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Abstract: A compliant constant-force actuator based on the cylinder is an important tool for the
contact operation of robots. Due to the nonlinearity and time delay of the pneumatic system, the
traditional proportional–integral–derivative (PID) method for constant force control does not work
so well. In this paper, an improved PID control method combining a backpropagation (BP) neural
network and the Smith predictor is proposed. Through MATLAB simulation and experimental
validation, the results show that the proposed method can shorten the maximum overshoot and the
adjustment time compared with traditional the PID method.

Keywords: compliant force control; PID; neural network; Smith predictor

1. Introduction

With the continuous development of industrial automation, the application of robots
is becoming more extensive [1]. Robots are required to have the capabilities of precise
force perception and force control in contact operations such as grinding, polishing and
assembly, as subtle changes in the contact force will affect processing quality [2,3]. In
recent years, a number of compliant constant-force actuators have been developed based
on gasbag [4], voice coil motor [5], cylinder [6–9], artificial muscle [10,11] and special
mechanical structures [12,13]. Among them, the pneumatic system based on the cylinder is
the most widely used because air has good compliance. However, the pneumatic system
is a complex nonlinear system, due to the compressibility of air and the inevitable static
friction [14]. Therefore, achieving precise force control in the pneumatic system is both
practical and challenging.

In recent years, intelligent control algorithms such as fuzzy logic, neural networks
and expert systems have been developed rapidly, providing new ideas for the design of a
pneumatic force control system [15–21]. The traditional proportional–integral–derivative
(PID) method is a classic controller that was used for years because of its simplicity
and effectiveness. However, with the requirement of low force control error in modern
industry, it is difficult for a traditional PID controller to achieve the expected control
quality indices in such complex nonlinear systems. Scholars made great efforts in the
combination of intelligent control and traditional PID control, especially the combination
of a backpropagation neural network (BPNN) and a PID controller. Kang et al. applied the
BPNN-PID control method to the pneumatic force control system and demonstrated that
the controller had better robustness and control performance [17–19].

These intelligent controllers have improved the performance of force control in the
pneumatic nonlinear system to some extent. Nevertheless, besides the nonlinear property,
there is a pure time delay link in the pneumatic systems based on pneumatic cylinders [22].
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In the implementation of such stabilizing feedback control, even a small time delay may
cause destabilization of the controller [23], because the time delay makes the controlled
variables unable to reflect the disturbance of the system in time, which will produce a
larger overshoot and longer adjustment time [24].

In some other control systems, such as chemical engineering, oil refining, metallurgy
and heat engineering process control systems, the Smith predictor has been used effectively
for compensating for the pure time delay [25,26]. For a given signal, the Smith predictor
estimates the dynamic characteristics of the system under disturbance in advance and then
compensates the time delay error to reduce the overshoot of the system and shorten the
adjustment process [27]. However, the Smith predictor depends on the system model, so
its performance is very sensitive to modeling errors. Pneumatic force control systems are
usually complex and time-varying, so it is difficult to build accurate mathematical models.
As a result, the Smith predictor is rarely used in such systems to the best of our knowledge.

In order to improve the modeling accuracy and make the Smith predictor suitable for
use in a pneumatic force control system, this paper brings the neural network algorithm into
the structure of the Smith predictor. Moreover, the improved Smith predictor is connected
with the BPNN-PID controller to optimize the overall control performance. Therefore, the
structure of this improved controller (backpropagation neural network-Smith predictor-
proportional–integral–derivative (BPNN-SP-PID)) proposed in this paper is mainly divided
into two parts. One part is to combine the artificial neural network (ANN) with the PID
controller. An online learning backpropagation neural network ANN1 is taken to adjust
the PID parameters adaptively to improve the dynamic performance of the controller.
The other part is to combine the artificial neural network with the Smith predictor. A
neural network ANN2 is used for identifying the nonlinear model of the controlled object
to improve its modeling accuracy, so that the Smith predictor can compensate for the
pure time delay well. The integration of a BPNN-PID controller and the Smith predictor
improves the robustness and speed of the pneumatic force control system.

The rest of this paper is organized as follows. Section 2 introduces the system structure
and model of the compliant constant-force actuator. Section 3 introduces the design of the
BPNN-SP-PID controller. Section 4 shows the simulation and experimental results and
gives a discussion. Section 5 gives the conclusive points.

