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Abstract: Diagnosis of Trichomonas vaginalis infection is one of the most important factors in the
routine examination of leucorrhea. According to the motion characteristics of Trichomonas vaginalis, a
viable detection method is the use of a microscopic camera to record videos of leucorrhea samples
and video object detection algorithms for detection. Most Trichomonas vaginalis is defocused and
displays as shadow regions on microscopic images, and it is hard to recognize the movement of
shadow regions using traditional video object detection algorithms. In order to solve this problem,
we propose two convolutional neural networks based on an encoder-decoder architecture. The first
network has the ability to learn the difference between frames and utilizes the image and optical
flow information of three consecutive frames as the input to perform rough detection. The second
network corrects the coarse contours and uses the image information and the rough detection result
of the current frame as the input to perform fine detection. With these two networks applied, the
metric value of the mean intersection over union of Trichomonas vaginalis achieves 72.09% on test
videos. The proposed networks can effectively detect defocused Trichomonas vaginalis and suppress
false alarms caused by the motion of formed elements or impurities.

Keywords: Trichomonas vaginalis detection; rough and fine detection; video object detection; convolu-
tional neural network; encoder-decoder architecture

1. Introduction

Diagnosis of Trichomonas vaginalis (TV) infection is one of the most important factors
in the routine examination of leucorrhea. The traditional manual microscopic examination
method has the advantage of high detection rates, but its low efficiency mean it cannot
meet the need for daily examination of a large number of leucorrhea samples. Therefore,
fully automated leucorrhea examination equipment with an intelligent algorithm for TV
detection is in urgently needed. Staining TV is a commonly used method of leucorrhea
sample pretreatment. The advantages of this method are that the contours of TV after
staining are clear and it is easy to distinguish from other formed elements or impurities.
The staining process is complicated and time-consuming, so it is not suitable for integration
into fully automated leucorrhea examination equipment. According to the motion charac-
teristics of TV, a feasible detection method is using a microscopic camera to record videos
of leucorrhea samples and adopt video object detection algorithms to identify it [1,2].

Traditional video object detection algorithms include frame difference methods, back-
ground difference methods, and optical flow methods. Frame difference methods deter-
mine the moving foreground object by comparing the difference between adjacent frames
or three frames [3,4]. Background difference methods utilize the image information of pre-
vious frames of the video to establish a background model and then judge the foreground
or background by comparing the difference between the current frame and the background
model [5,6]. The background model is updated according to foreground and background
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results of the current frame. Optical flow methods match the pixels in adjacent frames to
obtain the motion direction and step of each pixel in the current frame [7].

Video object detection algorithms based on deep learning mainly include flow-based
methods [8–10]. The principle of these methods is that in the feature extraction stage
(encoder), only the feature maps of the key frames in the video are extracted. For non-key
frames, the feature maps are generated by the feature maps of the key frames via the optical
flow field [8,10]. In the classifier stage (decoder), the feature map of a single frame [8]
or feature aggregation information of multiple frames [9] is used as the input to detect
the moving object in the current frame. These flow-based methods improve the detection
speed while ensuring the detection rate.

In the vertical direction of the microscope stage, the TV is located in different planes
from the formed elements or impurities, due to its motion characteristic. Figure 1 shows
one frame of the video with clear formed elements (epithelial cells and white blood cells).
The number of TV is 9 in this frame. The TV and some backgrounds have been marked
with red and green rectangles, respectively. Some enlarged image regions are shown in
Figure 1a–d. In the vertical direction, the TV in (b) is close to the current plane and its
outline can still be observed; the TV in (a) and (c) is far away from the current plane
and is displayed as shadow regions in the image. By observing successive frames of the
video, it can be seen that (d) is not TV but is a defocused formed element or impurity. It
is not possible to accurately determine whether the defocused shadow region is TV or
background by using only one single frame. For frame difference methods or background
difference methods, it is necessary to lower the foreground judgment threshold to recognize
the shadow regions where the defocused TV is located. However, some background regions
will be mistakenly detected as the foreground regions, leading to false alarms. The artificial
identification of defocused TV is mainly based on the characteristics of the shadow area
and the continuous movement of TV. Therefore, image and optical flow information jointly
determine the features of defocused TV. In flow-based methods [8–10], optical flow is
mainly used for propagating feature maps between key frames and non-key frames, rather
than as input information. The extracted features only contain image information and
the trained network may mistakenly identify some stationary shadow regions in the
background as TV.

