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Featured Application: This study adopts the method of mathematical model-simulation—experiment
to study the non-linear influence relationship between the ambient temperature and the air content
in the working medium. The parameters of the model are modified by simulation analysis and
combined with experimental parameters to verify that the established mathematical model can be
consistent with the actual working conditions. The established mathematical model provides a the-
oretical basis for the subsequent modal analysis of the flexible support system (FSS) and provides
an experimental basis for the design of the controller and the study of error compensation control
strategies. At the same time, this method can be extended to studies on the error mechanisms of other
nonlinear, time-varying, uncertain, and externally disturbed systems.

Abstract: To improve the accuracy of a flexible support system (FSS) used for optical mirror process-
ing, the influence of air content in the working medium and ambient temperature change on the
FSS is analyzed and studied. First, the disturbance model of the FSS and single support cylinder
affected by different air contents in the working medium and ambient temperature is established,
and the mapping relationship between the influencing factors and the affected factors is analyzed.
Then, the effects of ambient temperature change on volume, support height, and support pressure for
different air contents are simulated and analyzed separately. The results of the simulation obtained
show that when the working medium is mixed with different volume fractions of air and the ambient
temperature changes, upper and lower chamber volumes, support rigidity, and support height of the
support cylinder are also changed. Finally, an experimental study of pressure changes in the upper
and lower chambers, support height, and support rigidity changes at different ambient temperatures
and air contents are carried out. By measuring the support height, support pressure, and support
rigidity error, the effectiveness of the established mathematical disturbance model of FSS is further
verified. It not only provides a theoretical basis for improving the support accuracy of the FSS but also
provides a foundation for the application of the FSS in the processing stage of large optical mirrors.

Keywords: optical mirror processing; flexible support system; dynamic disturbance; elastic modulus;

error analysis

1. Introduction

With the information revolution, modern optical mirrors are being developed for large
apertures and high precision [1-3]. These large apertures and precision requirements have
increased the difficulty of processing, and the requirements for the processing equipment
have also increased [4]. During optical mirror surface processing, the processing robot drives
a polishing disc to reach the grinding residence point of the optical mirror surface [5-7]. At
the same time, the bottom support system should realize the real-time adjustment of the
height and posture of the supported mirror and its supporting stiffness. To improve the
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accuracy of the optical mirror processing system, in addition to improving the motion accu-
racy and repeated positioning accuracy of the processing robot, the performance parameters
of the support system are the main factors that determine the precision of the optical mirror
surface. Traditional optical mirror support systems mostly offer base support, mechanical
whiffle-tree support, and endless belt support [8]. They can meet the rigid requirements of
an optical mirror support system, but due to the non-adjustability of the support stiffness, it
is difficult or even impossible to unload the impact load produced by the tool in the process
of machining. It may damage the surface of the optical mirror to be processed, especially
for large, lightweight, and thin mirrors [9,10]. It may crush the mirror surface, resulting in a
large amount of manpower and material resources.

In the research of an optical mirror flexible support system (FSS), some scholars used
pneumatic support, hydraulic support, or other forms of FSS for the postural adjustment
and error correction of optical mirrors and achieved good results. To improve the fabrica-
tion efficiency and testing accuracy of the meter-scale, Hu et al. designed and manufactured
dozens of hydraulic support units and tested them through a 4 m SiC mirror, which proved
the high accuracy of the designed support system [11]. To release the thermal stress of the
optical primary mirror, Huo et al. proposed a novel kinematic flexure mount composed of
three identical chains and analyzed the stiffness characteristics of its structure [12]. Yu et al.
designed a new type of three-leaf flexible structure based on the principle of spring, and
optimized the size parameters of the flexible structure through the finite element analysis
method [13]. In order to achieve accurate surface shape and optical axis stability of a
large aperture lens in a ground-based telescope system that is subject to various load cases,
Zhang et al. proposed a novel lens support with a multi-point flexible support structure and
optimized the support structure based on low-order modes and system accuracy [14]. The
above scholars have conducted a lot of research on the support system of optical mirrors.
They used support systems for the installation, positioning, and detection of large-diameter
or thin mirrors by improving traditional mechanisms, designing new support systems,
and optimizing the mechanism parameters of the support systems. However, only a few
scholars applied the FSS to the optical mirror processing stage and conducted in-depth
research on the FSS. Therefore, it is necessary to further study the application of the FSS
in the processing stage of large-aperture optical mirrors. The FSS is uncertain, non-linear,
and susceptible to external disturbances, so it is relatively difficult to control and easily
produces errors [15,16]. To ensure the stability of the support stiffness, support height, and
output force accuracy of the FSS, it is necessary to analyze the degree of influence of the
FSS on the external environment.

