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Abstract: Artificial lighting is a key factor in Closed Production Plant Systems (CPPS). A significant
light-emitting diode (LED) technology attribute is the emission of different wavelengths, called
light recipes. Light recipes are typically configured in continuous mode, but can also be configured
in pulsed mode to save energy. We propose two nonlinear models, i.e., genetic programing (GP)
and feedforward artificial neural networks (FNNs) to predict energy consumption in CPPS. The
generated models use the following input variables: intensity, red light component, blue light
component, green light component, and white light component; and the following operation modes:
continuous and pulsed light including pulsed frequency, and duty cycle as well energy consumption
as output. A Spearman’s correlation was applied to generate a model with only representative inputs.
Two datasets were applied. The first (Test 1), with 5700 samples with similar input ranges, was
used to train and evaluate, while the second (Test 2), included 160 total datapoints in different input
ranges. The metrics that allowed a quantitative evaluation of the model’s performance were MAPE,
MSE, MAE, and SEE. Our implemented models achieved an accuracy of 96.1% for the GP model and
98.99% for the FNNs model. The models used in this proposal can be applied or programmed as part
of the monitoring system for CPPS which prioritize energy efficiency. The nonlinear models provide
a further analysis for energy savings due to the light recipe and operation light mode, i.e., pulsed
and continuous on artificial LED lighting systems.

Keywords: artificial intelligent; LED light; energy consumption; artificial neural network; genetic
programming; closed plant production systems

1. Introduction

Closed Plant Production Systems (CPPS) consist of a wide variety of growing methods,
like vertical farms, plant factories, greenhouses, growth chambers, tissue culture rooms,
phytotrons, and high tunnels, among others [1–9]. The controlled agricultural environments
approach allows producers to establish ideal conditions for given crops (e.g., in terms of the
quantity and quality of light, humidity, temperature, carbon dioxide, among others). Such
an approach yields higher crop production and quality, and means that any variety of plant
can be planted at any time of the year. The literature has shown that light-emitting diodes
(LEDs) are an energy efficient substitute for other types of lamps (filament lamps and gas
discharge lamps with mercury and sodium), and enhance plant growth. The use of LEDs
for plant production has transformed the horticultural industry. The radiation emitted
by LEDs has various advantages like rapid response time, longer lifetime, controllability,
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efficiency wavelengths that drive specific responses in plants such as photomorphogenic,
biochemical or physiological development, and even the control of pests and diseases.
LEDs are programmed to produce continuous irradiation and can also be easily configured
to emit rapid (µs) pulsed irradiation (on/off) with heightened intensity and modest energy
consumption [3,10–14]. Artificial lighting is a key factor in CPPS and a significant LED
technology attribute is the emission of different wavelengths, called light recipes. Light
recipes may influence the development and growth of crops from sprouting to flowering,
stimulate stem elongation, optimize edible biomass, and increase nutritional content,
antioxidant capacity, levels of calcium, potassium, magnesium, and phosphorus, number
of fruits, among others [15–17]. The mixture of wavelengths (red, blue, green, ultraviolet,
and infrared) and the photosynthetic photon flux density (PPFD, or intensity levels given
in µmol m−2 s−1) are the main components of light recipes. Light recipes are commonly
configured in continuous mode, but can also be configured in pulsed mode to save energy.
Reducing the energy costs of illumination systems in CPPS, and the fabrication of efficient
light devices, are challenges for the near future [18].

The cost of electricity to supply electrical power to CPPS and greenhouses is high. The
cost of the LED lighting system represents 30% of the initial capital cost for a CPPS, while
electricity represents 60% of the annual operating costs [19]. The main part of this electricity
is required to generate lighting for crops and air conditioning which is necessary to remove
the heat produced by the lighting system [14]. As such, 40% to 50% of the total operating
costs of CPPS are linked to the lighting system [19,20]. More efficient lighting strategies are
essential to improve the sustainability and profitability of closed plant production systems.