In order to solve the above problems, we propose two convolutional neural networks
based on an encoder-decoder architecture. The first network has the ability to learn the
difference between frames and utilizes the image and optical flow information of three
consecutive frames as the input to perform rough detection of the TV. The second network
corrects the coarse contours and uses the image information and the rough detection result
of the current frame as the input to perform fine detection of the TV. By combining these
two networks, the defocused TV can be detected effectively and the false alarms caused by
the motion of formed elements or impurities can be suppressed.

This article is organized as follows: Section 2 introduces our previous works on
TV detection. The details of two convolutional neural networks with encoder-decoder
architecture are described in Section 3. Section 4 introduces the dataset we used and
the experimental results. Section 5 presents the discussion. Conclusions are provided in
Section 6.
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background updating mechanism, this method candeal with the problems of falsely de-
tected static areas and missing motion areas. The algorithm results show that this meth-
od can effectively suppress the noise caused by illumination mutation, lens shift, and 
focal length variation, providing strong adaptability and good robustness.  

When the movement speed of the moving target is slow or the movement frequen-
cy is low, the performance of this Kalman background reconstruction algorithm can de-
cline, resulting in a high omission ratio. In order to address the above limitations, we 
proposed an improved VIBE background reconstruction algorithm [2]. The background 
model adopts three main update strategies: the memoryless update, the time subsam-
pling of the model and the update of the spatial domain. In order to simplify the judg-
ment, the foreground image is extracted by the frame difference method. Similarly, time 
information is introduced to eliminate false alarms from impurities or formed elements. 
This improved method can effectively suppress false alarms caused by formed elements 
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TV is defocused due to its motion characteristics and in most cases it appears as flat 
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ow regions, it is necessary to reduce the judgment threshold of the foreground, but this 
can result in false alarms where some backgrounds are detected as TV. The above two 
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Figure 1. One frame in the video has clear formed elements. The trichomonas vaginalis (TV) and
some backgrounds are marked with red and green rectangles, respectively. (a–c) show the enlarged
TV and (d) shows the enlarged background.

2. Related Works

At present, the detection of TV is mostly focused on biochemical and staining detection
methods, whereas detection based on images or videos is used less. In our previous works,
we proposed two TV detection methods based on a traditional background difference
model.

In the work [1], we proposed an improved Kalman background reconstruction algo-
rithm to detect TV automatically. The first frame of a video is used to build the background
and the additional top-hat transformation can eliminate the phenomena of tailing and
ghosting. By introducing time information and neighborhood judgment into the back-
ground updating mechanism, this method candeal with the problems of falsely detected
static areas and missing motion areas. The algorithm results show that this method can
effectively suppress the noise caused by illumination mutation, lens shift, and focal length
variation, providing strong adaptability and good robustness.

When the movement speed of the moving target is slow or the movement frequency
is low, the performance of this Kalman background reconstruction algorithm can decline,
resulting in a high omission ratio. In order to address the above limitations, we proposed
an improved VIBE background reconstruction algorithm [2]. The background model
adopts three main update strategies: the memoryless update, the time subsampling of
the model and the update of the spatial domain. In order to simplify the judgment, the
foreground image is extracted by the frame difference method. Similarly, time information
is introduced to eliminate false alarms from impurities or formed elements. This improved
method can effectively suppress false alarms caused by formed elements and missed
detections caused by the background model updating during the movement.

TV is defocused due to its motion characteristics and in most cases it appears as flat
shadow regions with little difference between adjacent frames. To detect moving shadow
regions, it is necessary to reduce the judgment threshold of the foreground, but this can
result in false alarms where some backgrounds are detected as TV. The above two methods
mainly focus on the recognition of clear TV but fail for a defocused conditions. Therefore,
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a detection method based on deep learning is proposed in this paper to solve the above
problems.