Several scholars have done a lot of research on the influence of external environmental
disturbances on nonlinear hydraulic systems. Gholizadeh et al. analyzed the number
of air bubbles entrained in hydraulic oil, the size and distribution of these bubbles, and
the influence of the compressibility of the mixture on the effective bulk modulus and
proposed a new theoretical model [17]. To study the low-pressure effective volume of
hydraulic oil, Kim et al. calculated the effective bulk elastic modulus by three different
methods: mass change, volume change, and sound speed method, and determined the
relationship between the release pressure of dissolved air in the oil and the variable gas
constant with the rate of volume change [18]. Through the combination of experimental
and mathematical model methods, Burecek et al. determined the undissolved air content
in hydraulic oil and calculated the bulk modulus of hydraulic oil considering the hydraulic
oil system in a pipeline [19]. Zhou et al. addresses the problem of bubble evolution arising
from gas cavitation in hydraulic oils, including the interphase mass transfer represented
by air release and absorption phenomena and different thermodynamic considerations,
and three new models in a progressive relationship were proposed on the basis of the
Rayleigh-Plesset equation which describes bubble dynamics [20]. Mobayen et al. designed
a robust controller for uncertain systems with time-varying uncertainties, nonlinearities,
and external disturbances to reduce the influence of external disturbances on the system
and improve system stability [21,22]. Based on an improvement of Henry’s law and the
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polytropic process equation for gases, Yuan et al. proposed a modified model for the
dynamic bulk modulus of gas-containing hydraulic oil. Through the analysis of parameter
influence, the influence of initial gas content and pressure on the dynamic bulk modulus
of gas-containing hydraulic oil during compression and expansion was discussed [23].
Based on a modified effective bulk modulus model of hydraulic oil built upon the IFAS
model (developed at the Institute fur Fluidtechnische Antriebe and Steuerungen, Rheinisch-
Westfilische Technische Hochschule Aachen university), Righettini et al. developed an
empirical non-linear model for a servo-hydraulic uni-axial shaking table [24]. The above
scholars have analyzed the elastic modulus and the change in stiffness of hydraulic oil with
the air content and temperature. The theoretical models for different working conditions
were respectively established, and the mode accuracy was verified. However, there is little
research on the influence of the ambient temperature and working medium on the support
pressure, support stiffness, and support height of the FSS used for large-scale optical mirror
processing support.

To achieve adjustable support stiffness, a flexible support system for an optical mirror
is proposed, which uses hydraulic oil as the working medium. It could unload the impact
force exerted by robots on the mirror to be machined effectively. The support pressure, sup-
port height, and support stiffness of the FSS are easily affected by the ambient temperature
and working medium, and the influence relationship is time-varying and nonlinear. This
leads to poor stability of the FSS, which in turn affects the accuracy of the optical mirror.
Therefore, it is necessary to study and analyze the changes in performance parameters of
the FSS at different temperatures and air contents of the working medium. According to the
structural parameters of the FSS, a nonlinear mathematical model of the FSS is established.
This model can reflect the influence of ambient temperature and air content in the working
medium on the FSS. Through the simulation of the mathematical model, the mapping rela-
tionship between the influencing factors and affected factors is analyzed. Finally, combined
with relevant experimental analysis, the validity of the established model is verified. It
provides a theoretical basis for improving the accuracy of the FSS and provides a research
foundation for the application of the FSS in the processing of large optical mirrors. The
established mathematical model provides a theoretical basis for the subsequent modal
analysis of the FSS and provides an experimental basis for the design of the controller and
the study of error compensation control strategies. The mathematical model-simulation—
experiment method used in this study examines the relationship between the performance
parameters of the support system and the air content in the working medium, thereby
providing a theoretical framework for the analysis of time-varying uncertainty, nonlinearity,
and external interference research.

2. Establishment of Disturbance Model
2.1. Establishment of Disturbance Model of FSS

The 3D model of FSS is shown in Figure la. It consists of 36 support cylinders,
which are evenly distributed on the support floor with a diameter of 1250 mm. As shown
in Figure 1b, the FSS is divided into three sectors on average, and each sector contains
12 support cylinders. The upper and lower chambers of support cylinders in each sector
are connected through hydraulic lines, which ensures that the performance parameters
of the upper and lower chambers in the same sector are the same. The support rigidity
of the support cylinder can be adjusted by changing the pressure value of the upper and
lower chambers, and the support height of support cylinder can be adjusted by changing
the pressure difference of the upper and lower chambers. Therefore, the attitude of the
supported optical mirror can be finely adjusted by changing the support height and support
rigidity of three sectors of FSS. During the processing of the optical mirror, the change of
ambient temperature and the air contained in the working medium will affect the support
pressure, support rigidity, and support height of FSS. To study the influence level of each
influencing factor and facilitate the error analysis of each influencing link, the disturbance
model of FSS for the ambient temperature and working medium was established.
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(a) (b)
Figure 1. Model of the flexible support system (FSS). (a) 3D model of the FSS. (b) Arrangement of support cylinder.

Because of the independence of the three working sectors of the FSS, the working
pressure and air content of the working medium in the sectors are not identical and do not
interfere with each other. The disturbance model of the flexible support cylinder can also
be divided into three parts:

% (aif (P,F,AT;) + bif (P, F,AV;) + M;) _
D, Th
D= | D | =| L(af(P.FAT) +b;f(P,F,AV)) + M) (1)
D; ]1:2
kgl(akf(P, F,ATy) + by f (P, F, AVy) + M)

where D; is the disturbance of sector 1, D, is the disturbance of sector 2, Dj is the dis-
turbance of sector 3, T is the disturbance of ambient temperature, V is the disturbance
of working medium, a, b are disturbance coefficients, M is the disturbance caused by
the manufacturing error of the parts, P is the working pressure, and F is the force at the
support point.