Various research groups have tried to devise innovative approaches to reduce the
energy requirements of CPPS. An approach employing energy informatics (energy prices,
forecasts of solar radiation, plant specifications and production process) for controlled
environment agriculture (CAE) that helps to analyze, design, and implement strategies for
a global diagnosis would make it possible to optimize the usage of resources, while also
monitoring the lighting systems in the greenhouse. Producers would be informed about
energy consumption levels to avoid wasting resources [21]. Hwang et al. [22] executed a
computational fluid dynamics (CFD) simulation using information collected by sensors con-
nected to the Internet of Things. This study used temperature data and emitted airflow to
achieve energy efficiency in plant factories. DynaGrow uses a multiobjective evolutionary
algorithm (MOEA) that monitors and detects critical points at which the climate in a green-
house integrates local climate data, electricity energy price forecasts, and outdoor weather
forecasts. Dynagrow showed that it was feasible to grow different plants and improve the
use of resources without affecting the quality of the produce [23]. A mathematical expres-
sion to control the temperature in greenhouses based on the fuzzy proportional, integral,
and derivative (PID) and the greenhouse temperature model was designed. The graphs
obtained through simulations indicated that the model had a short response time and could
maintain a stable temperature inside the closed production plant system [24–26]. Also, neu-
ral networks have been used in CPPS to estimate indoor temperature and humidity [27],
predict climatic conditions [28,29] or forecast energy consumption [30]. Energy prediction
models (EPM) to evaluate the energy requirements and performance of the system for
the production of plants in closed spaces have been implemented. Similarly, a predictive
control model (MPC) has been proposed for temperature regulation through ventilation
and optimization of crop production [31,32]. Another proposal was a MPC to increase the
precision of actuator control and to minimize energy consumption [33]; the cost of energy,
ventilation, and the price of managing CO2 were the inputs. The aim was the optimization
of the greenhouse process, as well as reducing the disturbance and inadaptability of the
system [34].

According to the literature, there are different proposals to monitor, control and predict
aspects such as weather conditions, energy consumption, humidity, temperature, and CO2
levels, among others, in a CPPS. Implemented approaches include computer systems,
fluid dynamics, multi-objective evolutionary algorithms (MOEA), Neural Networks, and
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the predictive control model. However, predictions of energy consumption in artificial
lighting systems based on light recipes considering the light operation modes (pulsed and
continuous) have not been reported. Hence, it is essential to assume that a challenge for
CPPS is to apply strategies to improve energy consumption without affecting crop yield
and quality. Aiming to generate new alternatives that may contribute to forecasting CPPS
energy consumption, we propose two nonlinear models based on artificial intelligence that
support modeling of the energy requirements of the LED lighting. The models include
a vector with seven inputs and an output represented by the energy consumption of the
CPPS. In the literature, no proposal has yet considered the components of light (red, blue,
green, and white) and its mode of operation, i.e., continuous or pulsed (i.e., intensity, pulse
frequency, and duty cycle). The first model uses genetic programming (GP), and the second
feedforward neural networks (FNNs). We applied and compared these techniques in the
generation of nonlinear models because they have been used for this propose [35–41].
This research applies 10-fold cross-validation to select the training complexity parameters
because this approach almost eliminates the bias of the estimated error [42–46]. Ten-fold
cross-validation is the most widely used in the literature because, even with random
sampling, it reflects the behavior in the original dataset. Furthermore, it has been shown
that any increase in the number of folds beyond 10 only increases computational effort,
while slightly reducing the variance in the results owing to the number of folds does not
impact the dataset distributions [42,44,46].

Additionally, we used test values outside the ranges established in the training stage
to verify the generalization of the model. A Spearman’s correlation was applied to generate
the model only with representative inputs. Different light recipes extracted from the litera-
ture that are normally used for plant growth were configured in the artificial lighting system
to generate the two datasets. The first (Test 1), with 5700 samples with similar input ranges,
was used to train and evaluate, while the second (Test 2) had a total of 160 datapoints from
different input ranges. The metrics that allowed a quantitative and statistic evaluation of
the model’s performance were mean absolute percentage error (MAPE), mean square error
(MSE), mean absolute error (MAE), standard error of the estimate (SEE), the determination
coefficient (R2), and One-Way Analysis of Variance (ANOVA). The GP and FNNs models
generated in this proposal can be applied or programmed as part of a monitoring system
for CPPS which prioritize energy efficiency.

