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Abstract: Head–Neck Cancer (HNC) has a relevant impact on the oncology patient population and
for this reason, the present review is dedicated to this type of neoplastic disease. In particular, a
collection of methods aimed at tumor delineation is presented, because this is a fundamental task
to perform efficient radiotherapy. Such a segmentation task is often performed on uni-modal data
(usually Positron Emission Tomography (PET)) even though multi-modal images are preferred (PET-
Computerized Tomography (CT)/PET-Magnetic Resonance (MR)). Datasets can be private or freely
provided by online repositories on the web. The adopted techniques can belong to the well-known
image processing/computer-vision algorithms or the newest deep learning/artificial intelligence
approaches. All these aspects are analyzed in the present review and comparison among various
approaches is performed. From the present review, the authors draw the conclusion that despite the
encouraging results of computerized approaches, their performance is far from handmade tumor
delineation result.

Keywords: head–neck cancer (HNC); head and neck squamous cell carcinoma (HNSCC); nasopha-
ryngeal cancer (NPC); segmentation; tumor delineation; CT; PET; MRI

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) or Head and Neck Carcinoma
(HNC) is one of the most common malignancies by incidence worldwide and includes
cancers of the upper aerodigestive tract (oral cavity, oropharynx, hypopharynx and larynx
and so on) [1–3]. The onset of the disease could be due to various factors: hpv infection [4],
genetic inheritance, ingestion or inhalation of harmful substances both voluntarily (tobacco
and alcohol [5]) and involuntarily, in case of exposure to toxic substances dispersed in the
environment [6]. Patients affected by inoperable HNC must be treated with radiotherapy
(RT), so the delineation of tumors and metastatic limph nodes is a fundamental task of
RT planning and it must be performed on radiological images, usually Positron Emission
Tomography (PET) and Computerized Tomography (CT) scans. PET scan is a non-invasive
radiological examination regarding functional imaging, which reveals metabolic changes of
the tissues providing in vivo important measurements about cancer’s biological evolution.
Such an examination can be performed only after administering a radiotracer to the
patient. A typical PET radiotracer used in the evaluation process of HNC is the glucose
analog 18F-fluoro-2-deoxy-D-glucose (FDG), which is a weak radioactive substance. High
metabolic rate tissue, like cancer, increases its FDG uptake, which is revealed by detectors.
The detection of a high concentration of FDG reveals primary cancers and metastases
appearing as “hot spots” surrounded by “cold” non-pathological tissue in a PET image.
As a consequence, PET images are preferred to CT scans for their high-contrast between
cancers and the rest of the tissues, but they exhibit a low spatial resolution. CT scan
is a common medical imaging procedure combining a number of X-ray measurements
performed at different angles. The resulting image is a cross-sectional view (slice) of a
volume revealing the morphology of the internal organs: a bright pixel represents a high-
density volume element, whereas a dark pixel is associated with a low-density one, so an
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appropriate contrast medium must be used to visualize particular parts of the human body.
Despite a high spatial resolution, the contrast of such images is low for the HNC. For this
reason, often the methods make use of multi-modal data (usually PET-CT) to compensate
for the respective lack of image features (spatial resolution for PET, low contrast for CT).
Often these images are merged to create a new image that is used for tumor delineation.
Recently, Magnetic Resonance (MR) scans have been considered for the HNC. MR Imaging
(MRI) makes use of an intense magnetic field and electromagnetic waves to obtain detailed
images of the organs and tissues of the human body. Like a CT scan, it provides a cross-
sectional view of the human body and can produce images with different contrast among
the tissues in the function of the type of electromagnetic waves (T1-weighted, T2-weighted
and so on). Even if it exhibits a good spatial resolution and the contrast among tissues is
better than CT, it is not sufficient to distinguish the neoplastic tissue from the surrounding
one, so also in this case MR is used in combination with PET [7,8]. The usefulness of
using PET and MRI combined together in the evaluation of head and neck cancers is also
investigated in the study of Kogaczewska et al. [9]. In the end, the delineation of tumors
is a task making use of multi-modality imaging but, when it is manually performed, it
incurs several problems: it is time-consuming, labour-intensive and prone to inter- and
intra-observer variations [10,11]. In Figure 1 the comparison among PET, CT and MR
images are shown. As a consequence, the manual inconsistency affects the result of a
hand-made segmentation and for the same reason the gold standard is affected by the same
issues, because it is often obtained by manual segmentation. Finding an automatic/semi-
automatic, robust and precise method to delineate the neoplastic formation is an important
field of research to overcome the issues mentioned above for the manual segmentation. The
present review collects papers regarding HNC considering all the diagnostic modalities
and methods adopted to perform an automatic and semi-automatic segmentation. The
paper is organized as follows: Section 2 describes the methodology adopted to collect
the papers, Section 3 describes the deep learning methods, Section 4 reports all the other
methods, Section 5 is dedicated to the comparison between these two approaches, Section 6
reports some conclusions.

Figure 1. Head–Neck cancer, transverse plane. The arrows indicate the lesions. Left: (A) Positron Emission Tomography
(PET) (B) Computerized Tomography (CT) [12]. Right: (A) PET (B) T1-weighted Magnetic Resonance Imaging (MRI) [13].

