a fifteen-minute basis for a
period of one year are available, comprehending, among the others:

• Exhaust gases temperature.
• Exhaust gases composition, assumed to be constant over time (0.038% CO2, 0.020%

H2O, 0.190% O2, and 0.752% N2).
• Thermal power required by incoming sewage to keep the optimal temperature in

the reactors.

Historical series of climate data for the definition of ambient conditions were obtained
from [30]. Figure 2 reports the histograms of plant operating conditions. As it can be
noted, there are some preferential operating conditions, especially concerning the heat
flow rate required by the digester

.
Qdig and the mass flow rate of turbine exhaust gas

.
m f .

On the other hand, the turbine exhaust temperature Tf resulted in having a more limited

variation between its maximum and minimum values.
.

Qdig,
.

m f , and Tf strongly impact
ORC operation. As these quantities significantly vary during the year, a design approach
that allows the mitigation of ORC part-load is further justified.

2.2. Modified Layout

The study aims at analyzing a new system configuration to improve plant performance
and profit. The proposed solution implies a further exploitation of the thermal content of
the microturbine exhaust gases. The exhaust gasses are used to heat the sewage, as in the
original configuration, and power the ORC. Figure 3 shows the modified system layout.

mGT exhaust gases provide the heat to the fluid of an intermediate circuit, which, con-
versely to the original scenario, powers the ORC evaporator and then heats the incoming
sewage. The incoming sewage is preheated by the sewage exiting the digesters, which is
mostly recirculated into the reactors. This internal regeneration reduces the heat require-
ment of the digesters, even though only to a small extent, and allows a slight increase in the
available thermal energy to the ORC. The sewage heating is regulated through an air cooler
inserted into the intermediate circuit, upstream of the circulation pump. This equipment
rejects the excess of heat to the environment. Compared to a bypass, this solution may
allow the heat exchanger of sewage heating to work at a constant flow rate under optimal
heat-transfer conditions.
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Figure 2. Histograms of biogas facility operating conditions (average hour values). (a) Heat flow rate required by the
digester

.
Qdig in kWth. (b) mGT exhaust mass flow rate

.
m f in kg/s. (c) Micro gas turbine exhaust temperature Tf in ◦C. Data

from [11].

Figure 3. Anaerobic digestion biogas facility with the upgraded layout. The turbine exhaust gases power an organic rankine
cycle (ORC) before heating the sewage.

Diathermic oil is used in the intermediate circuit to match the operating temperatures.
In the analyzed case, Therminol 66, a widely used synthetic fluid, was selected. Such a
thermal oil can operate in a vast temperature range (from around −3 to 345 ◦C) with high
thermal stability and long operating life [31].

Concerning the ORC, a subcritical, internally regenerated configuration was chosen.
Internal regeneration might be convenient in the analyzed case, as the mGT waste heat is
used for the ORC and meets the digester thermal demand.

Pentafluoropropane (R245fa) was selected as the ORC working fluid. In the literature,
R245fa is referred to as one of the most appropriate fluids for medium-low temperature
ORC applications, from both economic and performance points of view [32]. Furthermore,
R245fa has quite good safety characteristic and optimal flammability limits. The main
characteristics of the selected fluid are shown in Table 1 ORC cooling is obtained through
a water-cooled condenser using purified wastewater from the purification plant. In this
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way, the auxiliary consumption associated with air coolers is saved, thus allowing for more
stable condensation conditions.

Table 1. R245fa main characteristics. Data from [33,34].

Fluid pcrit [bar] Tcrit [◦C] MW [g/mol] ODP GWP ASHRAE Safety

R245fa 36.51 153.86 134.05 0 1030 B1

3. Methodology
3.1. Preliminary Design
3.1.1. Definition of Design Boundary Conditions

The optimal design of an ORC may vary from case to case according to the thermal
source and other external conditions. In this study, the preliminary plant design was
addressed as a constrained optimization problem. A mathematical model of the system
was defined and the resulting optimization problem was solved by maximizing the net
electrical power produced by the ORC.

The design of the system must be performed according to some boundary conditions,
which represent the operational conditions of the mGT and digesters. The ORC design
must consider the mGT exhaust gases’ mass flow rate

.
m f and maximum temperature

Tf and the heat flow required by digesters
.

Qdig to keep constant the digestion process
temperature. These boundary conditions constrain the operation of the ORC since its
introduction should modify neither the mGT operating conditions nor those of the digester.
On one hand, ORC should be designed according to anaerobic plant operation; on the other
hand, the design should aim at minimizing the ORC off-design to maximize the energy
recovery over the year. For this reason, the ORC design boundary conditions have to be
carefully chosen and should correspond to the working conditions that are more likely to
occur during the year. To identify these most representative operating conditions,

.
m f , Tf,

.
Qdig were clustered. This clustering allows for the identification of the plant’s most likely
working conditions by considering the correlation between these three variables.

Clustering consists of defining distinct groups (clusters) that are considered represen-
tative of data and assigning data to these groups. The distribution is carried out in such a
way that the data exhibited substantial similarity within the same group and strong dissim-
ilarity with the elements of other clusters. In the current study, the k-means algorithm was
used, as implemented in MATLAB v. 2019b [35], according to Lloyd’s algorithm [36]. The
k-means algorithm is the most representative partitioning algorithm. In these algorithms,
cluster membership is defined based on the distance of the element from a representative
cluster point (centroid). Other clustering techniques are available, but if a considerable
number of data are available, partitioning techniques are more suitable as they are more
straightforward and efficient.

As the k-means algorithm defines centroids to minimize the sum of the distances with
data, the underlying problem is a non-linear optimization problem. As it often happens,
these problems tend to be trapped into local minima. A multi-start approach has been used
to avoid this, and the clustering algorithm was started from several different starting points,
and the best solution at the end of all the runs was chosen. This technique made the analysis
repeatable and helped to avoid suboptimal classification. The least number of random
starts that led to stable results was found equal to 10 through a trial and error approach.