2.2. Disturbance Model of Single Support Cylinder
2.2.1. Support Cylinder Structure

The support cylinder is composed of two chambers: an upper chamber and a lower
chamber. The structures of the support cylinder are shown in Figure 2.
The movement of the support cylinder can be expressed as

AV, — AV

AL = 2.5

@)
where AL is the displacement of support cylinder, AV, is the volume change of the upper
chamber, AV} is the volume change of the lower chamber, S is the cross-sectional area of
support piston.
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Figure 2. Structure of support cylinder.

When the support shaft of support cylinder moves AL, the volume of the upper and
lower chambers can be expressed as:

Vi = f(W,L,AL ALy, AL3, ALy, ALg, R)) 3)
Vi=f(W,L,AL, ALy, AL3, ALs, ALg, Rp) 4)
Wi Ly
where W = and L = are the structural parameters

Wi Ly

of support cylinder, m and n, respectively, indicate the number of radial and axial struc-
tural parameters of support cylinder, AL; is the extension quantity of the small rolling
diaphragm in upper chamber, AL; is the extension quantity of the small rolling diaphragm
in lower chamber, ALj is the extension quantity of the large rolling diaphragm, AL, is the
compression quantity of the small rolling diaphragm in upper chamber, ALs is the com-
pression quantity of the small rolling diaphragm in lower chamber, ALy is the compression
quantity of the large rolling diaphragm, Ry, is the chamfer radius of the chamber.

During the work of the support cylinder, the hydraulic oil in the upper chamber
exerts a force on the small rolling diaphragm in the upper chamber and the large rolling
diaphragm, and the hydraulic oil in the lower chamber will exert a force on the small rolling
diaphragm in the lower chamber and the large rolling diaphragm. Because the pressures
in the upper and lower chambers of the support cylinder, as well as the deformation of the
small rolling diaphragm in the upper and lower chambers, are different, the deformations
of the rolling diaphragms in the upper and lower chambers need to be calculated separately.

(1) Deformations of the small rolling diaphragms in the upper and lower chambers are:

Wl
ALl — ZEWhl Pu (5)
ALy = 22l p (6)

2EWj,
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do(P, T
p = po(Po, To) + %’T

To,Po

where P, is the pressure of upper chamber, P; is the pressure of lower chamber, E is the

modulus of elasticity, Wy is the thickness of small rolling diaphragm, W5 is the gap be-

tween outer piston and cylinder wall, L; is the mounting height of small rolling diaphragm.
(2) Deformation of the large rolling diaphragm can be expressed as:

AL; =

(Pu— Py) 7)

where W), is the thickness of large rolling diaphragm, W3 is the gap between internal
piston and cylinder wall, L3 is the installation height of large rolling diaphragm.

(8) Compression of the rolling diaphragm

The compression process of the rolling diaphragm, owing to the relatively small
amount of deformation, can be simplified to a simple compression deformation.

where ¢ is the stress on rolling diaphragm, Py is the pressure on rolling diaphragm, S, is the
area under compression, ¢ is the unit deformation. Through Equation (8), the deformation
per unit thickness of the small rolling diaphragms of upper and lower chambers and the
large diaphragm can be calculated.

AL4 = €1 % Whl
AL5 = €p * Whl (9)
AL6 — €3 % th

where ¢ is the amount of deformation per unit thickness of the small rolling diaphragm in
the upper chamber, ¢, is the amount of deformation per unit thickness of the small rolling
diaphragm in the lower chamber, £3 is the amount of deformation per unit thickness of the
large rolling diaphragm.

2.2.2. Working Medium

The working medium used in the FSS is hydraulic oil, which has fixed physical prop-
erties at an ambient temperature and pressure, mainly the compressibility and expansion.
The state equation of hydraulic oil can be expressed as

f(p,P,T)=0 (10)

where p is the density of hydraulic oil, P is the pressure of hydraulic oil, T is the temperature
of hydraulic oil.
The state equation can be Taylor expanded at py.

apo(P, T 9%o(P,T
(P—Ro)+ 2550 | (T —To)+ 32550 (P Ro)’+
f 92p(P,T) o 1 ?%0(P,T) o 2 (1)
(P = Po)(T = To) +21—57ap ‘POITO(P_PO)(T_TO)+j 7T ‘PO(T—To) + -t 0"
where 0" is the Lagrange remainder.
o" = ! 9(P.T) + %(P,T)\""! (Py+ 0P, Ty + 0T)
T\ op aT pLEo T B5 fo
where 0 <6 < 1.
Written in incremental form:
2
p — po(Po, To) = dp = %‘ dP + %‘ T 4 12 %gll’;T)‘ 42p
Ty Py Ty (12)