2. Methodology

This review contains papers that have been selected by using the search engines of the
main publishers in the scientific literature: MDPI, Association for Computing Machinery
(ACM) Digital Libraries, Institute of Electrical and Electronics Engineers (IEEE) Xplore,
Springer and Elsevier. The search has been extended by consulting the main public search
engines, such as PubMed and Google Scholar. The query has been subdivided into three
groups: modality (“PET”, “CT”, “MRI”), main theme (“head and neck”, “head–neck”,
“HNC”, “HNSCC”) and operation (“segmentation”, “delineation”). All the permutations
among these three groups generate a variety of queries. Groups “main theme” and “opera-
tion” aren’t sufficient to isolate only biomedical image processing papers, because other
topics like molecular research and therapy can be found. The group “modality” helps to
find useful paper in a precise way. In order to avoid papers regarding trivial approaches,
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only recent peer-reviewed papers have been taken into consideration and belonging to
Journal with a relevant interest in this field of research. Both duplicate and non-pertinent
items have been removed, after screened title, keywords and abstract of each paper. Due
to arising deep learning methods developed in recent works, the analysis distinguishes
between this family of approaches and the others.

3. Deep Learning Methods

In this section, a list of methods based on deep learning techniques are presented.
They are ordered for image modality, starting from MR images and finishing with the
PET/CT multimodality. Most of them perform automatic segmentation with the use
of convolutional neural networks (CNN). For this reason, before proceeding with the
description of the methods, some concepts recurring in these methods are introduced.

3.1. Convolutional Neural Network CNN

Convolutional Neural Networks are a specific case of feed-forward neural networks.
They are made of neurons with learnable weights and biases, just like classic neural
networks. The CNNs take images as input, assigning importance to various aspects in
the image and differentiating one from the other. A CNN can successfully capture the
spatial and temporal dependencies in an image by applying relevant filters which are
adjusted during the training phase to understand the features of the image better. The
Convolution Operation aims to extract the high-level features from the input image, the
low-level features are generally extracted in the first layers, whereas the last layers extract
higher level features.

3.2. Pooling Layer

Another important concept is the pooling layer, which produces a summary statistic
of its input in order to reduce the spatial dimension of the feature map. The max-pooling
reports the maximal values in each rectangular neighborhood of each point (i,j), the average
pooling reports the average values.

3.3. Optimizers

All the methods based on deep learning use an optimization algorithm. It changes
the neural network parameters in order to reduce the loss function and providing the
most accurate results possible. The most used optimizers are the Stochastic Gradient
Descent (SGD) and the Adaptive Moment Estimation (Adam) [14]. The SGD algorithm is an
approximation of Gradient Descent (GD), since it substitutes the exact value of the gradient
in the cost function with an estimated value obtained by evaluating the gradient only on a
subset of the addends. For this reason, it is less computationally expensive than the GD
algorithm. The Adam optimizer is an extension of the SGD that has recently seen broader
adoption for deep learning applications. While SGD, in the standard implementation,
maintains a single learning rate for all weight updates and it does not change during
the training, Adam computes different learning rates for different parameters, it uses
estimations of the first and second moments of the gradient to adapt the learning rate for
each weight of the neural network. The n-th momentum of a random variable is defined
as the expected value of that variable to the power of n. Specifically, Adam computes an
exponential moving average of the gradient and the squared gradient, and the parameters
β1 and β2 control the decay rates of these moving averages.

3.4. Dice Similarity Coefficient (DSC)

In order to evaluate the accuracy of each method, they are compared using the same
metric, which is the Dice Similarity Coefficient (DSC). In particular, this coefficient is
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applied to Boolean data, using the definition of true positive (TP), false positive (FP) and
false negative (FN) and it can be written as

DSC =
2TP

2TP + FP + FN

It represents the Harmonic Mean of Precision and Recall. It means that the DSC
directly depends on both precision and recall. The DSC penalizes models in which the
accuracy hangs mainly on one of the metrics between precision and recall. For this reason,
DSC is generally the most used metric for describing the performance of a model.

3.5. Methods Review

In B. Zhao et al. [15] is presented an end-to-end algorithm for the segmentation of head
and neck tumors from MRI images. A total of 163 MRI images (2D slices) from 17 patients
from the Beatson west Scotland cancer center are used in this experiment. The labels are
manually delineated by clinicians from Beatson. This dataset is split into three subsets,
the first two are used for training and the third for the test. The proposed algorithm is a
neural network similar to U-net [16], with the addition of a multi-scale feature extraction
process. While to access a larger receptive field there are some drawbacks like many
layers or bigger kernel sizes, thanks to the dilated convolution, it is possible to look at
a larger context without occurring in the reduction of feature resolution. The extracted
multi-scale features are combined using concatenations to improve the performance of the
network. The dataset is augmented by rotation, zoom, shift and flip in order to improve
generalization, Batch normalization is also used to improve the learning process optimized
using Adam optimizer. The average DSC of the cross-validation is 0.644 which is about
0.05 higher than the original U-net.