3. Method
3.1. Convolutional Neural Network Based on Encoder-Decoder Architecture for Rough Detection

Using only one single frame cannot effectively distinguish TV from backgrounds,
so the first convolutional neural network for rough detection needs to have the ability
to learn the differences between adjacent frames. Dosovitskiy et al. [11] proposed two
encoder-decoder network architectures (FlowNetSimple and FlowNetCorr) to calculate
the optical flow between adjacent frames by deep learning methods. The calculation of
optical flow only depends on the difference between frames rather than the image content
of one single frame. This detection method is appropriate for the defocused TV detection
problem, so the first convolutional neural network we propose uses the encoder-decoder
architecture similar to FlowNetSimple [11]. Figure 2 shows the architecture of the rough
detection network. The encoder and eecoder are shown in the red dashed box on the left
and the green dashed box on the right, respectively.
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3.1.1. Encoder

We concatenated the current frame and its preceding and following frames (RGB im-
age, 3 channels), the optical flow from the previous frame to the current frame and from the
current frame to the next frame (pixel movement of x and y direction, 2 channels) together
along the channel axis, then fed it into the encoder. The input shape was 512 × 512 × 13.
Through image and optical flow information, the rough detection network can learn the
motion and morphological features of the TV, preventing the moving formed elements or
impurities from being mistakenly detected. In order to reduce the missed detection of TV,
we use information from three frames rather than two. Unlike FlowNetSimple [11], we use
the layers ‘conv1_1′ to ‘conv5_3′ from VGG-16 [12] as the basic architecture of the encoder.
The weights of ‘conv1_2′ to ‘conv5_3′ are initialized from the ImageNet pre-trained model.
The stride of the ‘pool4′ layer is set to (1, 1) and the ‘conv5_1′ to ‘conv5_3′ layers use dilated
convolution with a dilation rate of (2, 2). The optical flow information between adjacent
frames is calculated by the deep learning method proposed in [13].

3.1.2. Decoder

Based on the decoder architecture of FlowNetSimple [11], we added an attention
block with a squeeze-and-excitation (SE) module [14] before each network output. As
shown in Figure 3, the SE module contains spatial and channel attention modules, which
can make it possible for the network to learn ‘what’ and ‘where’ to attend in the channel
and spatial axes respectively. The spatial attention module generates a spatial attention
map by utilizing the inter-spatial relationship of certain features. The input x (H × W
× C1) uses the convolution operation (kernel: [1, 1], stride: [1, 1], channels: 1) to obtain
xs(H ×W × 1). Then we employ a simple gating mechanism with a sigmoid activation on
xs to obtain x′s(H ×W × 1). The spatial attention map xspatial (H ×W × C1) is generated
by spatial-wise multiplication between the x′s and the input x. The channel attention
module can selectively enhance useful features and suppress invalid ones and produces a
channel attention map. The xc(1 × 1 × C1) is generated by using a global average pooling
operation on input x. After using full convolution (channels: C3, C3 = C1/4) and Relu
to xc,x′c(1 × 1 × C3)was obtained. Then x′c continuously executed fully convolution
operation (channels: C1) and sigmoid activation, obtaining x′′ c(1 × 1 × C1). The channel
attention map xchannel(H ×W × C1) is generated by channel-wise multiplication between
the x′′ c and the input x. To get the output of the attention block, convolution (kernel: [3, 3],
stride: [1, 1]), batch normalization and Relu are connected successively after adding two
attention maps to.

In order to obtain dense per-pixel predictions, deconvolution is used to restore the
rough feature map to the input size. There are 5 outputs with different scales: ‘output5′

(64 × 64 × 2), ‘output4′ (64 × 64 × 2), ‘output3′ (128 × 128 × 2), ‘output2′ (256 × 256 ×
2), and ‘output1′ (512 × 512 × 2). ‘output5′ is generated by connecting the attention block
(as shown in Figure 3) and convolution processing (kernel: [3, 3], stride: [1, 1], channels:
2, activation: softmax) after the feature map ‘conv5_3′. As for ‘output4′, this is created
by convoluting ‘concat4′, which is produced by concatenating ‘deconv4′ ‘conv4_3′, and
‘output5′. ‘deconv4′ is the feature map generated by the up-convolution (kernel: [4, 4],
stride: [1, 1], channels: 512, activation: Leaky Relu with alpha 0.1) of ‘conv5_3′. ‘conv4_3′ is
the low-level feature map used by skip-connection. The production of ‘output3′, ‘output2′,
and ‘output1′ are the same as ‘output4′.
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block; (b) structure of spatial attention module; (c) structure of channel attention module. H, W, and C represent the height,
width, and channel of the feature map, respectively.