2. System Description

As Figure 1 shows, the pneumatic constant force actuator mainly included a tilt sensor
(KELAG Kabel variante kas90), a cylinder (SMC MGPM20-30Z), a force sensor (LH Z05A-
200N), a base, a proportional pressure regulator (Festo VPPE-3-1-1/8-10-010-E1) and an
electromagnetic valve (Parker A05PS25X-1s). Among them, the base was connected with
the robot by bolts, and the force sensor had its thread for connecting the workpiece.

Appl. Sci. 2021, 11, 2685 2 of 19 
 

there is a pure time delay link in the pneumatic systems based on pneumatic cylinders 
[22]. In the implementation of such stabilizing feedback control, even a small time delay 
may cause destabilization of the controller [23], because the time delay makes the con-
trolled variables unable to reflect the disturbance of the system in time, which will pro-
duce a larger overshoot and longer adjustment time [24]. 

In some other control systems, such as chemical engineering, oil refining, metallurgy 
and heat engineering process control systems, the Smith predictor has been used effec-
tively for compensating for the pure time delay [25,26]. For a given signal, the Smith pre-
dictor estimates the dynamic characteristics of the system under disturbance in advance 
and then compensates the time delay error to reduce the overshoot of the system and 
shorten the adjustment process [27]. However, the Smith predictor depends on the system 
model, so its performance is very sensitive to modeling errors. Pneumatic force control 
systems are usually complex and time-varying, so it is difficult to build accurate mathe-
matical models. As a result, the Smith predictor is rarely used in such systems to the best 
of our knowledge. 

In order to improve the modeling accuracy and make the Smith predictor suitable for 
use in a pneumatic force control system, this paper brings the neural network algorithm 
into the structure of the Smith predictor. Moreover, the improved Smith predictor is con-
nected with the BPNN-PID controller to optimize the overall control performance. There-
fore, the structure of this improved controller (backpropagation neural network-Smith 
predictor-proportional–integral–derivative (BPNN-SP-PID)) proposed in this paper is 
mainly divided into two parts. One part is to combine the artificial neural network (ANN) 
with the PID controller. An online learning backpropagation neural network ANN1 is 
taken to adjust the PID parameters adaptively to improve the dynamic performance of the 
controller. The other part is to combine the artificial neural network with the Smith pre-
dictor. A neural network ANN2 is used for identifying the nonlinear model of the con-
trolled object to improve its modeling accuracy, so that the Smith predictor can compen-
sate for the pure time delay well. The integration of a BPNN-PID controller and the Smith 
predictor improves the robustness and speed of the pneumatic force control system. 

The rest of this paper is organized as follows. Section 2 introduces the system struc-
ture and model of the compliant constant-force actuator. Section 3 introduces the design 
of the BPNN-SP-PID controller. Section 4 shows the simulation and experimental results 
and gives a discussion. Section 5 gives the conclusive points. 

2. System Description 
As Figure 1 shows, the pneumatic constant force actuator mainly included a tilt sen-

sor (KELAG Kabel variante kas90), a cylinder (SMC MGPM20-30Z), a force sensor (LH 
Z05A-200N), a base, a proportional pressure regulator (Festo VPPE-3-1-1/8-10-010-E1) and 
an electromagnetic valve (Parker A05PS25X-1s). Among them, the base was connected 
with the robot by bolts, and the force sensor had its thread for connecting the workpiece. 

 Figure 1. Compliant constant-force actuator structure diagram.

The pneumatic system control diagram is shown in Figure 2. The force sensor fed
back the contact force F to the electrical signal Uf in real time, and the tilt sensor was used
for obtaining the attitude signal Ut of the actuator. The signals were transmitted to the
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host computer through the data acquisition (DAQ) board. Then, the host computer ran
the controller and adjusted the control voltage Uc of the proportional pressure regulator,
making the output force F meet the set value. It also controlled the on and off state of the
electromagnetic valve to change the direction of the force. As a result, the system had force
perception and force control capabilities.
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The pneumatic system has nonlinear factors that are difficult to quantify [13]. To
understand the characteristics of the system intuitively and to facilitate the following
simulations, a linear approximate model of the system needed to be obtained first.

The mathematical model G(s) of the system represents the corresponding relationship
between the control voltage of the proportional pressure regulator Uc(s) and the output
force of the actuator F(s), including three links: the control voltage Uc(s) to the output
pressure of the proportional pressure regulator Pu(s); the Pu(s) to the input pressure of the
cylinder action chamber Pd(s); and the Pd(s) to the output force F(s).