Lars Bielak et al. [17] analyzes the contribution of 7 MRI input channels in a CNN for
the segmentation of Head Neck cancer. The dataset of this work contains a total of 33 MRI
of patients with head-neck cancer (HNC), the Gross Tumor Volume (GTV) delineation is
performed by expert radiation oncologists and radiologists mainly on T1- and T2-weighted
images. All the images are co-registered and interpolated to a common base resolution of
0.45 × 0.45 × 2 mm3 and normalized to a standard deviation and mean of 0.25 each. The
described CNN is based on the DeepMedic architecture [18], with the use of two pathways,
one with the original resolution and the other subsampled of a factor of 3. The network is
composed of 10 convolutional layers each with 104 feature maps and residual connections
in layers 4, 6, 8 and 10. A 20% dropout is set in each layer and the Dice loss function is
used to train the network. This system uses a patch-based approach, the patch size is
38 × 38 × 8 and 78 × 78 × 8 pixels respectively for each path. The CNN is trained with
all seven input channels and also in other seven configurations in which one of the input
channels is left out. Trying all the different configurations allows understanding which of
the seven inputs carries a greater impact in this task. The final segmentation performance
is evaluated with the DSC whose value reaches 0.65.

Another study made by Yufeng Ye et al. [19], proposes an automated segmentation
method for nasopharyngeal carcinoma based on convolutional neural network (CNN) on a
dataset containing 44 T1- and T2-weighted MRI images for a total of 1950 pairs of image
slices. A couple of images of each patient are co-registered in order to make use of the
information of both the modalities. The images are resampled by using linear interpolation,
min–max normalization is performed and all the slides of the images are zero padded
and cropped to 256 × 256 pixels. The network is divided into an encoder part and a
decoder part: the encoder extracts the features of the images thanks to four encoder blocks
and a dense connectivity block, the decoder uses deconvolutions to recover the extracted
features to the initial input size. The encoder is composed of three 3 × 3 convolutional
layers, two group normalization layers [20] followed by leaky rectified linear unit (LReLU)
layers [21]. The decoder consists of five decoder blocks, each block is composed of a 3 × 3
deconvolutional layer, a concatenation layer and two 3 × 3 convolutional layers followed
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by two LReLU and GN layers. Thanks to the concatenation layer, the feature maps are
fused to address the problem of losing information after the deconvolutions. The final
layer is a 1 × 1 convolutional layer with a sigmoid which determines the final tumor
segmentation. Dice loss is used to optimize the training process. The performance of
the method was evaluated using a 10-fold cross-validation strategy and three different
input cases: the T1 only which obtained a DSC of 0.62, the T2 only with a DSC of 0.64, the
combination T1+T2 with a DSC of 0.72.

The method of Zongqing Ma et al. [22] proposes an automatic segmentation algo-
rithm for 3D T1-weighted MRI, it is developed relying on a dataset of 30 patients with
different cancer stages. The resolution of all the images is 528 × 528 × 290 and the voxel
size is 0.61 × 0.61 × 0.8 mm3. Intensity normalization is performed by using the method
proposed by Nyúl et al. [23] and then an isotropic resampling was applied to obtain a
resolution of 1.0 × 1.0 × 1.0 mm3. For the segmentation task, a CNN architecture similar to
Alex-Net [24] is used, it takes image patches as input and it is composed of 5 convolutional
layers and three fully connected layers. After the first, second and last layers a max-pooling
layer is used to make the network learn space-invariant features. In the end, the final binary
segmentation is performed by a Softmax layer. A Dropout of 0.5 is also used in the first
two fully-connected layers in order to avoid overfitting. The 3D segmentation is performed
in three different paths which correspond to each orthogonal perspective (axial, sagittal or
coronal), then the voxel probabilities are computed averaging the probabilities of the three
paths. In order to refine the segmentation, a graph cut algorithm is used to interpret the
image as a graph and to solve an energy minimization problem. The network is trained for
10 epochs using 0.001 learning rate, 0.0005 weight decay, 0.9 momentum and a batch size
of 100. The method is evaluated by using leave-one-subject-out cross-validation obtaining
a DSC value 0.851.

Finally, Qiaoliang Li et al. [25] developed the deep learning method which obtains the
best DSC score on MRI images. In this article is presented a CNN architecture based on a
dataset of 29 patients from the First Affiliated Hospital, Sun Yat-Sen University and ground
truth manually delineated by two experienced radiologists. A total of 87 slices of contrast-
enhanced MRI (CE-MRI) is extracted, containing only the tumor area of each patient. These
images are augmented to more than 60,000 slices performing rotation, changing contrast
and adding random Gaussian noise. Then the images were normalized performing z-
score normalization. The feature extraction phase consisted of 4 Conv-ReLu blocks and
2 Pool-Conv-Relu blocks which transform the 144 × 144 input images into 36 × 36 feature
maps, the reconstruction phase consisted of two deconvolutional layers to obtain an output
image with the original size of 144 × 144 pixels. The network is trained with a learning
rate of 10−7, step size of 105, momentum of 0.9 and weight decay 5 × 10−4. The slices of
28 patients are used for training while the slices of the remaining patient were used for
testing. The precision of the method measured in terms of average DSC is 0.89.