1 azp(P,T) 1 azp(P,T) 1 azp(P,T) 2
T2 amT 7"or1°odeT_|_j JoToP ‘Po,Todep—i—z T ‘Pod Tt
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Owing to the compression of density relative to pressure and the difficulty in measur-
ing temperature, a relative quantity is used for analysis and calculation:

do _ kdP + a,;dT + %kZdZP + %ktxoﬂdeT + %kaoﬂdeP + %aoﬂzdzzr 4o

00 7 (@i + k)"t (13)

1
(n+1)
where k is the volume compression coefficient of hydraulic oil, and «,; is the expansion
of hydraulic oil.
(1) Expansion of hydraulic oil
Assuming that the volume of hydraulic oil is V at 0 °C and the volume is Vr at T °C,
then the volume expansion coefficient is:

Vr = Vo(1+aT) (14)

Because the volume expansion coefficient of hydraulic oil is very small, for the con-
venience of calculation when the temperature is not high, the following equation can be
directly used for calculation: not taking V into consideration at 0 °C, « is the volume
expansion coefficient.

Vo =Vi[l+a(Tz — Th)] (15)

When the hydraulic oil contains other substances:
Vi=Vi[l+a(To —T1)]+ Vo[l 4+ ax(To —Th)] + - - + V[l + an(To — T1)] (16)

where Vp, V5, ..., V}, is the volume fraction of the components of mixed liquid at a
temperature of Ty, a1, a2, ... , a4, is the average value of volume expansion coefficients
of the mixed liquid components when the temperature rises from T; to T5.

(2) Compressibility of hydraulic oil

When hydraulic oil is mixed with air, the influence of the dissolved air on the elastic
modulus can be ignored, and the air in the form of bubbles will affect the effective volume
elastic modulus of hydraulic oil. Because the support cylinder is in a low-pressure working
state, in order to facilitate the calculation, the following assumptions are made for the
derivation of the theoretical model: (i) The variation of the hydraulic line with changes
in temperature and pressure change may be ignored. (ii) The quality of air contained in
hydraulic oil does not change with time. (iii) Because the support cylinder operates at a
low pressure, the separation and dissolution of air in hydraulic oil during the pressure
change can be ignored. (iv) The air contained in hydraulic oil is regarded as an ideal gas,
which satisfies the ideal gas state equation.

When hydraulic oil is mixed with air, the density of the mixed medium is:

Mol + Mgy

17
Voil =+ Vuir ( )

Pa =
where m,; is the mass of hydraulic oil, m,;, is the mass of mixed air, V,;, is the volume of
air content in working medium, V,; is the volume of hydraulic oil.

V.o — Myi
o= o[+ (1/K)(P = Pry) + o (T — T1)]

(18)

where K is the elastic modulus of pure hydraulic oil, p,; is the calibrated density of pure
hydraulic oil, P;; is the calibrated pressure of pure hydraulic oil, T;; is the calibrated
temperature of pure hydraulic oil.

According to Equations (17) and (18), the comprehensive density of mixed hydraulic
oil can be obtained as:

Mol + Mgiy

— 19
= o + Vair - pr1[1 4+ (P — Pr) /K + a5t (T — Ty1)] 1)
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_ 1d(pr)
k_ﬁ 1P (20)

According to the equation of the volume elastic coefficient, the volume compression
coefficient of hydraulic oil can be expressed as:

1 AV

- 21
5V (21)
Then, when the temperature and air content change, the change in pressure is:
1 AV
Ap=——-— 22
P="%7Vv (22)

2.2.3. Support Stiffness

When the support pressure of the upper and lower chambers and the volume parame-
ters of the upper and lower chambers change, the support stiffness of the FSS changes.

Ck=C1+C+ ZCP + Cp; + 2Cps (23)

where Cj is the total stiffness of the support cylinder, C; is the stiffness of the upper
chamber, C; is the stiffness of the lower chamber, C,, is the stiffness of the beryllium bronze
reed, Cp; is the stiffness of the small diaphragm, Cgs is the stiffness of the large diaphragm.

= 4
(24)
2=

where AP, is the pressure change in the upper chamber, and AP; is the pressure change in
the lower chamber.

Based on the above, the relationship between temperature change and FSS perfor-
mance under different air contents is shown in Figure 3.

Dynamic d1.sturbance Research contents
relation
- — — - —
Mix in
Working medium ‘ Hydraulic 0il +———— Air
i . Temperature Air content
Disturbing factors ‘ Vaxl')ia tion i
Volume change of Volume change of
upper chamber lower chamber
Direct influence -
Pressure change Pressure change
of upper chamber of lower chamber
Production error - Supp;)::ol';elght Suppo:;rlzl;essure
Ultimate impact - Uneven supporting force of optical mirror
l l .

Figure 3. Perturbation affecting relationship.
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As shown in Figure 3, the hydraulic oil in the FSS contains air. During the working
process, the change in ambient temperature will cause a change in the volume and pressure
of the upper and lower chambers of the support cylinder. The air content in the working
medium affects the change in volume and pressure. When the support shaft assumes
different working positions, owing to the different volume capacities of the upper and
lower chambers, the volume and pressure changes of the upper and lower chambers are
also different. Changes in the volume and pressure of the upper and lower chambers of the
support cylinder will cause changes in the support height, support pressure, and support
stiffness, which will lead to the deformation of the supported optical mirror and affect the
surface forming accuracy of the optical mirror surface.