According to the device structure above, it is divided into three parts to calculate the
mathematical model. The first part is the proportional pressure regulator. The schematic
diagram of its internal structure is shown in the Figure 3. The following equation is the
force balance equation of the proportional pressure regulator spool:

Ppv A1 + Pdv A2 + mg − Pdv A1 − Psv A2 − c
.
xv − k f (xv + x0)− Fc = 0 (1)

where Ppv is the air pressure in the pilot cavity; Pdv is the output pressure of the proportional
pressure regulator; Psv is the supply pressure of the proportional pressure regulator; A1
is the effective area of the diaphragm; A2 is the cross-sectional area of the valve chamber;
m is the self-weight of the valve spool; xv is the displacement of the valve spool; x0 is the
initial deformation of the spring; c is the viscous damping coefficient; k f is the equivalent
spring stiffness; and Fc is the Coulomb friction.

Ignoring the influence of the Coulomb friction, we can write Equation (1) in incremen-
tal form and perform a Laplace transform:(

cs + k f

)
∆xv(s)− ∆Ppv(s)A1 + ∆Pdv(s)(A1 − A2) = 0 (2)

According to the properties of the proportional pressure regulator, the spool displace-
ment xv and the air pressure Ppv of the pilot cavity can be approximated as proportional to
the control voltage Uc.
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(
cs + k f

)
K1∆Uc(s)− K2 A1∆Uc(s) + ∆Pdv(s)(A1 − A2) = 0 (3)
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Then, we can obtain the following relationship:

∆Pu(s)
∆Uc(s)

=
K1cs + K1k f − K2 A1

A1 − A2
= k1s + k2 (4)

where Kn, kn (n = 1, 2, 3 . . . ) are all undetermined coefficients.
The second part is the gas pipeline.
Assuming that the trachea is circular and the airflow movement is laminar, according

to Anderson theory [28], we have

∆qm(s) = K3(∆Pu(s)− ∆Pd(s)) (5)

where qm is the mass flow rate.
The gas enters the cylinder through the proportional pressure regulator and the gas

pipe. Assume that the gas in the cylinder is ideal and satisfies the ideal gas law:

Pd = ρdRcTd (6)

where Rc is the proportionality coefficient; ρd is the density; Td is the temperature; and Vd
is the volume of the gas.

Assuming that the temperature in the gas circulation process satisfies the adiabatic
process, qm is equal to the rate of change of the gas mass m in the cavity. Combining the
above, we get

qm =
1
k

Vd
RcTd

dPd
dt

(7)

where k is an undetermined coefficient.
Write Equation (7) in incremental form and perform a Laplace transformation:

∆qm(s) =
1
k

Vd
RcTd

s∆Pd(s) = K4s∆Pd(s) (8)
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Combine Equations (5) and (8) to get

∆Pd(s)
∆Pu(s)

=
K3

K4s + K3
=

1
k3s + 1

(9)

The third part is the cylinder.
The force analysis of the cylinder is carried out according to Newton’s second law,

and the friction is ignored:

Ms2∆Y(s) + Cs∆Y(s) + ∆F(s) = ∆Pd(s)A3 (10)

where M is the total mass of the cylinder rod; C is the viscous damping coefficient; F is the
output force; A3 is the cylinder cross-section; and Y is the displacement of the cylinder.

The force causes slight deformation of the workpiece, and the actuator passively
generates displacement y. Set the equivalent stiffness coefficient to K:

∆F(s) = K∆Y(s) (11)

Combine Equations (10) and (11) to get

∆F(s)
∆Pd(s)

=
KA3

Ms2 + Cs + K
=

k7

k4s2 + k5s + k6
(12)

According to the above derivation, the transfer function of each link is listed in Figure 4.
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Therefore, the open-loop mathematical model Go(s) of the system can be obtained
as follows:

Go(s) =
k7(k1s + k2)

(k3s + 1)(k4s2 + k5s + k6)
(13)

where kn (n = 1, 2, . . . , 7) in Figure 4 and Equation (13) represents undetermined coefficients.
It can be seen that the mathematical model of the system has three poles and one zero.