In Sahar Yousefi et al. [26] method based on CT images known as DenseUnet is de-
scribed. It is a 3D network composed of a contractile path to extract the image features and
an expanding path to recover the original input patch resolution. Each path is composed
of dense blocks, down-sampling units and up-sampling units. Skip connections are used
to assist the network to retrieve the lost information after the down-sampling process.
The proposed architecture is trained and tested on a dataset containing 553 esophagus CT
images from 49 distinct patients. In order to reduce memory consumption, this approach
uses 3D patches rather than complete scans. The main component of the network is the
dense block, it contains one conv(1 × 1 × 1)-BN-ReLU and one conv(3 × 3 × 3)-BN-ReLU.
The down-sampling block is a conv(1 × 1 × 1)-BN-ReLU-MaxPool and the up-sampling
conv(3 × 3 × 3)-BN-ReLU-deconv(3 × 3 × 3). The final part of the network consists in
another convolutional layer and a soft-max layer in order to compute the output which
can be classified as Gross Tumor Volume (GTV) or background. The network is trained
for 10k iterations with a batch size of 20, for the optimization is used the Adam optimizer
with a learning rate of 10−4. The dataset containing 553 scans from 49 distinct patients is
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split into 30 patients for training, 6 for validation and 13 for testing. During every iteration,
data augmentation is performed adding withe noise to the input patches. Different tests
are done varying the number of sub-blocks and also the number of feature maps inside
each sub-block and are computed the DSC for each configuration to compare them and to
find which one is better. The best configuration of the network was DenseUnet122 which
achieves a DSC value of 0.73.

Remaining within the scope of CT images Men et al. [27] develops a Deep Deconvolu-
tional Neural Network (DDNN) consisting of two components: an encoder and a decoder
network. The encoder is made of 13 convolutional layers and it is intended to extract
feature maps of the input images, then the decoder will recover the original resolution
of the images by deploying deconvolution. The encoder layers are based on the VGG-16
architecture [28], which is well-known for feature extraction. In addition, for this task, the
fully connected layers were replaced with fully convolutional layers. The dataset used in
this work consists of 230 CT images of patients diagnosed with Nasopharyngeal Cancer
(NPC). Radiation oncologists contoured the nasopharynx gross tumor volume (GTVnx),
the metastatic lymph node gross tumor volume (GTVnd), clinical target volume (CTV),
and organs at risk (OARs) in the planning CT. Images from 184 patients were randomly
chosen to be part of the training set and the remaining six patients were used to evaluate
the performance of the model. The initial learning rate was set to 0.0001, learning rate
decay factor to 0.0005 and decay step size to 2000. The network is trained until the precision
on the training set converged and then it was tested on the validation set. The DSC values
how this method outperformed the VGG-16, obtaining an average score of 75.3% ± 11.3%
compared to 59.9% ± 22.7% of the VGG-16.

The work of Bilel Daoud et al. [29] proposes a deep-learning method for the nasopha-
ryngeal carcinoma (NPC) segmentation from CT images. The dataset consists of 70 CT
images of patients with NPC, for each patient all the contours of cancer are traced from
two radiation oncologists. The method includes two phases: during the first phase, the
non-target organ regions are eliminated from CT images, during the second phase the
NPC is detected from the remaining part of the images after the first step. The system is
composed of three different paths for each section (axial,coronal and sagittal) for a total of
six CNNs: three for the detection of non-target organ region and three for the detection
of NPC. After the whole process, the output of the second path is integrated into a single
image containing the segmented tumor. The CNNs are composed of three convolutional
layers with max-pooling and ReLu activation function, and one fully connected layer. All
the convolutional layers use filters with a size of 3 × 3 and a stride of 1 with the same
padding. We developed two different systems, the first uses fixed size patch size and the
second variable patch size as input images. To evaluate the applicability of the proposed
systems, the dataset is divided into seven sub-datasets, each of which contains 10 patients.
Six sub-datasets are used in the training phase while the last one is used to test the perfor-
mance of the trained network. The performance is computed in terms of DSC that reaches
0.87 for the variable patch size approach and 0.83 for the fixed one.

Other methods have been developed using combinations of different image modalities.
Vincent Andrearczyk et al. [30] used NiftyNet [31] in order to implement V-net, a fully-
convolutional neural network in 2D and 3D versions. The dataset is composed of PET/CT
images of 202 patients and the relatives Gross Tumor Volumes (GTVs) manually delineated
by professional radiation oncologists. This dataset is extracted from the one proposed in
(Valli‘eres et al. 2017) [32], and also avaible on The Cancer Imaging Archive (TCIA) in the
context of radionics studies, but focusing only on 202 oropharynx tumors. The authors
resampled the PET and CT volumes to an isotropic 1× 1× 1 mm voxel spacing using trilin-
ear interpolation. Then they cropped the images to a volume of size 144× 144× 144 voxels
which is centered in the oropharyngeal region, excluding other regions of little importance
for this task. The architecture uses four downsampling blocks and four upsampling blocks
and the final prediction is made by a residual convolutional block. The functions of down-
sampling and upsampling are performed by convolutional layers with 2× 2× 2 filters
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using a stride of 2. In total, there are 30 convolutional layers with ReLU activations and
final softmax activation. Both 2D and 3D versions of the network are trained using an
Adam optimizer with a batch size of 12, a learning rate of 0.0003 for 200 iterations. In order
to evaluate the performance of these models, a leave-one-center-out cross-validation was
performed. This study showed that the two modalities are complementary and there is a
statistically significant improvement from 48.7% and 58.2% Dice Similarity Coefficients
(DSC) with CT-only and PET-only segmentation respectively, to 60.6% with a bi-modal late
fusion approach. This study shows that the 2D approach slightly outperforms the 3D one
on this specific task. (60.6% vs. 59.7% respectively).