3. Simulation Analysis of FSS

Under different FSS working pressures, the amount of air contained in the working
medium and the change in ambient temperature during the work will have different
degrees of influence on the support pressure and support height of the FSS. To study the
corresponding relationship between the influencing factors and affected parameters, the
effects of ambient temperature change on the volume, support height, and support pressure
at different air contents are simulated.

In the simulation calculation process, the working medium characteristic parameters
and disturbance coefficient are shown in Table 1.

Table 1. The working medium characteristic parameters and disturbance coefficient.

Name Value Name Value
Calibration temperature of ano . . o 4
hydraulic oil T =20°C The expansion of hydraulic oil ao =1.66 x 10
Elastic modulus of hydraulic K =1.66 x 10> MPa The expansion of air w0y = 3.767 x 1073
oil volume
Density of hydraulic oil or1 =900 kg/ m3 Density of air at 0 °C or2 =1.29kg/ m3
Standard atmosphere P;1 =0.101 MPa Disturbance coefficient a,b=1
The volume compression k=117 x 1073 Air content AV = 0-10%

coefficient of hydraulic oil

To study the specific influence of the air content in hydraulic oil and the changes
in ambient temperature on the performance of the FSS, it is necessary to combine the
structural parameter analysis of the support cylinder and rolling diaphragm. The structural
parameters of the designed support cylinder are listed in Table 2.

Table 2. The structural parameters of support cylinder.

Name Value Name Value
The mstalla.tlon height of small L, =19.8 mm The width upper and lower W, = 2.6 mm
diaphragm chambers
The height of upper and lower _ The clearance between small _
chambers at 0 displacement Ly =24mm piston and cylinder wall Wz =11.0mm
The 1nstalla.t10n height of large Ly =24mm Thg clearance bgtween large W, = 2.6 mm
diaphragm piston and cylinder wall
The thickness of large piston piece Ly =11.8 mm Small piston radius Wy =6.6 mm
The chamfer size of inlet and outlet Ls=11mm The length inlet and outlet W5 =2.0 mm
The diameter of inlet and outlet Lg =15.75 mm Total inlet length Wg = 8.0 mm
The compression height of small L, =14.0 mm The compression width small W, = 3.0 mm

diaphragm

diaphragm

The structural parameters of rolling diaphragm are shown in Table 3.
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Table 3. The structural parameters of rolling diaphragm.

Name Value Name Value
The radius of piston chamfer Ry =1.6 mm Shore hardness Hgy =40 HS
Preformed height K=3.8mm The thickness of side wall Wi = 0.43 mm
. . D, =42 mm The thickness of small
r1 —
Mounting diameter Dyz =78 mm diaphragm Wy1 =0.635 mm
The modulus of elasticity E = 6.1 N/mm?2 The thl.ckness of large Wi =0.675 mm
diaphragm

3.1. Effect of Ambient Temperature Change on Volume under Different Air Contents

When the support cylinder is filled with hydraulic oil, the actual volume of the upper
and lower chambers will change with the change in air content, ambient temperature, and
support pressure. To understand the specific correspondence between the influencing
factors and affected factors, the volume of the upper and lower chambers of the support
cylinder that can accommodate hydraulic oil are calculated separately. In the simulation,
the percentage of air content was expressed by the volume fraction, which was varied from
0 to 10% in steps of 0.5%, the temperature varied from 10 °C to 30 °C in steps of 0.01 °C,
and the support pressure varied from 0.05 MPa to 1.00 MPa in steps of 0.05 MPa. The
mathematical model established by Equation (16) was simulated and analyzed in MATLAB,
and the obtained simulation results are shown in Figure 4.

%10% Upper chamber
292

29

1.00 MPa

2.88

2.86

2.84

Volume(mm?)

282

%
fe)
oz& 0.50 MPa

T(C)

@)
Figure 4. Cont.
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3
) T(C
3 (C)

(b)

Figure 4. Variation of volume of upper and lower chambers with temperature and air content.
(a) Volume of upper chamber. (b) Volume of lower chamber.

The relationship between the volume of the upper and lower chambers of the support
cylinder and the ambient temperature, air content, and support pressure is shown in
Figure 4a,b. It can be seen from the figure that the volume of the lower chamber of the
support cylinder is still smaller than the volume of the upper chamber, and considering
the weight of the internal and external piston parts, will cause the support shaft to move
because of the asymmetric structure of the large rolling diaphragm. When the volume
fraction of the air in the hydraulic oil and the ambient temperature are higher, the volume
of the upper and lower chambers of the support cylinder will be larger. When the support
pressure of the support system increases, the volume of the upper and lower chambers
will increase, which is caused by the volume reduction of the rolling diaphragm when the
pressure increases.