For the k-means algorithm, the number of centroids must be specified in advance. This
requirement might lead to non-natural partitioning due to the non-representative number
of partitions. When a low number of clusters is specified, two or more different groups
might gather together, yielding a misleading partitioning. The same can happen if there are
too many clusters: elements belonging to the same group might be erroneously partitioned
into different groups. Partitions from two to 10 clusters were tested to determine the
optimal number of clusters for the available dataset. The average silhouette value was used
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to measure the partitioning goodness. The silhouette is a standard indicator to understand
if the right number of clusters is used and is defined as in Equation (1) [37]:

Si =
(bi − ai)

max (ai, bi)
(1)

where ai is the average distance between the i-th point and the other points in the same
cluster as i, while bi is the minimum average distance between the i-th point and the points
of a different cluster, minimized between the different clusters. Silhouette values range
between −1 and 1, and for values close to 1, it indicates the correct assignment of the
point to the corresponding cluster. A null silhouette value indicates that the point does not
belong in a defined manner to one cluster compared to another, while a negative value
indicates that the point is assigned to the wrong cluster. Clustering results are reported in
Figure 4a, which show how the four-cluster case performed the best according to average
silhouette values. The silhouette value distribution across the four-clusters case is shown in
Figure 4b. Since several data points within the same clusters scored high silhouette values,
it can be concluded that the partitioning was successful.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 24 
 

sentative cluster point (centroid). Other clustering techniques are available, but if a con-
siderable number of data are available, partitioning techniques are more suitable as they 
are more straightforward and efficient. 

As the k-means algorithm defines centroids to minimize the sum of the distances 
with data, the underlying problem is a non-linear optimization problem. As it often hap-
pens, these problems tend to be trapped into local minima. A multi-start approach has 
been used to avoid this, and the clustering algorithm was started from several different 
starting points, and the best solution at the end of all the runs was chosen. This technique 
made the analysis repeatable and helped to avoid suboptimal classification. The least 
number of random starts that led to stable results was found equal to 10 through a trial 
and error approach. 

For the k-means algorithm, the number of centroids must be specified in advance. 
This requirement might lead to non-natural partitioning due to the non-representative 
number of partitions. When a low number of clusters is specified, two or more different 
groups might gather together, yielding a misleading partitioning. The same can happen if 
there are too many clusters: elements belonging to the same group might be erroneously 
partitioned into different groups. Partitions from two to 10 clusters were tested to deter-
mine the optimal number of clusters for the available dataset. The average silhouette value 
was used to measure the partitioning goodness. The silhouette is a standard indicator to 
understand if the right number of clusters is used and is defined as in Equation (1) [37]: 𝑆  =  ( ) ( , )   (1)

where ai is the average distance between the i-th point and the other points in the same 
cluster as i, while bi is the minimum average distance between the i-th point and the points 
of a different cluster, minimized between the different clusters. Silhouette values range 
between −1 and 1, and for values close to 1, it indicates the correct assignment of the point 
to the corresponding cluster. A null silhouette value indicates that the point does not be-
long in a defined manner to one cluster compared to another, while a negative value in-
dicates that the point is assigned to the wrong cluster. Clustering results are reported in 
Figure 4a, which show how the four-cluster case performed the best according to average 
silhouette values. The silhouette value distribution across the four-clusters case is shown 
in Figure 4b. Since several data points within the same clusters scored high silhouette 
values, it can be concluded that the partitioning was successful. 

 
Figure 4. (a) Silhouette average value as a function of cluster number. (b) Data silhouette values 
for each cluster of the best cluster partitioning (four clusters). For both (a) and (b), the higher the 
values, the better the results. 

Figure 4. (a) Silhouette average value as a function of cluster number. (b) Data silhouette values for
each cluster of the best cluster partitioning (four clusters). For both (a,b), the higher the values, the
better the results.

Due to the inherent noise in the large amount of data available, clustering was per-
formed on hourly averaged data, rather than on the entire dataset. This timescale reduction
allowed for the achievement of more stable results. This design choice is considered as
adequate if the slow dynamic of the anaerobic digester is taken into account.

Table 2 shows the cluster centroid values obtained from clustering. The values chosen
to size the system are those corresponding to the most populated cluster (Cluster 3). These
values also correspond to those capable of maximizing the ORC cycle electrical power
output. In Table 2, the four clusters are compared with the annual average plant operating
conditions, and with the summer and winter average conditions. However, it may be
noted that the clustering algorithm allowed for the selection of representative operating
conditions, which cannot be selected with traditional methods.
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Table 2. Centroids and population scores for the four-cluster partition.

Cluster
.

Qdig [kW]
.

mf [kg/s] Tf [◦C] Population [%]

1 166 3.30 239 24.5
2 176 2.82 245 20.6
3 135 3.35 250 32.1
4 151 2.80 256 22.8

Average 155 3.09 248 -
Summer 119 3.21 256 -
Winter 190 2.86 238 -

Data clustering may disclose a pattern in data that would be difficult to highlight
otherwise. For example, in Table 2, the system operating conditions that corresponded to
the four cluster centroids were compared with the annual and summer average conditions.
As a result, the annual and summer average did not resemble any of the clusters, which
means that the former failed in representing the actual frequency of the operating condi-
tions. In other words, the annual or summer average was not like the operating conditions
that frequently showed up in the record, while the cluster centroids were precisely built
to resemble those that most frequently showed up. Therefore, each cluster represents a
part of the operating condition dataset and the number of elements represented by each
centroid (i.e., similar to it) is the cluster population.

As a result, Cluster 3 represents most of the operating conditions over the year. This
means that this cluster is similar to the operating conditions encountered most frequently
during system operation.