The complementarity between PET and CT images is also analyzed in Zhe Guo et al. [33].
this article describes a Dense-Net framework, an automatic segmentation CNN based on 3D
convolution with dense connections to enable better propagation and take full advantages
of the features extracted at each level from multi-modality images. This network is trained
and evaluated on the dataset (Martin et al. 2017) [32] of HNC from the Cancer Imaging
Archive (TCIA) (Clark et al. 2013) [34], focusing on 250 PET/CT images of patients with
Head-Neck cancer. The dataset is split into training, validation and testing, respectively into
140, 35 and 75 patientes. The images are cropped to a 3D volume with 128 × 128 × 48 pixels
in order to reduce memory consumption. The network structure is based on Jègou et al. [35]
with dense blocks and transition-down and transition-up modules. The whole dense block
is constructed using four convolution layers, the feature maps from all four layers are
concatenated constituting the output of the dense block. This architecture contains nine
dense blocks, four transition-down and four transition-up modules. Dense connection
introduces an extreme connecting pattern, it links a layer to all its subsequent layers using
skip connection, extremizing the concept of residual connections [36]. The quantitative
accuracy of this method, measured in terms of DSC is 0.73 for the multi-modality approach,
while for the PET single modality is only 0.67.

Yngve Mardal Moe et al. [37] develop a method based on the U-Net [16] architecture
but using PET and CT images. The Gross Tumor Volumes (GTVs) are delineated by profes-
sional oncologists from 197 Head Neck Cancer (HNC) patients planned for radiotherapy at
Oslo University Hospital between January 2007 and December 2013. The dataset contains
197 Head Neck Cancer (HNC) patients planned for radiotherapy at Oslo University Hospi-
tal between January 2007 and December 2013. It is split into three parts: 142 patients for the
training phase, 15 for the validation phase and 40 patients for testing. Then PET and CT
images are co-registered and the model is trained for both single (CT-only and PET-only)
and bi-modal (PET/CT) approaches. In order to train the U-Net Adam optimizer is used
with a learning rate of 10−4 and standard parameters. After each activation function, batch
normalization is used to make the training process more stable. The method is evaluated
with both Cross-Entropy and Dice loss functions. The validation set is useful to explore
the hyperparameters configuration that provided the best precision in terms of the Dice
similarity coefficient. Then, the generalization ability of the algorithm is tested on the
40 patients of the test set. The results in terms of Dice coefficient are the following: CT:
0.65 ± 0.17, PET: 0.71 ± 0.12, PET/CT: 0.75 ± 0.12

Dakai Jin et al. [38] aim to exploit the complementary information within PET and CT
imaging spaces. For this purpose, a two-stream chained 3D deep network fusion pipeline
is designed. This network uses early and late 3D deep network fusions of CT and PET
images. The images are co-registered applying the cubic B-spline and using the lung
mass centers of the CT scans as initial matching position. The mass center is produced
by the P-HNN model, which generates a segmentation of the lung field even in severely
pathological cases, generating aligned PET/CT images. First, two separate streams generate
segmentation maps using the CT images and the early fusion PET/CT. The functioning of
the pipeline can be seen as a late fusion of the CT and early fusion models. To effect the
fusion and segmentation, a progressive semantically nested network (PSNN) is proposed.
It consists of a set of 1 × 1 × 1 3D convolutional layers which collapse the feature maps
after each convolutional block into a logit image. Then, this image is combined with the
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image previously generated by the higher level segmentation and finally, an aggregated
segmentation map is created. The PSNN is trained using four deeply-supervised auxiliary
losses at each convolution block. For the implementation, the Adam optimizer is used with
a momentum of 0.99 and a weight decay of 0.005 for a total of 40 epochs. The method is
trained on a dataset of 110 esophageal cancer patients using 5-fold cross-validation for the
evaluation. The experiment demonstrates that both the two-stream chained pipeline and
the PSNN obtained really good results, with a DSC of 76.4%.

We know the importance of generalization in these methods, this means that a seg-
mentation method should also be able to perform on images from different diagnostic
centers. Bin Huang et al. [39] propose a method based on PET/CT images collected from
two different diagnostic centers, the first one contains 17 patients and the second one
5 patients for a total of 22 Head-neck cancer (HNC) patients. The Gross Tumor Volume
(GTV) delineation is manually made by an oncologist and a radiologist and used as the
gold standard for the training phase. A Deep Convolutional Neural Network (DCNN)
model inspired by the fully convolutional network and U-net is designed. As in the U-net
architecture, the process consists in two stages: feature representation phase and scores
map reconstruction phase. The feature representation consists in the extraction of the
feature information of PET/CT images, combining the low-level information and repre-
senting a high-level feature with semantic information. This process is carried out by five
downsampling blocks, four convolutional layers with ReLu as the activation function.
The reconstruction phase consists of five upsampling blocks, a convolutional layer with
ReLu as the activation function. In order to optimize the network, the loss is computed
by calculating the Euclidean distance between the gold standard and the output of the
DCNN. Because the training data in Deep Learning needs a huge number of samples, data
augmentation was performed rotating, rescaling, mirroring and changing the contrast of
the images. The model is trained by using an Adam optimizer for 200,000 iterations with a
fixed learning rate of 0.00001. The average DSC in the experiment of 22 patients is 0.785
(range, 0.482∼0.868)