3.2. Effect of Ambient Temperature Change on Support Height under Different Air Contents

When the support shaft of the cylinder is from —1.0 mm to 1.0 mm, the volume of
the upper and lower chambers of the support cylinder can be calculated by Equations (3)
and (4). By simulating the effect of temperature change on volume under different air
contents, the volume change in the upper and lower chambers can be calculated when
the ambient temperature changes. Finally, in combination with Equation (2), when the
ambient temperature and air content in the hydraulic oil are different, the change in the
height of the support shaft under different working pressures can be calculated. The error
is expressed by the difference between the set value and the actual measured value, and
the errors mentioned below are calculated in this way.

The simulation results are shown in Figure 5. The smaller the working pressure of
the FSS, the more sensitive the support height is to the change in air volume fraction and
ambient temperature. There is no obvious stratification of the support height error caused
by the pressure change, which indicates that the working pressure change has relatively
little influence on the ambient temperature and air content of the support cylinder. When
the ambient temperature and air volume fraction are both low or high, the support height
error of the support cylinder is the most affected. When the air volume fraction is 0.1,
the ambient temperature is 30 °C, and the support height can be reduced to —0.073 mm
in the negative direction owning to the influence of the ambient temperature and air
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content. At the same time, when the air volume fraction is 0 and the ambient temperature is
10 °C, the support height can be increased to 0.083 mm, owing to the influence of ambient
temperature and air content. Therefore, to ensure the accuracy of the FSS, it is necessary
to ensure that the range of fluctuation of the ambient temperature and air content in the
working medium during the working process is as small as possible.

Support height error

Error(mm)

Yo, 30 28 26 24 22 20 18 16 14 12 10
%
T(C)

Figure 5. Effect of ambient temperature change on support height at different air contents.

3.3. Effect of Ambient Temperature Change on Support Pressure under Different Air Contents

The support pressures of the upper and lower chambers of the support cylinder under
different working pressures are affected by changes in the ambient temperature and air
content, as shown in Figure 6. From the simulation results, when the working pressure of
the support cylinder is higher, the variation in ambient temperature and air content has a
greater influence on the working pressure error of the upper and lower chambers. When
the absolute working pressure of the support cylinder is 1.0 MPa, the maximum change
in the upper chamber is 0.0075 MPa, and the maximum change in the lower chamber is
0.0074 MPa. When the absolute working pressure of the support cylinder is 0 MPa, the
change in the upper chamber is 0.00125 MPa, and the affected change in the lower chamber
is 0.00112 MPa. Therefore, from the standpoint of the influence of the working pressure of
the support cylinder alone, the degree of influence on the support rigidity is low when the
working pressure of the support cylinder is low.
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Figure 6. Support pressure is affected by change in ambient temperature and air content. (a) The pressure of upper chamber.
(b) The pressure of lower chamber. (c) The error of upper chamber pressure. (d) The error of lower chamber pressure.

4. Experiment Analysis

The FSS is shown in Figure 7, and the rated support load of each support point is 100 N.
The weight of the force feedback sensors and connectors installed on each support point
will share a part of the load. Therefore, the maximum weight of the FSS that theoretically
supports the mirror is 300 kg, which is generally sufficient for the support of an optical
mirror with a diameter of 1250 mm. The process of installing the optical mirror in the FSS
is as follows: (i) Place the optical mirror on the 36 support points of the FSS and adjust
the position to ensure that the center of rotation coincides with the support center of the
FSS; (ii) calculate the support stiffness and support pressure that the FSS needs to maintain;
(iii) pressurize the three sectors of the FSS to the rated pressure and theoretical height under
the current working conditions and maintain them. It can be seen from the above that
once the optical mirror and its process are determined, the support parameters of the FSS
are determined. In addition, the amount of material removal during the processing of the
optical mirror is extremely small compared to the weight of the mirror itself, the change in
quality of the optical mirror can basically be ignored, and the rated load of the FSS during
the working process does not change. Therefore, the change in the support height, support
stiffness, and support pressure of the FSS caused by load changes is not considered during
the experiment.
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Figure 7. Flexible support system.

To determine the effect of ambient temperature and air content in hydraulic oil on the
FSS in actual work, experimental studies on the influence of different ambient temperatures
and air contents on the pressure of upper and lower chambers of the FSS and the support
height and stiffness of the support cylinder were carried out. The 36 support cylinders
were installed on the support floor, and high-strength tubing was used to connect the upper
and lower chambers. The rated working pressure of the connecting tubing selected was
36.0 MPa, and the FSS was 0-1.0 MPa. During the experiment, the measured pressure of
the FSS was 0.65 MPa, which was far less than the rated working pressure of the connecting
tubing, and the influence of the deformation of the connecting tubing was ignored. Then,
the hydraulic oil with unfiltered air and filtered air was tested on the FSS and hydraulic
cylinder, respectively. When the hydraulic oil with unfiltered air was tested, the laboratory
constant temperature controller was turned off after the hydraulic oil was injected, and the
laboratory temperature changed with the ambient temperature. Then, the system pressure
was increased to 0.65 MPa, and the FSS pressure and support height under this working
pressure were evaluated with the change trend in ambient temperature. When hydraulic
oil with filtered air was tested, first the air in the hydraulic oil was filtered through an air
filter element. Then, the filtered hydraulic oil was injected into the FSS while ensuring that
the hydraulic oil did not re-contact air during the work. Finally, the laboratory constant
temperature controller was turned off so that the laboratory temperature changed with
the ambient temperature. The main measuring equipment used in experiment is shown in
Table 4 and the experimental site is shown in Figure 7.