3.1.3. Training

For the training phase, Adam [15] was selected as the optimizer. The learning rate
was set to 10−5 and focal loss [16] (gamma: 2.0, alpha: 0.7) was the loss function. The loss
weights for ‘output1′ to ‘output5′ were 1.0, 0.8, 0.8, 0.6, and 0.6. The size of the images
and optical flow were rescaled to 1536x1024 and regions of fixed-size 512 × 512 were
randomly cropped. The data augmentation methods include horizontal and vertical flip,
rotation from [−5◦, 5◦], translation from [−10, 10] for x and y, and scaling from [0.8, 1.2].
The attention blocks introduce a large number of trainable parameters, which makes the
network difficult to train. To solve this problem, we first trained the network without
the attention mechanism, and then used the optimal model on the validation set as the
pretrained model for transfer learning. Finally, we added the attention blocks before the
five outputs and fine-tuned the network.

3.1.4. Inference

In the inference phase, inputs were rescaled to 1536 × 1024 and cropped as image
patches with a fixed-size of 512 × 512 in the x and y directions with a step size of 256.
We created an array Iout with a size of 1536 × 1024 × 2 to save results. ‘output1′ was the
unique output, which was packed into the corresponding region of Iout. The overlapping
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regions took the maximum value. Finally, the category corresponding to the maximum of
two channels was the predicted result for each pixel in Iout.

3.2. Convolutional Neural Network Based on Encoder-Decoder Architecture for Fine Detection

The outlines of the TV extracted by the rough detection network are coarse, so the
second fine detection network we proposed needs to have a function to correct the con-
tours. To solve the problem of video object segmentation, Perazzi et al. [17] proposed the
MaskTrack method, which add the predicted mask image of the previous frame to the
input of the network. The extra mask channel is meant to provide an estimate of the visible
area of the object in the current frame, its approximate location and its shape, which is the
inspiration for the second fine detection network to modify the rough detection result.

3.2.1. Encoder and Decoder

The fine detection network adopts the same architecture of the rough detection net-
work but removes the extra attention blocks before five outputs. In addition, we stacked
the current frame (RGB image, 3 channels) and the rough detection result for the current
frame (binary image, 1 channel) together as the input of the encoder. The input shape was
512 × 512 × 4.

3.2.2. Training

In the training phase, instead of using the results for the rough detection network as
the training set, we constructed random rough detection results artificially, due to false
alarms and missed detections for the rough detection network. To obtain random rough
detection results, we used affine transformations and non-rigid deformations via thin-plate
splines [18] to deform the ground truth images. Because the motion of TV is independent,
we deformed each TV randomly.

In order to prevent large distortion, we only kept the deformed result with an inter-
section over union value (between its original region and the deformed result) larger than
10% for non-rigid deformations. Affine transformations includes rotation from [−15◦, 15◦],
translation from [−20, 20] for the x and y directions, and scaling from [0.5, 2.0]. A mor-
phological dilation operation with a disc structuring element (15 pixels in diameter) was
applied to remove the details of TV contours after the transformations. Examples of the
generated rough detection results are shown in Figure 4. The optimization algorithm, loss
function and other parameters used in the training phase were the same as those of the
rough detection network. Since the TV regions have been randomly deformed, we only
used the data augmentation methods of horizontal and vertical flip.