2. Materials and Methods
2.1. Lighting System Characteristics

The lighting system was developed by the Artificial Lighting Laboratory (LIA) at
Instituto Tecnológico de Pabellón de Arteaga in Aguascalientes, México. The artificial
lighting system consisted of eight lamps of 25 watts each (Figure 1b). The irradiation
is emitted by ultrabright LEDs, with features for control parameters such as different
wavelengths (red, blue, green, and white) in continuous and pulsed light, frequency and
duty cycles. The illumination system was characterized by the maximum PPFD values for
each light channel (color). A quantum sensor to determine the PPFD of photosynthetically
active radiation (PAR) was used. An automated controller based on a field programmable
gate array (FPGA) made it possible to program different functions such as pulse frequency,
duty cycle, intensity emitted, wavelength, and on-off time.
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2.2. Experimental Setup

In the literature, the relationship between the spectral quality of radiation and the de-
velopment and growth of crops is widely addressed. Research shows that the combination
of different wavelengths can enhance the antioxidant capacity, calcium, potassium, mag-
nesium, and phosphorus levels, number of fruits, and dry and fresh weight of vegetable
crops including lettuce, spinach, kale, basil, and sweet pepper crops, among others [15–17].
Ten light recipes (as shown by the circles at the top of Figure 1a) in continuous and
pulsed mode were used in this research to produce the first dataset (Table 1). These light
recipes were selected based upon information provided in the literature. The letters in
the treatments (Tables 1 and 2) indicate the first letter of the color used (R = red, B = blue,
G = green, and W = white). The intensities applied were 50, 65, 80, 95, 110, 125, 140, 155, 170,
185 µmol m−2 s−1 and the frequency was set at 100, 500, and 1000 Hz with duty cycles of
40%, 50%, 60%, 70%, 80%, 90% for each treatment (see Figure 1a). The second dataset was
constructed with the design of four different light recipes (circles at the bottom of Figure 1a)
at intensities of 60, 70, 85, 90, 100, 120, 130, 150, 160, 180 µmol m−2 s−1, frequencies of 100,
500, and 1000 Hz, and with randomly selected duty cycles of 60%, 70%, and 80%, as shown
in Table 2. The general configuration and control of the illumination system are shown
in Figure 1b. We selected the inputs and output, splitting the dataset in 80% for training
and 20% for testing. The training stage fixes the algorithm’s parameters with ten-folds
cross-validation to obtain the best predictions of energy consumption through the light
recipes shown in Figure 1c. Triplicate experiments for all conditions were carried out with
both continuous and pulsed LED light modes.

Table 1. Light treatments (recipes) for the first dataset (Test 1).

Recipes Red Green Blue White

95R5B 95% 0% 5% 0%
83R17B 83% 0% 17% 0%
60R40B 60% 0% 40% 0%
57W43B 0% 0% 43% 57%

67R11B22G 67% 22% 11% 0%
67R33G 67% 33% 0% 0%
100W 0% 0% 0% 100%

50R50B 50% 0% 50% 0%
70R30B 70% 0% 30% 0%
30R70B 30% 0% 70% 0%

Table 2. Light treatments (recipes) for the second dataset (Test 2).

Recipes Red Green Blue White

60R20G20B 60% 20% 20% 0%
40R50B10W 40% 0% 50% 10%

40R60B 40% 0% 60% 0%
30R10G60B 30% 10% 60% 0%

2.3. Energy Consumption

Figure 2 displays the data acquisition sequence. The artificial radiation system with
each light recipe (Tables 1 and 2) at different intensities, frequencies, and duty cycles for
the two datasets was programmed as indicated in Figure 1a. For each light recipe, after
60 min of irradiation, energy consumption was measured with a hook-on AC ammeter
(Peak Teach, Salerno, Italy) and was expressed in watt × hour (Wh). The reconfiguration
of a new light recipe or treatment consisted of turning off the artificial radiation system for
15 min to allow it to cool down.
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2.4. Nonlinear Test of Energy Consumption in Irradiation LED Lighting System