Clusters are built through a numeric procedure, so they are mathematical objects.
However, they may maintain physical significance. In this case, the following patterns can
be observed:

� Clusters 1 and 2 represent the operating conditions with comparatively high Qdig (i.e.,
over the average value), comparatively low Tf (i.e., under the average values), and
high m f (Cluster 1) or low m f (Cluster 2).

� Clusters 3 and 4 are somewhat the opposite. They represent the operating conditions
with comparatively low Qdig (i.e., under the average value), comparatively high Tf
(i.e., over the average values), and high m f (Cluster 3) or low m f (Cluster 4).

To summarize what has been done thus far, some boundary conditions that represent
the operational condition of the plant are needed to perform the ORC design. A clustering
technique (k-means) was used for defining a representative set of these conditions. A
four-cluster partition described the whole dataset in the best way. Among the four clusters,
the most populated one, which accounts roughly for a third of the operational conditions,
was selected as the boundary condition for the ORC design. Based on such values of

.
m f ,

Tf, and
.

Qdig, the ORC was optimized to maximize its electrical power output.

3.1.2. Design Optimization Problem

The preliminary ORC design was formulated as a constrained optimization problem,
which was solved through MATLAB v. 2019b.

CoolProp v. 6.3.0 [38] was used to determine the thermodynamic properties of the
ORC fluid. In the mathematical model, each component is assumed to be an open system
operating in steady-state conditions, and the pressure drops in ORC heat exchangers and
pipes are neglected.

The part of the digestion plant modeled in the code includes the ORC and the thermal
fluid loop (Figure 5). The design is performed by considering that all the available thermal
energy is exploited under design conditions. Therefore, in this preliminary stage, the
presence of the air cooler located upstream of the thermal oil circulation pump is overlooked.
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This heat exchanger is used to reject the excess heat to prevent sewage overheating, and its
operation is considered only in off-design conditions.

Figure 5. The subset of the biogas production plant that was modeled and optimized.

The ORC design problem can be formulated as in Equation (2):

max
x∈Φ⊆R6

f (x) (2)

where Φ is the so-called feasible region; f (x) is the problem objective function; and x is the
variable vector. The optimization problem must satisfy the following set of constraints
(Equation (3)):

Φ =

x ∈ R6 |
lb ≤ x ≤ ub

A·x ≤ b
c(x) ≤ 0

 (3)

where lb and ub represent the lower and upper variable bounds, respectively; A and b
define the linear inequality set that must be observed by x components; finally, c(x) is a
vector function so that c: R6 → Rn, where n is the number of the problem’s non-linear
constraints. c(x) ≤ 0 represents a set of non-linear inequalities that the problem must satisfy.

The x components (i.e., optimization variables) are:

• ORC evaporation temperature Tev,orc in ◦C.
• ORC condensation temperature Tcd,orc in ◦C.
• ORC superheating degree ∆Tsh,orc in ◦C.
• Thermal oil temperature entering the ORC evaporator Tloop,1 in ◦C.
• Thermal oil temperature exiting the ORC evaporator Tloop,2 in ◦C.
• Thermal oil mass flow rate

.
mloop in kg/s.

For thermal oil loop variable subscripts, please refer to Figure 5.
The ORC cycle was modeled to evaluate f (x) in Equation (2). The following equations

define the calculation procedure for each ORC point. This equation set must be interpreted
by considering that the optimization algorithm tries a set of optimization variables (x
components) in each solver iteration. Given that during each ORC cycle evaluation,
Tev,orc, Tcd,orc, and ∆Tsh,orc are known, among the other variables, since the solver provides
them. Since the ORC evaporation temperature is known, it is possible to determine ORC
evaporation pressure pev,orc by using CoolProp. The ORC turbine inlet conditions are then
univocally determined (p = pev,orc; T = Tev,orc + ∆Tsh,orc). Since Tcd,orc is known, condensation
pressure pcd,orc may be readily determined. At this point, isentropic expansion condition
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may be calculated and, by following the definition of turbine isentropic efficiency ηis,exp,
(equal to 0.8), the turbine specific work ∆hexp is determined (Equation (4)):

∆hexp = ηis,exp(h3,orc − h4is,orc) (4)

For the interpretation of ORC-related subscripts, please refer to Figure 5.
Depending on the condensation pressure and the temperature at the pump inlet

(Tcd,orc − ∆Tsc,orc), pump inlet enthalpy and entropy were obtained. By knowing the evapo-
ration pressure, the pump outlet isentropic conditions can be estimated. Through the pump
isentropic efficiency ηis,pump, equal to 0.7, the pump specific work ∆hpump is calculated
(Equation (5)):

∆hpump =
(h2is,orc − h1,orc)

ηis,pump
(5)

Working fluid mass flow is determined from the evaporator thermal input
.

Qev and
evaporator net enthalpy difference ∆hev. The first one is calculated from Tloop,1, Tloop,2, and
.

mloop, which are provided by the solver in each iteration (Equation (6)):

.
Qev =

.
mloopcp,loop

(
Tloop,1 − Tloop,2

)
(6)

∆hev is calculated by determining the regenerator hot side outlet conditions. These are
calculated from the regenerator thermal effectiveness εreg defined in Equation (7):

T4r,orc = T4,orc − Ereg(T4,orc − T2,orc) (7)

Regenerator hot outlet conditions may be used to define regenerator cold side out-
let enthalpy h2r,orc (i.e., evaporator cold side inlet enthalpy) through regenerator energy
balance, as reported in Equation (8):

h2r,orc − h2,orc = h4,orc − h4r,orc (8)

From this, the evaporator net enthalpy difference can be calculated (Equation (9)):

∆hev = h3,orc − h2r,orc (9)

Finally, by combining Equation (6) and (9),
.

morc is calculated as in Equation (10):

.
morc =

.
Qev
∆hev

(10)

From Equations (4), (5), and (10), ORC net power output Wnet,orc is determined as in
Equation (11):

Wnet,orc =
.

morc
(
∆hexp ηel − ∆hpump/ηel

)
(11)

where ηel is the electro-mechanical conversion efficiency, taken as equal to 0.95.
Theoretically speaking, Wnet,orc might be used as the optimization problem objective

function (f (x) in Equation (2)). Although this allows for the power output global maximum
determination, it was noted that the same (maximum) Wnet,orc value is yielded by several
different cycle configurations. To univocally identify the best solution, the objective function
was modified by including the thermal oil loop circulation pump electric consumption,
defined as in Equation (12). The computation of the pump consumption in the loop allows
for the optimum to be reached by a unique set of variables.