3.2.3. Inference

In order to reduce false alarms, the extra input mask of the fine detection network
is obtained as follows. First, we apply a morphological dilation operation with a disc
structuring element (15 pixels in diameter) to the rough detection result of the previous and
current frames. Then the two dilated binary images perform an AND operation. Figure 5
shows the inference phase of the fine detection network. If there is no rough detection
result for the previous frame, the rough detection result for the current frame is dilated as
the input mask. The outputs are saved in the same way as the rough detection network.
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4. Experimental Results
4.1. Dataset and Optical System

There were six videos containing TV in our dataset and the frame number of each
video is shown in Table 1. The image size of each frame was 1920 × 1200. All videos were
shot under this condition: adjusting the z position of the microscope stage to make the
formed elements clearest. The positions and shapes of the TV were constantly changing
due to its motion characteristics and most of the time it appeared as shadow regions in
the videos. For the convenience of comparison, we manually labeled the TV in all video
frames, obtaining a total of 2520 annotated images for analysis (ground truth of TV, pixel
value 0 for background regions, pixel value 1 for TV regions). For the two convolutional
neural networks, we used video1 to video2 as the training set, video3 as the validation set,
and video4 to video6 as the test set.
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Table 1. The frame number of each video in our dataset.

Video Name Video1 Video2 Video3 Video4 Video5 Video6

Frame number 221 250 406 498 433 712

As shown in Figure 6, the optical system for capturing TV videos contains a biological
microscope and a charge-coupled device (CCD) camera. We used a CX31 biological micro-
scope (Olympus, Tokyo, Japan) equipped with a 40× objective lens (CFI BE2 Plan Achromat,
Nikon, Tokyo, Japan) which has a numerical aperture (NA) of 0.65. An EXCCD01400KMA
CCD camera (Motic, Xiamen, China) with a pixel size of 6.45 µm × 6.45 µm is used for ex-
posure and the exposure time was 40 ms. The field of view (FOV) was 0.41 mm × 0.26 mm.
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4.2. Metric

In this study, we verified the effectiveness of the proposed detection networks by
calculating the intersection over union (IoU) metric of TV. The calculation formula was as
follows:

IoU =
TP

TP + FP + FN
(1)

where True Positive (TP) is the number of correctly detected TV pixels; False Positive (FP)
is the number of background pixels incorrectly classified as TV; and False Negative (FN) is
the number of TV pixels incorrectly classified as background. In addition, we calculated
the precision and recall metrics to evaluate the degree of false alarm and missed detection
of TV. The calculation formula was as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

4.3. Results

The results of the rough detection network for the training, validation and test set are
shown in Table 2. It can be seen that for the test set, the rough detection network has a
higher value of mean recall, but the increasing false detection regions lead to a decrease in
mean precision value and mean IoU value.
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Table 2. Results of the rough detection network.

Video Name Mean Recall Mean Precision Mean IoU

Training set video1 92.76% 85.81% 80.04%
video2 90.71% 84.96% 77.91%

Validation set video3 84.62% 83.66% 72.08%

Test set
video4 89.84% 74.28% 67.94%
video5 92.73% 75.79% 71.32%
video6 89.44% 78.26% 71.51%

The results of the fine detection network are shown in Table 3. With the fine detection
network applied for the validation and test sets, the mean recall value decreases slightly,
the mean precision value and mean IoU value are improved and the mean average IoU
value of three test videos achieves 72.09%. The experimental results indicate that the
proposed fine detection network can correct the boundary of TV. The mean IoU value in
the training set is high and the boundaries of the TV are very close to the ground truth.
The correction effect for TV is limited, however, the shadow region of false alarms after
correction is enlarged and reduces the mean IoU value of video2. The specific analysis is
discussed in Section 5.

Table 3. Results of the fine detection network.

Video Name Mean Recall Mean
Precision Mean IoU Mean

Average IoU

Training set video1 89.35% 89.35% 80.19%
78.14%video2 90.38% 84.14% 76.09%

Validation set video3 84.20% 85.33% 73.12% 73.12%

Test set
video4 89.65% 78.86% 70.13%

72.09%video5 92.06% 78.59% 73.34%
video6 86.45% 82.30% 72.80%

Figure 7 shows the results of the two detection networks for one frame in video4. In
this image, there are three TV adjacent to each other. In the rough detection result, the
prediction regions of the three TV are stuck together. After using the fine detection network,
some of the adhesion areas are eliminated. We uploaded the results of the fine detection
network for the six videos online and the details can be found in the Supplementary
Information.
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4.4. The Operating Environment and Running Times

We used tensorflow2 framework to build our algorithm. The operating system is
Ubuntu and we run this algorithm on a GTX TITAN Xp GPU. The code for calculating
optical flow is from LiteFlowNet2 [13]. The overall detection starts from the second frame
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of the video. One calculation process includes image reading and scaling (1920 × 1200 × 3
-> 1536 × 1024 × 3), optical flow calculation, slicing (15 × 512 × 512 × 13 or 15 × 512 ×
512 × 4), rough detection and fine detection. In the process of inference, the batch size of
the rough and fine detection network is 8 each time. The average running times for optical
flow calculation, slicing, rough and fine detection are shown in Table 4.