The undetermined coefficients are identified through the gray box experimental
method. The system is loaded with an input signal, and the corresponding output signal
is collected over time. When the loaded signal is a step signal, the output signal always
takes ~70 ms before it starts to respond, as shown in Figure 5, so a time delay link needs
to be added to the mathematical model. Afterward, the MATLAB system identification
tool is used for analyzing the relationship between the collected input signal and output
signal [29]. As a mathematical model with three poles, one zero and a pure time delay
link are used for identification. The approximate mathematical model including the pure
time-delay G(s) is obtained:

G(s) =
2s + 15.6

s3 + 15.8s2 + 130.7s + 350.7
e−0.07s (14)

The step response curve of the mathematical model is calculated in MATLAB Simulink
and compared with the actual curve for model validation. It can be seen from Figure 5
that the identified mathematical model matches the actual one well. The approximate
mathematical model will be used in the simulation of Section 4.
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3. Controller Design

The structure of the improved PID control method proposed in this paper is shown
in Figure 6. The BP neural network-Smith predictor-PID (BPNN-SP-PID) controller was
divided into two parts. One part was the BPNN-PID controller. ANN1 could realize self-
optimization of the PID parameters and improve the control performance. The other part
was the Smith predictor. The Smith predictor was used for reducing the influence of the
pure time delay [27]. ANN2 was used for identifying the open-loop model of the controlled
object Go(s), eliminating the pure time delay. Higher identification accuracy brought by
ANN2 could make the Smith predictor compensate the time delay more effectively. The
two parts are described in detail below.
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3.1. BPNN-PID

The neural network has a strong self-adaptive ability and can be combined well with
other control methods [18]. On the basis of PID control, in order to optimize the perfor-
mance of the controller, the online learning type BP neural network ANN1 was applied.

The BPNN-PID controller consisted of two parts: the PID controller and the BP
network ANN1. The PID controller directly controlled the controlled object in the closed
loop, and the BPNN adjusted the three parameters of the PID controller in real time
according to the error function J.

The structure of the neural network ANN1 is shown in Figure 7.
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The input and output of the network are{
Oi(t) =

[
R(t) E(t) F(t)

]T

netk(t) =
[

kp ki kd
]T (15)

where t is the discrete time series (t = 1, 2, 3...); R(t) is the set force at time t; E(t) is the error
at time t; F(t) is the actual output force at time t; and kp, ki, kd indicate the proportional,
integral and differential parameters of the PID controller, respectively.

The activation function of the hidden layer was the tanh function. Since PID parame-
ters cannot be negative, the activation function of the output layer was taken as a sigmoid
function. Based on the previous paper [30], other parameters of the neural network were
determined, as shown in Table 1.

Table 1. Parameters of neural network ANN1.

Type Value

Learning type Online
Learning rate (η) 0.3
Inertia index (α) 0.15

Number of hidden layer neurons 8
Hidden layer activation function Tanh
Output layer activation function Sigmoid

Initialization weight method 0.03rands(n, 1) 1

1 rands(n, 1) returns an random matrix of n rows and one column, and the range of elements in the matrix is (−1, 1).
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The incremental PID control algorithm is used for calculating the control voltage Uc(t):

Uc(t) = Uc(t − 1)+
[

E(t)− E(t − 1) E(t) E(t)− 2E(t − 1) + E(t − 2)
]
·netk(t) (16)

The error function J [18,19] is expressed as

J =
1
2
(R(t)− F(t))2 (17)

According to the gradient descent method, the weights of the output layer and hidden
layer of the network are adjusted in turn, and an inertia term α∆ω(t − 1) is added to avoid
falling into the local minimum:

∆ω(t) = −η
∂J(t)
∂ω

+ α∆ω(t − 1) (18)

In Equation (18), ∆ω(t) is the weights adjusting value; η is the learning rate; and α is
the coefficient of inertia.

In application, this BPNN-PID control algorithm could be roughly divided into the
following steps, as shown in Figure 8:

1. Determine the structure of the BP neural network. The parameters of the neural
network are listed in Table 1;

2. Give the initial value of each layer’s weights;
3. The input data R(t), F(t) is sampled, and the error E(t) is calculated;
4. Calculate the input and output values of each layer of neurons, and the output values

of the output layer are PID parameters kp, ki, kd;
5. Calculate the control voltage Uc(t) based on the incremental PID control algorithm;
6. Perform online learning of neural networks, and adjust the weights of the hidden

layers and the output layer;
7. Return to Step 3 for the next round of training.
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3.2. Smith Predictor

To optimize the response speed of the control system, the Smith predictor is added
for predictive compensation. Its structure is shown in Figure 6, and the transfer function
Gm(s) of the Smith predictor compensator is expressed as

Gm(s) = Go(s)
(
1 − e−τs) (19)

where Go(s)·e−τs is the open-loop transfer function of the controlled object considering the
time delay.