According to the process for obtaining the energy consumption measurements detailed
in Figure 2, a linear transformation test (linear mapping) was applied, as described in [47], in
order to prove that the obtained datasets demonstrated nonlinear behavior. Figure 3 shows
the nonlinear behavior of energy consumption for the values obtained in the measurement
process. The light recipe applied for this data was 95R5B at 110 µmol m−2 s−1 from
Dataset 1.
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We defined f as a function that maps the changes in energy consumption given by mod-
ifying the pulsed frequency (x6); then, if the model is lineal, the following equations should
be satisfied: f (x6 = 500 Hz) = 5 f (x6 = 100 Hz) and f (x6 = 500 Hz) = f (x6 = 100 Hz)+
f (x6 = 100 Hz)+ f (x6 = 100 Hz)+ f (x6 = 100 Hz)+ f (x6 = 100 Hz). We tested linearity
according to the method described in [47], with the light recipe 95R5B at 110 µmol m−2 s−1

and 80% duty cycle from the dataset 1 by considering these axioms that define a linear map.

f (500) = f (100) + f (100) + f (100) + f (100) + f (100)
f (500) = 5 f (100)
0.4 6= −5.5

(1)

The information previously presented demonstrates that there is a nonlinear phe-
nomenon in the energy consumption behavior of the lighting system, generated by the
input parameters.

2.5. Genetic Programming

Genetic programming (GP), developed by John Koza in 1992, is an evolutionary
algorithm that generates unknown structures through metaheuristic optimization based
on the natural selection principles proposed by Charles Darwin [36,38,48]. The linear GP
variant requires fewer pointers and has candidate solutions which are compatible with
programming instructions [49–51].

The algorithm starts with the random generation of (SP) chromosomes with (NO)
operators. After that, the fitness function evaluates the quality of each chromosome (f(xL)).
Then, the tournament randomly selects (ST) chromosomes for the mating pool (MP), where
those with the best fitness generate offspring (O) with crossover operation, as detailed by
Poli et al. [36]. Then, the offspring with probability (PM) is mutated, and two mutation
points select the mutated alleles [42,44]. The algorithm runs (NG) generations and returns
the best individual in the population.

2.6. Feedforward Artificial Neural Networks

Artificial neural networks (ANNs), first proposed in the 1950s, are used in regression
and classification tasks [37]. Feedforward neural networks (FNNs) are ANNs that propa-
gate signals from input to output without feedback elements [52]. The neuron output in
the output layer is given by Equation (2).

am+1 = f m+1(Wm+1am + bm+1) (2)

where fm+1 is the activation function, W m+1 is the weight matrix, and bm+1 the bias matrix
in the layer m+1, am as the previous neuron output in the layer m, and m = 0, 1 . . . , M−1,
where M represents the number of layers [52].

The fm+1 activation functions are hyperbolic tangent sigmoids (tanh) represented in
Equation (3) for hidden layers. Moreover, the linear function indicated in Equation (4)
provides approximations with finite discontinuities [52].

tanh( nm
i) =

2
1 + e−2nm

i
− 1 (3)

linear(nm
i) = nm

i (4)

With nm
i = ∑sm−1

j=1 wm
i,jam−1

j + bm
i, where wm

i,j is the i, j element of the weight’s
matrix W m, corresponding with the i neuron in the m layer and its j input; am−1

i is the
output of the neuron i at layer m− 1; and bm

i is the bias of the neuron i at layer m.
In this proposal, we train the FNNs with scaled conjugate gradient (SCG) backprop-

agation, which calculates the gradient in specific conjugate directions with increased
convergence speed, as proposed by Moller in 1993.
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2.7. Spearman’s Correlation

The feature selection simplifies a regression problem by decreasing the number of vari-
ables. A common technique for discriminating features is the Spearman correlation, which
discards inputs with lower contribution to the output based on two coefficients [53–55].
The ρ coefficient identifies the correlation level described by Equation (5), and the Pvalue
represents the correlation reliability, i.e., the probability of presenting the correlation [55].

ρ = 1− 6 ∑ D2

n(n2 − 1)
(5)

where n is the number of samples and D is the difference between the ranks of the samples
in the dataset.