Table 4. The average running times for one calculation process of our algorithm.

Optical Flow
Calculation Slicing Rough

Detection
Fine

Detection Total

Running times 0.545 s 0.050 s 1.556 s 0.875 s 3.026 s

5. Discussion
5.1. Selection of the Optical Flow Calculation Method

In this section, we discuss the choice of optical flow calculation method. The traditional
optical flow calculation method has a high calculation accuracy, but the high computation
cost make itunsuitable for real-time detection. The optical flow calculation method based
on deep learning has the advantage of fast calculation speed and acceptable precision,
which has been an important research subject in respect of deep learning in recent years.

As shown in Figure 8, we compared 4 optical flow calculation methods which are
based on deep learning. Figure 8a,b show the two adjacent frames, (c) shows the TV
ground truth of frame (a), and frames (d) to (g) are the visualized images of optical flow
calculated using the 4 methods. It can be seen from Figure 8d,e that flownet2.0 [19] and
LiteFlowNet2 [13] can effectively capture the motion of the shadow regions where the
defocused TV is located. Finally, we chose the LiteFlowNet2 [13] method, which has the
faster calculation speed.
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5.2. Ablation Study

In this section, we investigate the effects of each component in the model framework
of the rough detection network.

5.2.1. Network Architecture

Table 5 summarizes the differing performance of rough detection using different
encoder or adding attention blocks. We chose the original FlowNetSimple network [11] as
the baseline model. After modifying the encoder to VGG16 [12], the optimal value of the
mean IoU for the validation set achieved a significant improvement to 71.50%. Compared
with the original decoder structure, the attention block with the SE module [14] is able to
recover fine details for TV and improve the mean IoU value to 72.08%. Finally, VGG16 [12]
was used as the encoder and attention blocks with a SE module were adopted in the
decoder.

Table 5. Differing performance of rough detection using different encoder or adding attention blocks.

Architecture Variant The Optimal Value of Mean IoU
on Validation Set (Video3)

FlowNetSimple [11] None 68.19%

Encoder changed
VGG16 [12] 71.50%

Resnet50 [22] 68.31%
modified Xception [23] 64.99%

Attention blocks added VGG16 [12] + SE [14] 72.08%

5.2.2. Attention Module

The influence of different attention modules on the performance of rough detection
network is shown in Table 6. We replaced the SE [14] module in the attention block with
other classical attention modules such as non-local [24], CBAM [25], and dual attention
(DA) [26]. Due to limitations in the memory size of the graphics boards, we deleted
the attention blocks before ‘output1′, ‘output2′ and ‘output3′. Similar to the training
phase of the rough detection network, we used the trained network without an attention
mechanism as the pretrained model for transfer learning. The data in Table 6 indicate that
the SE module has the ability to identify the information pertinent to the TV with a better
performance.

Table 6. The influence of different attention modules on the performance of the rough detection
network.

Attention Module Added Video3 Video4 Video5 Video6

None 71.50% 67.75% 70.60% 69.76%
+SE [14] 72.08% 67.94% 71.32% 71.51%

+Non Local [24] 71.73% 66.64% 69.65% 67.81%
+CBAM [25] 70.75% 66.82% 70.62% 71.25%

+DA [26] 71.16% 66.90% 70.80% 70.37%

5.2.3. Network Inputs

Table 7 summarizes how the input information affects the performance of the rough
detection network. In order to simplify the comparison process, we used VGG16 [12] as
the encoder and removed the attention blocks in the decoder. The results demonstrate that
optical flow information is necessary and using three consecutive frames could obtain a
better result than two. We also tested the inputs of five consecutive frames with optical
flow, but the network performance for the test set decreased. Finally, three consecutive
frames with optical flow were adopted as the input of the rough detection network.
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Table 7. The influence of different input information on the performance of the rough detection
network.