When the Smith predictor is not added, the closed-loop transfer function of the
system is

G(s) =
Gc(s)Go(s)e−τs

1 + Gc(s)Go(s)e−τs (20)

where Gc(s) is the transfer function of the controller.
After adding the Smith predictor, the closed-loop transfer function of the system changes:

G(s) =
Gc(s)Go(s)

1 + Gc(s)Go(s)
e−τs (21)

By comparison of Equations (20) and (21), it can be found that the Smith predictor
uses compensation to separate the pure time delay e−τs and Go(s), which is equivalent to
putting the pure time delay of the controlled object outside the control closed loop.

As the Smith predictor depends on the prior system model, a BP neural network
shown in Figure 9 was used for identifying the system to improve modeling accuracy.
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The controlled object was a single-input single-output (SISO) nonlinear system, which
can be described as follows:

F(t + 1) = f [F(t), . . . , F(t − n), Uc(t), . . . , Uc(t − m)] (22)

where F(t) and Uc(t) are the input and output of the object at time t, respectively; m and n
mark the orders of F(t) and Uc (t), respectively; and f [•] represents a nonlinear function.

The input O1
i (t) of the network is

O1
i (t) =

{
Uc(t − i + 1), 0 ≤ i ≤ m + 1

F(t − i + m − 2), m + 2 ≤ i ≤ m + n + 2
(23)
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The output netk(t) is
netk(t) = F(t + 1) (24)

The neural network ANN2 also used the BP algorithm, and its structural parameters
were determined as shown in Table 2.

Table 2. Parameters of neural network ANN2.

Type Value

learning type Offline
Learning rate (η) 0.3
Inertia index (α) 0.15

Number of hidden layer neurons 15
Hidden layer activation function tanh
Output layer activation function tanh

Initialization weight method 0.03rands (n, 1)
Time orders m,n 4

The neural network ANN2 was trained offline. As Figure 10 shows, the main training
steps of the neural network ANN2 are listed as follows:

1. Determine the structure of the neural network, including the number of hidden layers,
neuron activation functions and training samples;

2. Take a small initial value for the weight;
3. Import samples for training;
4. Calculate the input and output of each layer of neurons;
5. For each iteration, calculate the weight adjustment of the hidden layer and the output

layer;
6. Check whether the network training error is less than the error tolerance. If it meets

the requirements, go to Step 7, and if not, go to Step 8;
7. Solidify and save each weight. The training is successful, and you can call it through

Labview or MATLAB Simulink;
8. Check whether the current iteration number exceeds the upper limit. If not, return to Step

3 for further training; otherwise, the training failed. Return to Step 1 to restart training.
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4. Results and Discussion

In this section, the performance of the proposed BPNN-SP-PID method is validated
through simulation and experiments. First, according to the mathematical model deduced
in Section 2, a simulation block diagram of the system was built in MATLAB Simulink.
Three types of controllers (PID, BPNN-PID and BPNN-SP-PID) were tested and compared.
Then, an experimental prototype was built, and the force response curves under step input
and sinusoid input were collected. Finally, a comprehensive discussion was made based
on the results of the simulation and experiment.

4.1. Simulation Results

In the block diagram shown in Figure 11, ANN2 is a neural network that describes the
controlled object. It was trained and solidified to generate a Simulink module and added to
the block diagram. The inside of the BPNN-PID structure was the packed neural network
ANN1 and a PID controller. The online learning neural network ANN1 was realized by
using the S-function module. There were two kinds of input signals as the setting force:
a step signal with an amplitude of 20 N and a sin signal with an amplitude of 20 N and
frequency of 0.2 Hz. The simulation data of the three controllers were exported through
the simout module.
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4.1.1. Step Response

The response curve under step signal input with an amplitude of 20 N is shown in
Figure 12.

All three controllers could make the output response meet the target values. However,
there were differences at the beginning stage and the approaching stage. At the beginning
stage, the BPNN-SP-PID controller acted first, and the reaction time was almost zero. The
action time of BPNN-PID and PID was almost the same, taking ~80 ms to start the action.
At the approaching stage, the PID method produced the largest overshoot of 6.1% among
the three, and the overshoots of BPNN-PID and BPNN-SP-PID were 0.45% and 0.15%,
respectively. At the stable stage, the residuals of the three were all close to zero due to the
integral part of the PID controller.