Zongqing Ma et al. [40] developed a multi-metric method starting from a dataset of
90 Nasopharyngeal carcinomas (NPC) patients using 90 CT and MRI images provided
from the radiology department of West China Hospital. The images are pre-processed
and the first step is the removal of the slices distant from the nasopharynx region, cause
the CT and MR images to cover a volume larger than the volume of interest. Then the
images are resampled to 1.0 mm isotropic resolution and are co-registered applying rigid
and deformable trasformation aligning the two types of images in a single spatial reference.
MR images are normalized to an intensity range of [0,1] and the CT images to the same
range changing the window width to Hounsfield units (HU) and the window level to
40 HU. After all, each slide of the images is cropped to a size of 224 × 224 pixels. This work
proposes combined CNN (C-CNN) which combines information from multi-modality CNN
(M-CNN) network and single-modality CNN (S-CNN). The architecture is composed of
two sub-networks, one for CT and one for MR images, and a “multi-modal similarity metric
learning sub-network” with the same ConvNet [41] architecture of the other two and the
same shared weights. The network has two parts: the encoder is composed of one convolu-
tional layer, three pooling layers and three residual blocks, while the decoder consists of
three deconvolutional layers and three residual blocks. Two different residual connections
are used: short and long connections which allow us to improve the performance and the
convergence speed. The C-CNN connects both the multi and single-modality encoders to a
fusion layer which concatenates the extracted higher-layer features. After all, the decoder
generates the final dense prediction. The segmentation errors of the CT and MR paths
are computed using a cross-entropy softmax loss, whereas the computation of the error
of the multi-modal sub-network is based on the margin-based contrastive loss [42]. The
network is trained with randomly extracted patches of the training images, the weights are
initialized with a zero-mean Gaussian distribution and the biases to 0. The optimization is
performed by Stochastic Gradient Descent (SGD) method with a momentum of 0.9 and
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0.0005 weight decay. The method is tested with two different experiments for both M-CNN
and C-CNN, achieving a DSC of respectively 0.746 and 0.719 for CT images and 0.72 and
0.752 for MR images.

4. Other Methods

In this section different segmentation techniques, which are not based on deep learn-
ing, are analyzed. Unlike the section on deep learning techniques, there is no theoretical
introduction because each technique is based on different concepts, which are not in
common between the various methods.

A method with the purpose of segmenting MRI images of patients is described in
Baixiang Zhao et al. [43]. It is divided into two parts: image pre-processing and Cancerous
lymph nodes 3D segmentation. Different techniques are applied to pre-process the MRI
images, in particular for artifacts removing and image enhancing. The noise is removed
using morphological operations, which allow us to preserve the edges of the images. Then
the images have been enhanced using a background brightness and the values of intensity
have been normalized to reduce the intensity variation both intra-slice and inter-slice.
Before the segmentation, a process of detection of the lymph nodes is performed. This step
is carried by two fuzzy rules for the throat detection and then by a modified fuzzy c-mean
(MFCM) which can put the pixels into five clusters, among which there are lymph nodes.
The center of the detected lymph nodes is set as a seed for the segmentation carried out by
a 3D LSM. The speed function F used for 3D level set evolution is based on the intensity of
pixels and on the curvature of the evolving curve. It is computed as follows:

F = λ(ε−|I(x, y, z)− T|) + (1− λ)∇ · ∇ϕ

|∇ϕ|
= Fext + Fint

After all, post-processing consists in the use of 3D morphological operations to re-
move the unsmooth parts, to remove smaller 3D objects and to perform a 3D dilation, to
compensate the volume loss in erosion on the bigger one which is the final segmented
object. This algorithm is tested on five real datasets of ∼10 slides each from Beatson West
of Scotland Cancer Centre, in Glasgow, obtaining a DSC of 0.9 for the first, ∼0.8 dataset
third and fifth, the second achieved ∼0.7 and the fourth ∼0.6. On average, the mean DSC
of all the datasets is 0.7.