Table 4. The main measuring equipment used in the experiment.

Number Name Model Accuracy
1 Laser micrometer LG-2 mm 7.6 nm
2 Pressure sensors MIK-P3000 0.075%
3 Force sensor LKC-20 kg 0.1% ES.
4 Temperature sensor ML X 9016 0.02°C

4.1. Influence of Ambient Temperature and Air Content on the Support Height of Support Cylinder

The FSS is composed of 36 support cylinders. It is not easy to measure 36 support
cylinders at the same time when the support height of the support cylinder is affected
by ambient temperature change. Therefore, only one support cylinder was tested to
determine the change in the support shaft height of the support cylinder. During the
experiment, hydraulic oil with unfiltered air and filtered air were injected into the support
cylinder. Then, the constant temperature controller in the laboratory was turned off so that
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the laboratory temperature would change with ambient temperature. At the same time,
the change in the height of the support shaft under different ambient temperatures was
measured by a laser micrometer.

At the beginning of the experiment, the support pressure of the FSS was raised to
0.65 MPa and the measured laboratory ambient temperature was 25.1 °C. The measured
experimental data are shown in Figure 8. When the unfiltered hydraulic oil was injected,
the change in the support height of the support cylinder with the change in ambient
temperature was the same as the theoretical trend obtained by the simulation of the
established mathematical model. However, the support height error of the support cylinder
was lower than the theoretical value and was mostly lower than zero, ranging from —0.018
to 0.0012 mm. This is because it is difficult to determine the actual air volume fraction in
hydraulic oil, and the theoretical value of the air volume fraction was 2% as a reference.
Therefore, the accuracy of the established mathematical model can be determined within
the allowable range of error.
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Figure 8. Support height error when injecting hydraulic oil with unfiltered air.

The filtered hydraulic oil was injected into the FSS and the error in the support height
of the support cylinder with the change in ambient temperature is shown in Figure 9. It
can be seen from the figure that when the laboratory temperature changed, the changes in
the support height of the support cylinder were roughly the same as the theoretical value
trend of the established mathematical model. The difference between the experimental
and theoretical values is basically within £0.008 mm, and the error is relatively large at
individual moments. On the one hand, there may be a large error in the reading of the laser
micrometer due to the presence of vibration during the measurement process. On the other
hand, the measurement process lasts for a certain period, and the leakage phenomenon of
the support cylinder under time space causes the support height error to change. Within
the allowable range of error, the established mathematical model can accurately reflect the
dynamic relationship between the performance parameters of the FSS and the ambient
temperature and air content. It provides a theoretical basis for the subsequent research on
the three-dimensional reconstruction of the spatial position of the optical mirror surface
through the support points of the FSS, and also provides control parameters for height
control during the processing.
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Figure 9. Support height error when injecting hydraulic oil with filtered air.

4.2. Influence of Different Ambient Temperature and Air Content on the Pressure of Upper and
Lower Chambers of FSS

To determine the change pressure values of the upper and lower chambers of the
FSS, pressure sensors were installed in the upper and lower chambers of the FSS to collect
the pressure values in real time. To determine the compensation ability of the pressure
transmitter under temperature changes, the electronic pressure transmitter and mechanical
pressure gauge are connected to the pipeline to measure the system pressure.

It can be seen from Figure 10 that the pressure measured by the two sensors was
roughly the same, and the resulting pressure deviation was a reading error. It can be
concluded that the value measured by the pressure transmitter was accurate, and this
data value was used as the measured data in the subsequent analysis process. During
the experiment, the temperature in the laboratory fluctuated from 24 °C to 27 °C, and the
experiment lasted for 1640 min. It can be seen from the collected pressure error of the
upper and lower chambers of the FSS, after 900 min that, even if the temperature in the
laboratory rises, the pressure error of the upper and lower chambers of the FSS is always
negative and the deviation increases progressively. This phenomenon may be caused by
leakage in the FSS, which leads to the loss of the working medium in the upper and lower
chambers. Therefore, when analyzing the experimental data, the data collected before
900 min should be used for the analysis. The data collected in the first 900 min are shown
in Figures 11 and 12, respectively.
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Figure 10. Data measured by electronic pressure transmitter and mechanical pressure gauge.
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Figure 12. Pressure error of upper and lower chambers when injecting filtered air.