Wpump,loop =

.
mloop ∑i ∆ploss,i

ρloop ηis,pump,loop
(12)

where:
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• ηis,pump,loop is the oil circulation pump isentropic efficiency (ηis,pump,loop = 0.7).
• ∆ploss,i is the estimation of the pressure losses in each i-th exchanger of the loop

(10 kPa).
• ρloop is the thermal oil density at the pump inlet.
• The requirement of considering the pumping power is more related to the solver

numerical behavior than to the system actual physics. The optimization algorithm
may consider as equivalent two solutions that are only very similar. To help it to
differentiate between them and since the threshold used to distinguish between the
solutions is a very small number, it is sufficient to include the pumping power in
the calculations to consistently achieve the same optimum every time, for the same
set of boundary conditions. However, despite the significance for the optimization
algorithm, the selection of the pressure drop value can be quite arbitrary due to its
impact on performance being almost negligible.

The modified objective function is equal to (Equation (13)):

f (x) = Wnet = Wnet,orc −Wpump,loop (13)

The feasible region Φ introduced in Equations (2) and (3) is defined through the
optimization problem constraints. For each of the optimization variables, lower bounds (lb)
and upper bounds (ub) define the search domain as Equations (14)–(19):

0 ≤ Tev,orc ≤ Tcrit,orc − 10 (14)

Tcool,out ≤ Tcd,orc ≤ Tsource,in − ∆Tpp,source (15)

5 ≤ ∆Tsh,orc ≤ 50 (16)

0 ≤ Tloop,1 ≤ Tsource,in (17)

0 ≤ Tloop,2 ≤ Tsource,in − ∆Tpp,source (18)

0 ≤ .
mloop ≤ +∞ (19)

where Tcrit,orc is the ORC fluid critical temperature; Tcool,out is the cooling water temperature
exiting the ORC condenser, which is set to 25 ◦C; Tsource,in is the temperature of the flue
gases at the inlet of the waste heat recovery heat exchanger; and ∆Tpp,source is the minimum
allowable pinch point between the flue gases and the thermal oil.

The ORC operational limitations were imposed through linear and non-linear con-
straints. A minimum allowable pinch point was set for each heat exchanger. Both ∆Tpp,source
(pinch point between exhaust gases and thermal oil) and ∆Tpp,sew (pinch point between
thermal oil and sewage) were equal to 30 ◦C. ∆Tpp,ev (ORC evaporator pinch point) was
equal to 15 ◦C. ∆Tpp,reg (ORC regenerator pinch point) was equal to 10 ◦C. Finally, ∆Tpp,cd
(ORC condenser pinch point) was equal to 10 ◦C.

Maximum ORC temperature Tmax,orc (turbine inlet) must be at least 5 ◦C lower than
that of the organic fluid degradation. The ORC condensation pressure pcd,orc must be
higher than 0.5 bars. A minimum superheating degree of 5 ◦C was set to prevent liquid
injection into the ORC turbine. Similarly, to avoid pump cavitation, a subcooling ∆Tsc,orc
of 5 ◦C was set. Other considerations are related to the thermal oil loop, for which a
minimum design temperature Tloop,min of 70 ◦C was imposed due to the high oil viscosity
at low temperatures. For exhaust gases, a maximum value for the oil heat exchanger
effectiveness εsource of 0.8 was imposed to reflect the performance of commercially available
heat exchangers. Finally, a minimum mGT exhaust gas temperature Tsource,out of 70 ◦C was
set to prevent acid condensation. All the previous considerations (and some others) can be
translated into constraints, both linear and non-linear. As for the linear constraints, they
can be defined as in Equation (20)–(26):

Tev,orc − Tcd,orc ≥ 0 (20)
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Tev,orc + ∆Tsh,orc ≤ Tloop,1 − ∆Tpp,ev (21)

Tev,orc + ∆Tsh,orc ≤ Tmax,orc (22)

Tcd,orc ≥ Tcool,in + ∆Tsc,orc + ∆Tpp,cd (23)

Tloop,1 − Tloop,2 ≤ ∆Tloop,min (24)

Tloop,1 ≤ Tsource,in − ∆Tpp,source (25)

Tloop,2 ≥ Tsew,out + ∆Tpp,sew (26)

where:

• ∆Tloop,min is the minimum achievable temperature drop of thermal oil across the
ORC evaporator.

• Tsew,out is the sewage temperature at the outlet of the sewage heating heat exchanger,
set at 37.2 ◦C to consider the thermal losses before entering the digester.

As for the non-linear constraints, the equation c(x) ≤ 0 can be translated into a non-
linear inequality set as defined in Equation (27)–(38):

pcd,ORC ≥ 0.5 (27)

χexp,out ≥ 0.85 (28)

T4r,orc − Tcd,orc ≥ ∆Treg,min (29)

T2,orc + ∆Tpp,reg ≤ T4r,orc (30)

T2r,orc + ∆Tpp,reg ≤ T4,orc (31)

Tev,orc + ∆Tpp,ev ≤ T′loop (32)

T′cool + ∆Tpp,cd ≤ Tcd,orc (33)

Tsource,out ≥ 70 (34)

Tloop,5 + ∆Tpp,source ≤ Tsource,out (35)

Tloop,3 ≥ Tloop,min (36)

Esource =
Tsource,in − Tsource,out

Tsource,in − Tloop,5
≤ 0.8 (37)

Tsew,in + ∆Tpp,sew ≤ Tloop,3 (38)

where:

• χexp,out is the vapor quality at the end of the expansion.
• ∆Treg,min is the minimum temperature difference between the temperature at the end

of the regeneration T4r,orc and ORC condensation temperature Tcd,orc.
• T2,orc and T2r,orc are the inlet and outlet temperatures on the regenerator cold side

(evaporation pressure), respectively, while T4,orc and T4r,orc are the inlet and outlet
temperatures on the regenerator hot side (condensation pressure), respectively.