There are also some methods that only use PET images. For example, Ziming Ze-
ng et al. [44] propose an unsupervised tumor segmentation system for PET images, val-
idated on real PET images of head and neck cancer patients. The first step is the pre-
processing, carried out using an anisotropic diffusion filter which automatically removes
image noise. In order to segment the PET volume is used a 3D active surface modeling
method. This method can detect edges with good accuracy and can be implemented with
minimal memory usage. It is implemented using the split Bregman algorithm which aims
to minimize the energy function proposed by Yang et al. [45]. After this process, the
segmented VOIs are obtained. Then, the values of the pixels of each slide are normalized
between 0 and 1 and the slice which contains the maximum intensity value is used as
starting point. The slice is compared with the left neighboring slices and if the difference
between the maximum values of the compared slices is below a threshold we can move
to its closest slide on the left window, otherwise, the propagation is stopped. If the tumor
is found only in one or two slices it is labeled as false positive and removed from results.
To find the non-detected regions, we performed a morphological dilation and then a 3D
maximum bounding box was generated for each dilated VOI, so that can be segmented
again using the inner box intensity values. To improve the segmentation accuracy is used
the alpha matting method [46]. The testing data is formed by 2 PET images and 2 volumes
of a of a custom-built tumour phantom from the XII Turku PET Symposium [47]. The
average results in terms of DSC are between 0.5 and 0.7 for the PET images and between
0.5 and 0.65 for the phantom.
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Berthon et al. [48] developed a method known as ATLAAS for the delineation of
head and neck cancer in PET/CT images. In this work, an Automatic decision Tree-
based Learning Algorithm for Advanced Segmentation is applied. This algorithm was
developed for previous works and for this task is applied to PET/CT scans of 20 patients
with Head-Neck tumor. The ATLAAS model is able to select the most accurate method
to segment a PET image, this can be made using a decision tree supervised machine
learning method. This version includes two different segmentation algorithms: Adaptive
Thresholding(AT) and Gaussian mixture models Clustering Method using five clusters
(GCM5). The best method can be predicted on the basis of a TBRpeak defined as the ratio
between the tumor peak intensity value (mean value in a 1 cm3 sphere centered on the
maximum intensity voxel) and the background intensity (mean intensity in a 1 cm thick
extension of a thresholded volume at 50% of the peak intensity value). A cut-off value is
defined, and on the basis of this value, the algorithm chooses which of the 2 segmentation
methods to use. In most cases, ATLAAS contours are smaller than the gold standard Gross
Tumor Volume (GTV), however, the achieved average DSC among 20 patients is 0.77.

A semi-automatic technique for delineating HN cancers in PET images using an en-
hanced random walk (RW) with automatic seed detection is described by Stefano et al. [49].
This study is conducted on a dataset of 18 PET images with the same resolution
256 × 256 × 47 and the same voxel size 2.73 × 2.73 × 3.27 mm3. This method can au-
tomatically detect foreground/background seeds including k-means clustering which
allows to make an accurate segmentation even in heterogeneous lesions. A first RW ap-
proach for segmentation of PET images was presented in Bağci et al. [50], in addition
in this study is proposed an enhanced RW using an adaptive probability threshold for
each slice, taking into account how intensity and contrast values change over the whole
volume. The β value is set to 1 and the weights between nodes are based on SUVs following
this formula:

wij = exp(−β(SUVi − SUVj)
2)

The algorithm can be divided into two main parts: the pre-segmentation step which
detects the RW seeds and the segmentation step to delineate the cancer contours. The
neighbor with a value less than 30% of the SUVmax is identified. If a voxel with a value of
30% of the SUVmax is found in the eight-neighborhood of a voxel containing the SUVmax,
those eight voxels are marked as background seeds. The pre-segmentation is carried out by
RW using the target seed line and the eight background seeds, where the voxels with less
than 50% of being foreground are rejected. The k-means algorithm automatically selects
k-cluster centers following the evolution of the target in the whole volume and identifying
centroids of hot regions. The identified centroids and the voxels with a SUV > 90% of
SUVmax are identified as new target seeds, then the RW algorithm performs the segmen-
tation using the background seeds and the target seeds. In a further extension of K-RW
the probability threshold is automatically deducted by the system during the process of
delineation. This method obtained a DSC of 0.848 on 40 lesions in 18 patients.

Jinzhong Yang et al. [51] developed a method that aims to delineate the target in
head neck radiotherapy integrating information from three different modalities: computed
tomography (CT), positron emission tomography (PET), and magnetic resonance imaging
(MRI). This study is based on 22 patients with primary squamous cell carcinomas in the base
of the tongue (BOT) or tonsil. The three different images for each patient are co-registered
using the Velocity AI software program (Velocity Medical Systems, Atlanta, GA, USA) [52].
The segmentation algorithm is based on the Gaussian mixture modeling of the tumor
region from multi-channel data, essentially it is driven by the estimation of the parameters
in the Gaussian mixture model, which can be solved using the EM algorithm. The EM
algorithm iterates between an expectation step (E-step) and a maximization step (M-step),
it continues until it reaches convergence or a maximum number of iterations. The study is
based on a PET, CT, MRI dataset of 22 patients, but three of them are excluded because they
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do not contain an identifiable primary tumor, and only 11 among the remaining patients
are used for the evaluation. The multi-modality approach achieved a DSC of 0.74 whereas
the PET DSC is 0.65, a noticeable improvement that demonstrates the efficiency of the
multi-modality.

5. Results Discussion

After the description of the methods in the literature for this specific segmentation
task, we have grouped all the results in two different tables, one for the deep learning
methods and one for the others. Each row of these tables contains the name of the specific
method, the dimension of the dataset in terms of the number of patients, and the Dice
Similarity Coefficient (DSC) under the reference column of the modality of the image used.
We chose to compare the results using the DSC as a metric because it also takes into account
precision and it is present into all the considered studies. The tables have been filled with
the best DSC obtained from each study, because in some studies a large experimentation is
performed.