2.8. Procedure for the Construction of the Nonlinear Models

The model generation starts by calculating the Spearman coefficients for the inputs
related to the output. Then, the inputs that achieve the specific threshold for ρ and Pvalue
are selected. Next, it is necessary to train the GP and FNNs models.

The GP algorithm applies summation (+), subtraction (−), multiplication (×), division
(÷), and exponentiation (ˆ) as operators; numerical coefficients; Intensity (x1), red light
component (x2), green light component (x3), blue light component (x4), white light compo-
nent (x5), pulsed frequency (x6), and duty cycle (x7) as input variables. Finally, sines and
cosines of each variable are used to build Fourier series with which to approximate any
function with a finite number of discontinuities [56].

The mean absolute error (MAE) in Equation (6) is the GP cost function that estimates
the error magnitude in models with unknown distribution [57].

MAE(ŷ, y) =
1
N

N

∑
i=1
|ŷi − yi| (6)

where y is the real output and ŷ = g(x1, . . . , x7) is the model output.
Candidate solutions are refined over NG generations using MAE(ŷ, y), and then the

best candidate is returned.
The FNN structure is constructed according to the process described in Section 2.5,

and applied to the same vector input as the GP model. For the FNN model, we used the
mean square error (MSE) defined in Equation (7). The MSE is the expected error function,
because it prioritizes larger reduction errors and generates a higher quantity of derivatives
for updating the ANNs weights [52].

MSE(ŷ, y) =
1
N

N

∑
i=1

(ŷ− y)2 (7)

where N is the number of samples, y is the target, and ŷ as the computed output of
the FNNs.

After generating both models, we carried out a quantitative evaluation with the MAE
and MSE metrics in the nonlinear models, and the errors in the construction stage were
applied. The precision measures in nonlinear regression models [58,59] are the standard
error of the estimate (SEE) in Equation (8) and the mean absolute percentage error (MAPE)
defined in Equation (9). The SEE represents the average distance from a real output value
to a predicted one. The MAPE symbolizes the average relative error between the regression
model and the right measure.

SEE(ŷ, y) =

√
∑N

i=1 (ŷi − yi)
2

N
(8)
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MAPE(ŷ, y) =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (9)

Additionally, we used three statistic validation tests to identify the best model. The
first was the R2 statistic measure used in Equation (10); this is commonly used for scoring
regression models, as in [60–62]. R2 is in the range of [0,1] with 1 for a regression model
that fully explains the variability of the output variable [63]. The second is a box plot
that compares, in a graphical representation, the media and quartiles of the analyzed
groups. In this case, we tested the GP and FNN errors in a single dimension. The third is
one-way analysis of variance (ANOVA), which was used to examine equality between two
categorical variables (GP or FNN model) of quantitative outcomes with two or more levels
of treatments (with metrics of error including MAE, MSE, SEE, and MAPE) [64].

R2(ŷ, y, y) = ∑N
i=1 (yi − y)2 −∑N

i=1 (yi − ŷi)
2

∑N
i=1 (yi − ŷi)

2 (10)

3. Results and Discussion

Two datasets for the generation and testing the GP and FNNs were applied. The
first (Test 1) has 5700 samples with similar input ranges for training and evaluation; the
second (Test 2) included a total of 160 datapoints in different input ranges from those used
for training. The two models used energy consumption as output, while the inputs were
intensity, red light component, blue light component, green light component, white light
component, pulsed Frequency, and duty Cycle.

We normalized the first dataset to get its variables on the same scale. Table 3 presents
the slopes and offsets for normalization. Subsequently, the most relevant inputs in Test 1
were selected if Spearman’s p value < 0.05 and ρ ≥ 0.05, which implied a weak correlation
with 95% reliability [59]. Table 4 shows the correlation coefficients obtained using the
inputs indicated in bold. After that, we split Test 1 as follows: 80% for the training and 20%
for testing; meanwhile, Test 2 was also applied for testing in both models.

Table 3. Slope and Offset normalization coefficients per variable.