• T′loop is the oil temperature at the beginning of organic fluid evaporation (thermal oil
temperature at evaporator pinch point).

• T′cool is the cooling water temperature at the beginning of the organic fluid condensa-
tion (thermal oil temperature at the condenser pinch point).

• Tloop,5 is the thermal oil temperature at the circulation pump outlet.
• Tloop,3 is the thermal oil temperature entering the air cooler. Under design conditions

it is equal to Tloop,4 (i.e., the temperature of the oil exiting from the air cooler).
• Tsew,in is the sewage temperature at the inlet of the sewage heating heat exchanger set

at 37 ◦C, which is the digestion process’s nominal temperature.
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Some of the quantities involved in non-linear constraint evaluation must be calculated,
as they are not readily available. T′loop, which is necessary to set the constraint on the
evaporator pinch point, was found as in Equation (39):

T′loop = Tloop,1 +

.
morc(h3,orc − h2′,orc )

.
mloopcp,loop

(39)

where h2′ ,orc is the organic fluid enthalpy at the beginning evaporation. T′cool , which is
necessary for the constraint on the condenser pinch point, was derived from Equation (40):

T′cool = Tcool,out −
.

morc(h4r,orc − h5,orc)
.

Qcond

(Tcool,out − Tcool,in) (40)

h5,orc is the organic fluid enthalpy at the beginning condensation and Tcool,in is the cooling
water temperature entering the ORC condenser, which was set to 15 ◦C. Finally,

.
Qcond is

the condenser heat flux, which was found as (Equation (41)):

.
Qcond =

.
morc∆hcond =

.
morc·(h4r,orc − h1,orc) (41)

By using the ORC thermal requirement
.

Qev from Equation (6) and the plant operational
data (

.
Qdig,

.
m f and Tf), previously calculated through clustering, Tsource,out was calculated

as in Equation (42):

Tsource,out = Tsource,in −
.

Qev +
.

Qdig
.

m f cp, f
(42)

Likewise, Tloop,5, which is necessary to constrain the pinch point of the flue gases in
the heat exchanger, was determined as in Equation (43):

Tloop,5 = Tloop,5 −
.

Qev +
.

Qdig
.

mloopcp,loop
(43)

Thermal oil temperature exiting the sewage heat exchanger was calculated to impose
the oil loop minimum temperature:

Tloop,3 = Tloop,2 −
.

Qdig
.

mloopcp,loop
(44)

Finally, Tsew,in was calculated to set the constraint on the pinch point of the sewage
heat exchanger:

Tsew,in = Tsew,out −
.

Qdig
.

msewcp,sew
(45)

where
.

msew and cp,sew correspond to sewage mass flow rate and specific constant pressure
thermal capacity, respectively.

To solve the problem defined by Equations (2) and (3), a sequential quadratic program-
ming (SQP) algorithm was used, as implemented in [39], inspired by the SQP algorithm
presented in [40]. The problem is not smooth in theory, as the use of CoolProp to evaluate
fluid thermophysical properties makes the objective function a “black box”. In this case, the
objective function may be numerically estimated, but it does not have derivatives. Despite
this, the problem is sufficiently smooth to be solved with an algorithm based on derivatives.
The numerical estimation of gradients and Hessians is most often successful due to the
general smoothness of thermophysical properties.

The resulting optimization problem is non-linear, without an analytical representation,
and potentially non-convex. In this case, the solver might find a local minimum instead of
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a global one. Such an issue may be avoided by repeating the optimization from several
starting points. A multi-start algorithm has been applied to improve the convergence rate
to optimum, as implemented in [41,42].

3.1.3. Preliminary Design Results

Once that the whole problem has been implemented, it can be solved for the opera-
tional case determined by the clustering reported in Section 3.1.1. The optimization variable
values that correspond to the most populated cluster (Cluster 3) are reported in Table 3 as
well as the objective function (ORC net power output) value.

Table 3. Organic rankine cycle (ORC) and thermal oil loop variables and ORC net power output for
the design corresponding to the most populated cluster (Cluster 3).

Variable Description Value

Tev,orc ORC evaporation temperature [◦C] 143.9
Tcd,orc ORC condensation temperature [◦C] 34.3

∆Tsh,orc ORC superheating degree [◦C] 18.0
Tloop,1 Thermal oil temperature entering the ORC evaporator [◦C] 197.3
Tloop,2 Thermal oil temperature exiting the ORC evaporator [◦C] 106.7

.
mloop Thermal oil mass flow rate [kg/s] 2.0
.

Wnet,orc ORC net power output [kW] 57.8

3.2. Off-Design

Once the design conditions were known, an off-design model was developed in Aspen
HYSYS. Aspen HYSYS is a simulator used to model chemical reactive and non-reactive
processes from unit operations to full plants. For a given design condition, the software
can design and simulate the behavior of various typologies of commercial heat exchangers
such as shell and tube, plate multi-stream heat, and air coolers.