Input Information Video3 Video4 Video5 Video6

Two adjacent frames (6 channels) 71.52% 66.51% 67.49% 68.18%
Two adjacent frames with optical flow (8 channels) 70.94% 67.87% 69.51% 67.92%

Three consecutive frames with optical flow
(13 channels) 71.50% 67.75% 70.60% 69.76%

Five consecutive frames with optical flow
(23 channels) 71.86% 66.86% 67.86% 67.12%

5.3. Comparison with Traditional Video Object Detection Methods

In this section, we compare our method with some traditional video object detection
methods. For convenience of comparison, we have only compared the mean IoU metrics.
In order to reduce the interference of background noise, we first used a median filtering
algorithm on the images (11 × 11 kernel for Three frame difference [4] and 29 × 29 kernel
for Gaussian Mixed Model (GMM) model [5]). As shown in Table 8, the mean IoU value
of our method is much higher than the other traditional algorithms. Since most of the
TV in our dataset is defocused, it appears as flat shadow regions with little difference
between adjacent frames. Therefore, whether using the frame difference method [4] or the
background difference method [5], it is necessary to reduce the judgment threshold of the
foreground, resulting in false alarms where some backgrounds are detected as TV. The
above problem also exists with the improved Kalman [1] and improved VIBE [2] methods
that we proposed. These two methods can recognize clear instances of TV, but fail on
defocused images.

Table 8. The comparison between our method and traditional video object detection methods.

Method Video1 Video2 Video3 Video4 Video5 Video6

Three frame difference [4] 34.60% 28.07% 27.39% 32.33% 33.34% 39.23%
GMM model [5] 45.51% 35.26% 34.87% 39.97% 44.99% 36.76%

Improved Kalman [1] 44.52% 39.87% 39.48% 42.95% 47.93% 51.15%
Improved VIBE [2] 55.51% 51.74% 53.29% 56.82% 58.71% 57.73%

This paper 80.19% 76.09% 73.12% 70.13% 73.34% 72.80%

5.4. The Performance of the Rough Detection Network Using Different Outputs

We only used ‘output1′ as the final result, although there are five ‘output’ for the
rough detection network. Therefore, we compared the impact of different ‘output’ on
the performance of the rough detection network. For ‘output2′ to ‘output5′, we enlarged
the image size to 512 × 512 by bilinear interpolation. The mean IoU values of ‘output1′

to ‘output5′ are shown in Table 9. The results of ‘output1′, ‘output2′, and ‘output3′ are
similar. In order to improve the detection speed, the results of ‘output3′ to ‘output5′ were
calculated alone while discarding the subsequent network structure. Furthermore, due
to the reduction in the network size, we stack the cropped patch images together and a
rescaled image with the shape of 1536 × 1024 could be detected by the rough detection
network immediately.

Table 9. The mean IoU values of ‘output1′ to ‘output5′ for rough detection network.

Output Video1 Video2 Video3 Video4 Video5 Video6

output1 80.04% 77.91% 72.08% 67.94% 71.32% 71.51%
output2 80.02% 77.95% 72.00% 67.85% 71.28% 71.25%
output3 79.41% 77.40% 71.64% 67.53% 71.05% 70.83%
output4 76.19% 74.77% 70.76% 65.78% 68.84% 68.15%
output5 75.96% 73.40% 70.42% 65.30% 68.40% 68.09%
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5.5. Limitations of Our Trichomonas Vaginalis Detection Method

Most of the TV in the training set videos is defocused and therefore the rough detection
network is sensitive to the shadow regions between frames, which often lead to false alarms.
As shown in Figure 9a, the shadow region of the background with the blue marks moves
slightly with the sample liquid and is mistakenly detected by the rough detection network
at the bottom right of the image. In addition, the principle of the rough detection network
mainly depends on the difference between frames. As shown in Figure 9b, the TV with the
green mark is similar to white blood cells and its position is basically unchanged in this
video, leading to little difference between frames and missed detection.
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with the fine detection network applied. For example, the fine detection network could 
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Figure 9. The limitation of the rough detection network. For convenience of display, we have used red to mark the TP
regions, green to mark FN regions and blue to mark FP regions of TV on the original image. (a) The false alarms of TV; (b)
the missed detection of TV.