Variables x1 x2 x3 x4 x5 x6 x7 y

Slopes 135.0 175.75 61.05 129.5 185.0 1000.0 90.0 34.10
Offsets 50.0 0 0 0 0 0 0.0 20.60

Table 4. Input variables selected based on Spearman’s coefficients.

Variables x1 x2 x3 x4 x5 x6 x7

ρ 0.9109 0.2039 −0.0219 0.2908 0.3064 0.0891 0.0620
pvalue 0 0 0.0990 0 0 0 0

All the training stages for the GP and FNN models of this work were performed
without parallel computing on a computer with Microsoft Windows 10.0.19041 Pro OS,
Intel Core™ i7-6700 CPU with 3.40GHz, 16 GB RAM, and NVIDIA GeForce GTX 970
graphic card.

The GP training parameters selected with cross-validation were: SP = 200, ST = 20,
and PM = 8%, for a limit of NG = 5000 generations. We avoided overfitting by selecting
the complexity parameters (number of operations per parentheses and the number of
parentheses) with 10-fold cross-validation in the training set. The best parameters obtained
were 16 operators and 2 parentheses, with a cross-validation MAE of 3.0649, after testing
1−20 operators and 1−2 parentheses.

The GP model in the Equation (11) omitted input three (green light component),
according to Spearman’s correlations in Table 2.
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g(x1, x2, x3, x4, x5, x6, x7) =
sin(x1)

3 − 2 cos(x1)− cos(x6)sin(x5)
7 − x2 cos(x7) + x6

5 + 8x5 + 6

x6 + cos(x2)− sin(x4) + cos(x7) sin(x7) +
7

sin(x1)
− x7 sin(x4)

3 − 9x4 cos(x7) sin(x4) + 7
(11)

We selected the complexity parameters of the FNNs model with 10-fold cross-validation
obtaining three layers and 10 neurons per layer after testing 1–5 layers and 1–10 neurons,
with a cross-validated MSE of 0.8666, and took 21,829.51 s or 6.06 h.

3.1. GP and FNNs Behavior in Test 1

The metrics for Test 1 with similar ranges to the training showed (Table 5) that the
GP model achieved 96.1% precision (1-MAPE), 3.90% MAPE, an average error between
a real output value and a predicted one of 1.4384 watts (SEE), and 92.67% effectiveness
at explaining the variability of the output variable (R2). The MAE estimated for the GP
model was 1.1239 and 3.0649 in the testing stage for the cross-validated MAE, i.e., a cross-
validated error which was higher than the test error, which indicated a model without
overfitting. In this context, the FNNs model obtained an accuracy or 1-MAPE, a MAPE,
and the average errors between the real output value and a predicted one were 98.99%,
1.01%, and 0.4827 watts (SEE), respectively. The FNNs model effectively explains 99.34% of
the variability of the output variable (R2). The MSE for the ANN model was 0.3007 and
0.8666 in the testing stage for the cross-validated MSE, i.e., a cross-validated error higher
than the test error, which indicated a model without overfitting.

Table 5. Models efficiency metrics for Test 1.

Technique MAE MSE SEE MAPE R2

GP 1.1239 2.0691 1.4384 0.0390 0.9267
FNNs 0.3007 0.2330 0.4827 0.0101 0.9934

Furthermore, FNNs showed slightly better performance than GP in the testing stage.
The MAE and MSE levels were lower in FNNs, despite the training measures, as indicated
in Table 5.

The GP model response (red line) and the desired output (blue line) are shown in
Figure 4a. The absolute error (AE) is plotted in Figure 4b to identify the highest error per
sample, i.e., 7 watts compared to 1.1239 watts of MAE.

The FNNs model response (Figure 5a) exhibited a higher accuracy than the GP model,
with finding a lower MAE, i.e., 0.3007, but a bigger punctual error that reached almost
9 watts (Figure 5b).

3.2. GP and FNNs Models Behavior in Test 2

The accuracy metrics of Test 2 with different ranges to those used for training are
shown in Table 6. The GP model reached 95.35% accuracy, 4.65% error (MAPE); its average
error (SEE) from a real output value to a predicted one was 1.8256 watts, which explains
83.99% of output variability (R2). The FNNs model achieved 98.21% accuracy (1-MAPE)
and 1.79% error (MAPE); the average error (SEE) between a real output value and a
predicted one was 0.6776 watts, which explains 97.79% of the output variability (R2).
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Table 6. Models efficiency metrics for Test 2.