The off-design model of the ORC was implemented by considering design data
from MATLAB optimization. The model considered the main components of the ORC,
thus including heat transfer fluid loop and digesters. Shell and tube heat exchangers
were considered for the evaporator, regenerator, and water-cooled condenser. Each heat
exchanger was designed in Aspen Exchanger Design and Rating (Aspen EDR) and then
imported in Aspen HYSYS. Starting from the geometry and the flow conditions in the heat
exchanger, the model created an internal mesh to solve the heat transfer problem (finite
volume approach). In each volume, the code estimated the actual value of the overall
heat transfer coefficient (U) by adopting Aspen heat transfer and fluid service (HTFS)
correlations [43]. By repeating the calculation in each finite volume, the heat transfer
process was solved, and the flow conditions at the heat exchanger outlet were determined.

The solver determined the oil pump and the ORC pump off-design behavior by consid-
ering the design conditions and the expected head in three operating points. Commercially
available data were adopted to determine the operative curves. Centrifugal pumps were
supposed for both the ORC and the heat transfer loop. Regarding the turbine, a more
complex criterion based on Stodola’s law was applied to determine off-design behavior,
since the software did not provide any curve for commercial turbines. The approach
followed to derive the turbine off-design curves is detailed in the next subsection.

Digesters were simulated as a heat sink due to the lower operating temperature, which
did not provide any critical issue in the heat transfer process.

As for ORC management, a sliding-pressure control strategy was assumed by optimiz-
ing the evaporation pressure, superheating grade, and mass flow rate for each operative
point. Optimization was performed in Aspen HYSYS by maximizing the system net
power output.

The result of the ORC module off-design analysis was an operating map, which is
function of the mass flow rate, the temperature of the flue gas, and the heat requested by
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the digesters. From the annual turbine and digester behavior, the actual energy produced
by the ORC module was estimated by interpolating the obtained maps.

3.2.1. Turbine Off-Design Analysis

Stodola’s ellipse law provides a simplified approach for predicting off-design perfor-
mance in the idealized case of an infinite stage number turbines, where acoustic choking
could never happen [44]. In the case described in this paper, due to the low evaporating
temperature obtained, a single-stage turbine was enough to avoid flow choking. Stodola’s
approach may be modified to account for a finite number of stages, up to single-stage
turbines, as demonstrated in [44]. Stodola’s approach is based on the idea of assimilating
an entire group of stages to a single nozzle, for which the following proportionality relation
holds (Equation (46)).

ψ ∝

√
1−

(
B
p0

)2
(46)

where B is the turbine outlet static pressure; p0 is the total inlet pressure; and ψ is the flow
coefficient, defined as in Equation (47):

ψ =

.
m√

p0
v

(47)

where
.

m is the mass flow rate through the turbine and v the specific volume at the turbine
section at the pressure p0. Equation (46) is called Stodola’s ellipse as it may be represented
as an ellipse in the plane.

In [44], it was demonstrated how the ratio ψ∗ (0 ≤ ψ∗ ≤ 1) between ψ in any condition
and ψ at acoustic chocking condition may be written according to Equation (48) for a finite
number of stages:

ψ∗ =

√
1−

(
B− p0·a
p0 − p0·a

)2
(48)

where a is the acoustic chocking expansion ratio. To maintain physical significance, ψ∗

follows Equation (48) as long as B > p0·a. For B = p0·a, ψ∗ reaches its maximum value
(i.e., ψ∗ = 1) and for lower B values (i.e., beyond acoustic choking), ψ∗ = 1 is maintained as
the flow coefficient does not vary. By following Equation (48), the proportionality relation
in Equation (46) may be restated as in Equation (49) [44]:

ψ∗

ψ∗d
=

ψ

ψd
=

√
1−

(
B−p0 · a
p0−p0 · a

)2

√
1−

(
Bd−p0,d · a
p0,d−p0,d · a

)2
(49)

where the d subscript identifies design quantities. From Equation (49), the off-design
relations for finite stage number turbines may be derived as in Equations (50) and (51) for
B > p0·a and B ≤ p0·a, respectively [44]:

P =
D+
√

D2+4 · (1−2 · a) · B2

2 · (1−2 · a)

D =
.

m2·v·Yd

Yd =
(p0,d−p0,d · a)

2−(Bd−p0,d · a)
2

p2
0,d · ψ2

d

(50)
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and:

p0 = p0,d

( .
m2·v
.

m2
d·vd

)
(51)

Equation (29), which is valid for chocked operations, stems from the fact that ψ∗ and
ψ are constant for B ≤ p0·a. Both Equation (50) and (51) link off-design pressures to design
specifications and allows for the determination of off-design operating conditions.

In the case of real gases, like ORC working fluids, a must be calculated numerically, as
the ideal gas approach does not provide a good estimation of this parameter. Concerning
the ORC design provided in the previous section, the expansion ratio is well below the
acoustic chocking one, even considering strong off-design conditions. Therefore, in the
following analysis, Equation (51) will be used, instead of Equation (50), which is used for
non-chocked conditions.

In addition to Equation (51), some additional assumptions must be made to define off-
design operation completely. In this case, turbine outlet pressure and inlet temperature are
assumed to be constant and equal to their design values. Of course, different assumptions
could be made for different control strategies.

By assuming some inlet and outlet conditions and by exploiting Equation (51), off-
design isentropic enthalpy difference across the turbine (isentropic specific work) may be
calculated. However, some further corrections must be considered. As suggested in [45],
turbine isentropic efficiency should be correct in off-design conditions by considering two
parameters, CF1 and CF2, to modify ηis,d. In Equation (52) [45]:

ηis = ηis,d · CF1 · CF2 = ηis,d · f1

(
0.7 ·

√
2 · ∆his,d√
2 · ∆his

)
· f2

( .
md

.
m

)
(52)

where f 1 and f 2 are the functional representation of CF1 and CF2 (see [45] for the details).