From Tables 1 and 2 we can immediately notice inhomogeneity of datasets, some of
them are composed of only a few patients and the majority of them are private. For these
reasons, although some algorithms have been developed for the same image modality, it is
still very difficult to perform results comparison. In general, a performance improvement
can be noticed in the multi-modality approach compared to the single-modality, as it can
be seen in the works of Andrearczyk et al. [30], Zhe Guo et al. [33], Moe et al. [37] and
Yang et al. [51]. Nothing can be said for the remaining methods, for which no comparisons
have been made between single and multi modalities. The results obtained by the analyzed
methods vary in the range [0.48, 0.87] for CT images, [0.58, 0.84] for PET images, [0.64, 0.89]
for MRI and [0.606, 0.78] for the multi-modality approaches. These results are comparable
with those obtained by a radiologist, with the advantage that the time for delineation
of the tumor is considerably shorter. In some cases, the described methods only need a
few seconds for the segmentation of an image, compared to the hours taken by an expert
radiologist to perform the same task. This is how the automatic segmentation methods
of head and neck tumors can be considered good support to the work of radiologists. 3D
U-Net is the state-of-the-art in segmentation tasks, but the only method that is 3D U-net
inspired for HN cancer delineation is Yousefi et al. [26]. The other U-net based methods
(Zhao et al. [15], Huang et al. [39] and Moe et al. [37]) are applied on 2D slices. From
the results shown in Table 1, it can be noticed that the best results are obtained by using
multi-modal data, whereas the 2D vs. 3D approach seems to be less relevant.

Table 1. Deep learning methods.

Method Dataset
DSC

CT PET PET/CT MRI

B. Zhao et al. [15] 2D U-Net with multi-scale 17 patients 0.644feature extraction
Bielak et al. [17] CNN based on DeepMedic 33 patients 0.65

Yufeng Ye et al. [19] CNN 44 patients 0.72
Zongqing Ma et al. [22] 3D CNN based on Alex-Net 30 patients 0.851

Qiaoliang Li et al. [25] CNN 29 patients 0.89
Sahar Yousefi et al. [26] DenseUNet 49 patients 0.73

Men et al. [27] Deep Deconvolutional Neural Network 230 patients 0.753
Bilel Daoud et al. [29] 3 paths CNN 70 patients 0.87

Andrearczyk et al. [30] V-net TCIA [34] 202 patients 0.487 0.582 0.606
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Table 1. Cont.

Method Dataset
DSC

CT PET PET/CT MRI

Zhe Guo et al. [33] 3D Dense-Net TCIA [34] 250 patients 0.67 0.72
Moe et al. [37] U-Net based CNN 142 patients 0.65 0.71 0.75
Jin et al. [38] two-stream chained 110 patients 0.7643D deep network fusion pipeline

Huang et al. [39] 2D U-Net 22 patients 0.785
Zongqing Ma et al. [40] Combined CNN (C-CNN) 90 patients 0.746

Average 0.706 0.654 0.725 0.751

Table 2. Other methods.

Method Dataset
DSC

PET MRI PET/CT/MRI

B. Zhao et al. [43] Fuzzy 50 patients 0.7C-Mean and 3D LSM
Zeng et al. [44] 3D active surface 2 pet + 2 phantom = 4 patients ∼0.6

Berthon et al. [48] ATLAAS 20 patients 0.77
Stefano et al. [49] Random Walk 18 patients 0.848

Yang et al. [51] 22 patients 0.65 0.74Gaussian mixture modeling

Average 0.717 0.73 0.74

6. Conclusions and Future Works

This review is born with the aim of comparing different methods for the segmentation
of head-neck tumors by exploiting the characteristics and information that can be extrapo-
lated from different medical image modalities. Segmentation is an important task both in
decision-making like in Rundo et al. [53], for other systems aimed to medical diagnosis and
in second opinion systems (Gambino et al. [54,55]). Methods for PET, CT and MR images
were compared, highlighting how the three image modalities can be complementary to
each other. In addition, we can certainly say that computer-assisted segmentation can help
physicians in performing this task. Anyway, the computer-assisted or completely automatic
methods can not be comparable with hand-made tumor delineation because these systems
reach an average DSC percentage of 74% for deep learning methods and 75% for the other
methods. The best results and the gold standard are obtained by handmade segmentation.
Another important criticism regarding these methods is the fact that almost the entire of
these studies are conducted on private datasets and many of them are composed of few
patients. The fact that many of these datasets are private (except The Cancer Imaging
Archive TCIA [34]) makes the results not comparable with each other, even in the case
of images of the same type (CT or PET or MR). In addition, the fact that many of them
are composed of a small number of patients means that it is not possible to demonstrate
the ability to generalize these methods, which could work well for that specific dataset
but they could not work if they would be tested on other datasets. Since the images often
come from only one center (except in some cases), the algorithms have been tested on
uniform images with regard to resolution and voxel size and acquisition protocol. This
also does not guarantee the ability to generalize the methods presented in the literature.
Therefore, it is possible to conclude by saying that automatically segmenting the tumors
of the head-neck area is possible and even with discrete results, but it would be useful to
have a universal opportunity to compare the various methods, perhaps on a public dataset
containing many images. However, taking into consideration the present review, there is
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still extensive room for improvement in this field of research. In the future, the authors are
planning to implement a CNN to segment PET-CT volumes regarding patients affected by
HN cancer. A trial study with various CNNs will be performed on a public image database
like the TCIA [34] with the aim to improve the actual results in the state of art. The authors
want to investigate the usefulness of using convolutional paths parallel using different
resolutions. We believe that the combination of local information with context information
plays a key role in achieving more accurate results.
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