The main function of the fine detection network we proposed is to correct the contours
of TV and eliminate the short-term false alarms. Therefore, if the rough detection network
mistakenly detects or misses the TV, the result will not improve or get worse with the fine
detection network applied. For example, the fine detection network could not detect the
missed TV in Figure 9b. Figure 10 shows the rough and fine detection results for one frame
in video2. The blue-marked shadow region at the bottom right of Figure 10a is falsely
detected by the rough detection network. After adopting the fine detection network, as
shown in Figure 10b, it cannot be eliminated but is enlarged by the correction function of
the fine detection network.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17 
 

detection network, as shown in Figure 10b, it cannot be eliminated but is enlarged by the 
correction function of the fine detection network.  

  
(a) (b) 

Figure 10. Limitations of the fine detection network. For convenience of display, we have used red to mark the TP re-
gions, green to mark FN regions and blue to mark FP regions of TV on the original image. (a) The rough detection result; 
(b) the fine detection result. 

In future work, we need to address the above limitations and further study the 
problem of TV recognition in a flowing liquid samples. 

6. Conclusions 
In this paper, we proposed two convolutional neural networks based on an en-

code-decoder architecture to solve the problem of defocused TV recognition in videos 
shot by microscopic cameras. The first rough detection network we proposed realizes 
the coarse detection of the TV by learning the difference between adjacent frames. The 
second fine detection network we proposed achieves correction of the contours of TV for 
rough detection results. By combining these two networks, the mean average IoU value 
of the TV achieved 72.09% for our test videos. The experimental results show that our 
proposed networks can effectively detect defocused TV and suppress the false alarms 
caused by the motion of formed elements or impurities. 

Supplementary Materials: The fine detection results for six videos are available online at 
www.github.com/wxz92/Trichomonas-Vaginalis-Detection. 

Author Contributions:  Investigation, Lin Liu; resources, GuangMing Ni; data curation, Guang-
Ming Ni; methodology, Xiangzhou Wang; writing—original draft preparation, Xiangzhou Wang; 
writing—review and editing, XiaoHui Du; project administration, Yong Liu; funding acquisition, 
Jing Zhang and Juanxiu Liu. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (No. 
61905036), the Fundamental Research Funds for the Central Universities (University of Electronic 
Science and Technology of China) (No. ZYGX2019J053) and China Postdoctoral Science Founda-
tion (2019M663465). 

Institutional Review Board Statement: The study was conducted according to the guidelines of 
the Declaration of Helsinki, and approved by the Institutional Review Board of University of Elec-
tronic Science and Technology of China (protocol code: 106142021030903). 

Informed Consent Statement: Written informed consent has been obtained from the patients to 
publish this paper. All samples were anonymization. 

Data Availability Statement: The algorithm codes and our dataset will be released online at 
www.github.com/wxz92/Trichomonas-Vaginalis-Detection. 

Acknowledgments: We would like to express our thanks to Yu-Tang Ye and the staff at the 
MOEMIL laboratory, who collected and counted the samples used in this study. 

Figure 10. Limitations of the fine detection network. For convenience of display, we have used red to mark the TP regions,
green to mark FN regions and blue to mark FP regions of TV on the original image. (a) The rough detection result; (b) the
fine detection result.



Appl. Sci. 2021, 11, 2738 15 of 16

In future work, we need to address the above limitations and further study the
problem of TV recognition in a flowing liquid samples.

6. Conclusions

In this paper, we proposed two convolutional neural networks based on an encode-
decoder architecture to solve the problem of defocused TV recognition in videos shot
by microscopic cameras. The first rough detection network we proposed realizes the
coarse detection of the TV by learning the difference between adjacent frames. The second
fine detection network we proposed achieves correction of the contours of TV for rough
detection results. By combining these two networks, the mean average IoU value of the
TV achieved 72.09% for our test videos. The experimental results show that our proposed
networks can effectively detect defocused TV and suppress the false alarms caused by the
motion of formed elements or impurities.

Supplementary Materials: The fine detection results for six videos are available online at www.
github.com/wxz92/Trichomonas-Vaginalis-Detection.
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