3.2.2. Off-Design Analysis Results

During the year, the thermal energy available for the ORC varies due to turbine
exhaust gas flow rate and outlet temperature fluctuations, and due to variations of the heat
flow required by the digesters. These parameters are the ORC design boundary conditions.
Since both the ORC and the gas turbine are very quick to adjust their output according to
ambient temperature and the digesters’ heat requirement, the dynamic system behavior is
not a limiting factor. Therefore, the analysis was carried out in the steady-state conditions,
and hour time intervals were considered for estimating off-design system operation.

According to sliding pressure control, the ORC adapts to load changes by adjusting
the evaporation pressure. The resulting superheating grade and working fluid mass flow
rate were determined to maximize the cycle power output. In each operating condition,
the result is an optimized cycle, like those reported in Figure 6. The ORC is considered
turned off when the net power output is less than 20% of its nominal value.

A grid of operating conditions was mapped and interpolated to define a complete
performance operating map such as those reported in Figure 7.



Appl. Sci. 2021, 11, 2762 17 of 24

Figure 6. Off-design ORC cycles for different part-load conditions.

Figure 7. Off-design ORC maps. ORC power output Wnet,orc was mapped for several representative values of the heat flow
rate required by the digester

.
Qdig (

.
Qdig = 100 kW (a),

.
Qdig = 150 kW, (b),

.
Qdig = 200 kW (c) and

.
Qdig = 250 kW (d)), and of

the mGT exhaust mass flow rate
.

m f and temperature Tf.
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4. Results
4.1. Annual Production

The ORC hourly operation for the year may be estimated from the historical hourly
trend of the exhaust gases’ mass flow rate and outlet temperature, and by considering the
digesters’ thermal energy requirement for each hour. Data used for the analysis were the
same shown in Section 2.1. ORC net power output histogram is presented in Figure 8 by
considering the design derived from the most populated cluster (Cluster 3). ORC operates
most of the time in off-design conditions. For around 700 h (less than 1/10 of the year), it
operates at nominal power. Furthermore, for over 200 h/y, the ORC cannot operate due
to the load being too low (P ≤ 0.2 Prom). However, the ORC positively affects the plant
operation, as it substantially increases the total power output in comparison to the reference
configuration. The net power output from the plant is reported in Figure 9. The whole
plant net power output is roughly shifted upward by a value equal to the ORC average
power output. This value may be calculated by considering ORC off-design operation
(Table 4).
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Table 4 shows that the fuel utilization efficiency of the whole plant ηtot (mGT + ORC)
was increased by a ∆η = 10%, in comparison to the case with no recovery. Furthermore,
ORC had a quite high value of equivalent operating hours heq,orc, which implies a reasonably
good use of the installed ORC capacity, despite the off-design and downtime periods. The
difference between the mGT exhaust gases’ energy content and the biomass digester heat
requirement is the gross thermal energy available for the ORC. By dividing this amount
for the net ORC production, the annual ORC efficiency ηyear,orc may be calculated. For the
considered design, the average yearly efficiency of the ORC ηyear,orc was equal to 8%, as
reported in Table 4.
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Figure 9. Comparison between the net power output of the mGT reference configuration and
mGT + ORC configuration. Data are related to a whole year of operation. Violet shaded areas come
from the overlap of the two histograms.

Table 4. Modified layout performance. Reference case fuel efficiency equal to 33%.

Parameter ηtot [–] ∆η [%] ηyear,orc [%] Eyear,orc [MWh] heq,orc [h/y] Worc,ave

Value: 36.6 10.6 8.0 397.8 6894.7 45.4

4.2. Comparison with Alternative Designs

Despite the clear advantages in terms of additional power, the ORC operated in off-
design most of the time. For this reason, the installed capacity might be underused, and
an alternative design could be considered. The choice of ORC nominal power output is
subjected to a trade-off between installed capacity, which should be maximized to increase
the production, and the actual availability of excess thermal energy, given the mGT exhaust
gas production and the digester heat requirement. The risk is to overestimate the ORC
capacity and to work at low loads. Lower ORC power ratings might characterize alternative
designs, which may produce less at full load, but they might be able to operate longer
at higher relative loads (i.e., with better efficiencies). This possibility must be ruled out
to confirm whether basing the design on the clustering of the ORC operating boundary
conditions is a good strategy, or not.

For the comparison with the proposed ORC design, other optimal designs related to
alternative sets of boundary conditions were defined. Sensible alternative sets of boundary
conditions were represented by the other clusters defined in Section 3.1.1. by the simple
annual average, and by two representative seasonal averages (winter and summer). The
use of the annual average conditions is a followed approach in literature. Therefore, it is
of particular interest to compare the performance of the ORC designed based on the most
populated cluster with the one designed based on the annual average operating conditions.

The optimal ORC configurations resulting from the boundary conditions in Table 2
were derived by solving the same optimization problem of Equations (2) and (3). The
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optimization problem constraints were the same for each case (Table 2), as the solved
optimization problem is always the same. The only required adjustment is to update
constraints with the new values for the boundary conditions listed in Table 2.

As far as the off-design of such new ORC systems is concerned, the same off-design
map of Figure 7 was used. Since the off-design map may be reformulated in terms of
variations with respect to design conditions, this map can be used for alternative designs.
These designs are centered over different values of

.
m f , Tf, and

.
Qdig. From a physical point

of view, this is a simplifying hypothesis, as the most rigorous approach would require
the creation of a new off-design map for each design. However, it might be assumed
that the performance of similar systems changes in the same way when their boundary
conditions vary. This assumption is supported by the fact that all considered systems are
of comparable sizes, and thus they share the same technologies.