Technique MAE MSE SEE MAPE R2

GP 1.4508 3.3328 1.8256 0.0465 0.8399
FNNs 0.5386 0.4591 0.6776 0.0179 0.9779

The two datasets (Test 1 and Test 2) showed that the FNNs model was slightly superior
to the GP model in the testing stage, despite the training measures. As shown in Table 6,
the error levels for MAE and MSE were lower in FNNs, while their effectiveness explaining
the variable output variability or R2 was superior.

A comparative response between the obtained GP model output and the desired one
(red and blue signals, respectively) is shown in Figure 6a. We plotted AE in Figure 6b,
showing a maximum error per sample of 4.6 watts, despite a MAE of 1.4508. The FNNs
model response (Figure 7a) exhibited a higher accuracy than the GP model, with a lower
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MAE of 0.5386, and presented a lower punctual error than the GP model, i.e., almost
1.8 watts (Figure 7b).
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3.3. GP and FNNs Models Statistic Comparison

The estimated errors (MAE, MSE, SEE, and MAPE) for each nonlinear model (GP
model and FNNs) in Tests 1 and 2 were integrated and associated with a new group of
analyses (box plot and ANOVA). According to results obtained in the ANOVA and the
graphic (box plot), it was determined that the FNNs model showed the best performance,
considering the error and variance values, as observed in Figure 8. Furthermore, the
ANOVA with Pvalue = 0.0155 supports these results, given that the established hypothesis
(the error FNN < GP) is true with a 1.55% risk (Table 7).
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Table 7. ANOVA analysis of error metrics MAE, MSE, SEE and MAPE between GP and FNN models
for PROB > F(Pvalue for testing null hypotesis).

Source of
Variation

Sums of
SQUARES

Degree of
Freedom Mean Square Error F PROB > F

Columns 4.6294 1 4.62938 7.59 0.0155
Error 8.5407 14 0.61005
Total 13.1701 15

4. Conclusions

In this proposal, we compared two nonlinear models for predicting energy con-
sumption in CPPS using a linear GP algorithm and FNNs. The models generated en-
ergy consumption as output, and took intensity, red light component, blue light compo-
nent, green light component, white light component, pulsed frequency, and duty cycle as
input variables.

We identified the most important variables with Spearman’s correlation. The accuracy
achieved using similar test ranges to those used in training was 96.1% for the GP model
and 98.99% for the FNNs. On the other hand, the accuracy achieved with different test
ranges to those used in training was 95.35% for GP and 98.21% for FNNs. Test 2 indicated
that FNNs had better generalization than GP.

We found that the FNNs model was superior to the GP model based on statistical tests
R2, box plot, and one-way ANOVA with a risk probability of 1.55%. Additionally, FNNs
trained faster (6.063 h), in terms of processing all the tested architectures, than GP, which
required 169.274 h due to the high computational cost, as noted in the literature.

The GP and FNNs models generated in this proposal can be applied or programmed as
part of a monitoring system for CPPS which prioritize energy efficiency. The results showed
that the models achieved a forecast of energy consumption through a detailed analysis with
each of the input variables. In this way, any new light recipe introduced in the literature
or generated by the user generates a prediction about energy consumption. Projections of
energy consumption are performed offline by moving the input parameters for both light
operation modes (continuous and pulsed). The evaluation offered an advantage in several
applications, as the pulsed light demonstrated energy savings through the application of
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different pulsed frequencies and duty cycles, compared with the continuous light. The
proposed nonlinear models are directly connected to energy consumption predictions
in real artificial radiation systems, so nonlinearities and parametric uncertainties were
considered in the analysis. However, using new artificial lighting systems in CPPS implies
retraining the model. However, once the models that describe the behavior of a lighting
system have been trained, similar modules can be applied to cover a larger irradiation
area without requiring remodeling. The proposed methodology serves as a reference for
researchers, technicians, specialists, and entrepreneurs within the agro-industrial sector.
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