The pressure changes in the upper and lower chambers with changes in the ambient
temperature when the hydraulic oil with unfiltered air and filtered air was injected into
the FSS are shown in Figures 11 and 12. It can be seen from the data that the pressure
error of the upper chamber is generally higher than that of the lower chamber. This is
because, under the influence of gravity of the internal piston, external piston, support
shaft, and lock nut of the support cylinder, the support piston will produce a downward
displacement, resulting in the volume of the upper chamber being larger than the volume
of the lower chamber. As a result, the pressure error in the upper chamber is always greater
than the error generated by the lower chamber during ambient temperature change. It can
be seen from the scatter plot that when the ambient temperature changed from 24.2 °C
to 27 °C and the working medium with unfiltered air was injected, the pressure error of
the upper and lower chambers varied from —0.011 MPa to 0.01 MPa. When injecting the
working medium with filtered air, the pressure error of the upper and lower chambers
varied between —0.0045 MPa and 0.005 MPa. After the air was filtered, the pressure error
in the support cylinder reduced significantly with the ambient temperature change, and
the experimental results are roughly the same as the results of the simulation in Section 3.3,
which further verifies the validity of the established mathematical model.

4.3. Influence of Different Ambient Temperatures and Air Contents on the Support Stiffness of
Support Cylinder

Through the support pressure and support height errors collected as described in
Sections 4.1 and 4.2, combined with Equations (23) and (24), the error of the support
stiffness of the support cylinder can be obtained. The unfiltered air support stiffness error
is shown in Figure 13. The support stiffness error of most test points is from —280 N/mm
to 400 N/mm, and individual test points outside the interval may be caused by objective
factors. The stiffness error of the filtered air support is shown in Figure 14. The support
stiffness error of most test points in this case was between —100 N/mm and 190 N/mm.
Compared with the unfiltered air working medium, the support stiffness error is greatly
reduced, but it still varies randomly within the interval. This is due to the following
systematic errors or random errors during the experiment. (i) During the experiment,
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the error of the support cylinder parts (such as machining error, nonlinear deformation
caused by wire cutting of the beryllium bronze reed, and fatigue damage of the rolling
diaphragm) led to inconsistent parameters such as the internal resistance of the support
cylinder and the volume of the upper and lower chambers; (ii) during the installation of
the support cylinder, the length and bending angle of the hydraulic pipes in the upper and
lower chambers were not kept the same, which also caused errors in the FSS; (iii) during
the experimental data collection process, due to the uneven heat dissipation source in the
laboratory, the collected laboratory temperature was inconsistent with the hydraulic oil
temperature; (iv) the FSS had leakage in the experiment and the leakage rate was unstable.
These factors will cause errors in support stiffness, but the size of the error can be controlled
within the range of —100 to 190 N/mm, which verifies the accuracy of the established
mathematical model within the allowable range of error.
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Figure 14. Support stiffness error with hydraulic oil with filtered air.
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Through the above experimental analysis, it can be seen that the support pressure
error of the large-scale optical mirror FSS during the experiment was from —0.0045 MPa to
0.005 MPa, the support height error was from —0.0045 MPa to 0.005 MPa, and the support
stiffness error ranged from —100 N/mm to 190 N/mm. These errors can be controlled
within a certain range to meet the requirements of large-scale optical mirror processing.
Applying this technology to the processing for large-scale optical mirrors can solve the
shortcomings of the existing support system of large and non-adjustable support stiffness
in the processing of optical mirrors. It can effectively unload the impact of robot motion
accuracy and tool vibration during processing while protecting the optical mirror surface
and more accurately controlling the amount of mirror removal.

5. Conclusions

The influence of support height, support pressure, and support stiffness of an FSS
with variation in the ambient temperature and air content in hydraulic oil was studied.
The mathematical models of the FSS and single support cylinder affected by the air content
in the hydraulic oil and the ambient temperature were established, and the mathematical
model was theoretically analyzed using MATLAB. From the simulation, it can be seen that:
(i) The volume of the working medium increases as the temperature increases, and when
the volume fraction of air in the working medium increases, the trend of its volume changes
with temperature also shows an increase. (ii) Under different support pressures, the support
height error of the FSS shows an increasing trend with the increase in ambient temperature
and shows a decreasing trend with the increase in the air volume fraction in the working
medium, and the change in support pressure has relatively little influence on support
height. (iii) Under different support pressures, as the volume fraction of air content in the
working medium and the ambient temperature increases, the pressure change in the upper
and lower chambers of the FSS shows an increasing trend. When the support pressure of
the FSS increases, the support pressure error of the upper and lower cylinders of the FSS is
more sensitive to the influence of ambient temperature and air volume fraction. According
to the above analysis results, the FSS and support cylinder were tested in two different
cases where the air in the hydraulic oil was filtered and unfiltered. Through experimental
analysis, it is concluded that the change trend of the support stiffness, support pressure,
and support stiffness of the support cylinder is roughly the same as the theoretical values
of the established mathematical model, and the validity of the established mathematical
model is further verified within the allowable error range.

This study adopts the method of mathematical model-simulation-experiment to
study the non-linear influence relationship between the ambient temperature and the air
content in the working medium. The parameters of the model are modified by simula-
tion analysis and combined with experimental parameters to verify that the established
mathematical model can be consistent with the actual working conditions. The established
mathematical model provides a theoretical basis for the subsequent modal analysis of the
FSS and provides an experimental basis for the design of the controller and the study of
error compensation control strategies. At the same time, this method can be extended to
studies on the error mechanisms of other nonlinear, time-varying, uncertain, and externally
disturbed systems.
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