The power output histograms as a function of operating hours for the seven considered
ORC systems (the proposed one, plus the six alternatives) are provided in Figure 10.
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The three configurations related to the discarded clusters were smaller in size than
the configuration related to the most populated cluster (Cluster 3). For this reason, they
may operate for a larger share of the year at nominal power output. The configuration
related to the annual average was similar to that of Cluster 1, whereas the winter average
and the summer average yielded the smallest and the largest configurations, respectively.
Such a size distribution was due to the different seasonal operating conditions. In winter,
the maximum heat flow is required by the digesters, and the minimum thermal energy
content is found in the mGT flue gases. Therefore, the heat flow available for the ORC is a
minimum, leading to an ORC operating at high equivalent hours, but with a small power
output (Figure 10 and Table 5). In summer, the situation is the opposite. Therefore, a larger
ORC nominal power output may be installed.
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Table 5. Modified layout performance for the four possible ORC configurations. Reference case fuel efficiency equal to 33%.

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Average Winter Summer

ηtot [–] 36.3 35.8 36.6 36.2 36.3 35.5 36.6
∆η [%] 9.8 8.0 10.6 9.2 9.7 7.2 10.4

ηyear,orc [–] 7.3 6.0 8.0 6.9 7.3 5.4 7.8
Eyear,orc [MWh/y] 366 301 398 345 365 271 390

heq,orc [h/y] 7671 8151 6895 7807 7753 8231 6595
Worc,ave 41.8 34.3 45.4 39.4 41.7 31.0 44.6
Worc,nom 47.7 36.9 57.7 44.2 47.1 32.9 59.2

CL population [%] 24.5 20.6 32.1 22.8 - - -

In Table 2, it may be observed how the configuration related to Cluster 3 (i.e., the most
populated one) had the expected highest nominal power output among all the clusters.
Cluster 3 was the cluster with the highest mGT exhaust gas mass flow rate and the lowest
digester thermal requirement. As also discussed for the summer average conditions, in
this case, the ORC had the highest amount of available thermal energy. Accordingly, the
optimizer selected a high nominal power for the Cluster 3 ORC, and this was the reason
why such ORCs are operated most often in part load, as seen in Figure 10.

However, it is the cumulative energy production in the whole year that measures
the design effectiveness. In these terms, as shown in Table 5, the configuration related
to Cluster 3 performed better than the other clusters, despite it operating at low loads
more often than the other configurations (Figure 10). This result demonstrated that a
balance between a high number of operating hours at full load and a continuous off-
design operation must be searched. This is especially true for the ORC, which is a flexible
component that can operate at several load levels. Clustering actively helps in selecting
the best configuration for a trade-off between installed power and operating hours at
full load. The ORC design based on the most populated cluster outperformed not only
the other clusters, but also the configurations based on the annual average, winter, and
summer average conditions. This is a remarkable result since it proves the effectiveness
of the design strategy based on clustering. The annual average failed to characterize the
variation of plant operating conditions over the year correctly. The design approach based
on the annual average, underestimated the ORC production potential, which led to an
ORC suboptimal configuration with a too small installed power. The same was true for the
winter average, which resulted in a too conservative design. Winter average conditions
led to the smallest ORC installed power, which may be useful only if an ORC design that
operates most of the time at full load is looked for. Conversely, summer average conditions
yielded the largest installed ORC nominal power. However, from Table 5 and Figure 10,
summer average conditions slightly overestimated the ORC potential, and the resulting
production was lower than that of Cluster 3. This result proves the ability of clustering
in helping to select the optimal ORC configuration. Furthermore, the fact that summer
average conditions yield a slightly suboptimal configuration is likely to be dependent on
the specific climate zone in which the investigated plant is located. From this standpoint,
clustering provides a more robust and generalizable design approach.

In Table 5, the results related to all the investigated configurations can be found. As a
design guideline, it can be noted that the ORC energy output followed the population of
the clusters: the higher the cluster population, the larger the energy output. In other words,
in the case of a great amount of data for ORC design boundary conditions, data clustering
may be a useful design tool for WHR applications. This design approach determines the
correct design configuration, without requiring the optimization of the plant design and
off-design performance at the same time.

5. Conclusions

In conclusion, the use of an ORC to recover the excess thermal energy of the cogenera-
tion in an anaerobic digestion plant was studied. The part of the plant under investigation
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(thermal oil loop and ORC unit) was modeled, and its annual operation was simulated.
Two models with different detail levels were developed. First, the system was modelled
in MATLAB, with a simplified approach based on system constitutive equations and the
components’ constant performance parameters (isentropic machine efficiencies and heat
exchanger effectiveness). Second, the system was modeled in ASPEN HYSYS, which
allowed the selection of commercial components (i.e., heat exchangers). Through this
detailed model, the part-load performance of the system was simulated. These two models
were used to define an ORC design procedure, which considered both the design and the
off-design ORC operation.

Theoretically, design and off-design performance could be optimized together to
maximize the annual ORC production. However, to simplify the design optimization
problem, the design procedure was divided into two steps. The first step was based on the
clustering of the ORC boundary conditions (i.e., the biogas facility operating conditions).
Through clustering, the most representative (i.e., probable) design boundary conditions
may be selected. After this, the ORC design optimization problem can be formulated more
straightforwardly (i.e., by maximizing the power output ORC for the fixed set of design
boundary conditions).

The biogas facility operating conditions were clustered into four representative clus-
ters. Furthermore, three additional sets of boundary conditions were considered to compare
the followed design approach with a more traditional one. Annual, winter, and summer
average operating conditions were considered for the comparison. By comparing the
performance of the seven alternative ORC designs, it was demonstrated that the design
based on the most populated cluster yielded the highest annual production. Such a result
demonstrates that using the most populated cluster as design boundary conditions may
help to define a design that works well for a larger share of the total cases. Therefore,
clustering should be used to select the appropriate design conditions based on which the
optimal ORC design was performed. The fact that the use of the most populated cluster
may help to maximize the annual production suggests that the clustering should be used
as a preliminary step in the design procedure. In this way, the effects due to time-varying
operating conditions may be considered in the design process, without explicitly including
them in the design optimization problem. This is a simplified approach, but it allows
relevant increments in the produced energy. By using the clustering, a produced energy
increment of around 10% was achieved in comparison to a design based on the annual
average operating conditions.
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