By comparison of the three response curves, two phenomena could be observed. First,
the use of a BPNN greatly enhanced the robustness of the system. Due to the self-adjusting
ability of neural networks, the approaching processes of BPNN-PID and BPNN-SP-PID
were more stable than PID, and there was almost no overshoot or oscillation. Second, the
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application of the Smith predictor could significantly improve the speed. Though BPNN-
PID and BPNN-SP-PID showed good robustness, BPNN-SP-PID had a much faster reaction
than BPNN-PID, especially at the beginning stage. This was mainly because the Smith
predictor based on ANN2 could fit the system model precisely, resulting in a compensation
for the inherent time delay of the system.
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4.1.2. Sinusoid Track

A sinusoidal signal with an amplitude of 20 N and frequency of 0.2 Hz was set for the
simulation, and the response curves of the three controllers were obtained, as shown in
Figure 13.

All three controllers could smoothly follow the setting curve but had different degrees
of lag. BPNN-SP-PID produced the smallest lag, followed by BPNN-PID, and the worst
was from the PID method. The difference in response time also brought about a difference
in control accuracy. The maximum force error of PID reached 3.22 N, and the average error
reached 2.09 N. The maximum error of BPNN-PID was 2.65 N, and the average error was
1.68 N. The maximum error of BPNN-SP-PID was 2.63 N, and the average error was 1.59 N.

It can be seen that the BPNN-SP-PID controller had the best dynamic adjustment
performance among the three controllers.
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4.2. Experimental Validation

A prototype of the compliant constant-force actuator was built and mounted on the
robot ABB 1200 for the experiment as shown in Figure 14. The whole experimental platform
mainly included an air compressor, a control cabinet, a robot, a computer and the constant-
force actuator prototype. The DAQ board (Zhongtai USB7660BD) in the control cabinet
was used for signal input and output. The control and data acquisition program on the
host computer was programmed through Labview, shown in Figure 15. The practical
application of the BPNN-SP-PID controller in this system was completed by the joint
compilation of Labview and MATLAB [31,32]. In order to reduce the influence of the
posture and the surface shape of the workpiece, the posture of the robot arm was kept
vertical during the entire experiment, and a flat steel plate was selected as the workpiece.
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4.2.1. Step Response

When the input was a step signal with an amplitude of 20 N, the response curve of
the output force obtained was as shown in Figure 16.

The experimental results coincided with the simulation results. The BPNN-SP-PID
controller was the fastest at the beginning stage, which needed ~30 ms of action time,
while BPNN-PID and PID took ~70 ms and ~80 ms, respectively. At the approaching stage,
BPNN-SP-PID was still the fastest to reach the set value of 20 N and to enter the ideal
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range. The adjustment times of the BPNN-SP-PID, BPNN-PID and PID were 0.16 s, 0.46 s
and 0.48 s, respectively. The three controllers also presented different degrees of overshoot.
The overshoot of BPNN-SP-PID was the smallest, being only 1.6%, while the overshoots of
BPNN-PID and PID were 4.9% and 9.7%, respectively. At the stable stage, the residuals of
the three were different from the ideal scenario in the simulation, but the steady state error
could also be guaranteed to be within 0.2 N.

By comparison with Section 4.1.1, it can be found that the experimental results were a
bit worse than the simulation due to the influence of uncontrollable nonlinear factors under
the actual experiment. BPNN-SP-PID still presented the best performance among the three
controllers in the experiment, which could significantly improve the reaction speed while
maintaining stability.
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4.2.2. Sinusoid Track

The input was then changed to the sinusoidal signal with an amplitude of 20 N and
frequency of 0.2 Hz, and the response curve is shown in Figure 17. The data collection
rate was 1 sampling/10 ms, and the total number of samples was 900 in 9 s. The error
data between the set value and the actual value collected in Figure 17a was calculated and
statistically analyzed, and the probability distribution of the 900 error data within ±3 N is
shown in Figure 17b.

The sinusoid curve tracking in the experiment was not as smooth as that in the
simulation (Figure 13), and the response curve fluctuated up and down around the target
curve. Among the three controllers, the BPNN-SP-PID gave the smoothest response and
the smallest fluctuation. The maximum error was 1.88 N, and the average error was only
0.68 N. Meanwhile, the maximum errors of the BPNN-PID and PID controllers were both
above 2 N, and the average errors reached 0.74 N and 0.98 N, respectively. The force control
accuracy was expected to be ±1 N in some robot contact operations, such as robot grinding,
and BPNN-SP-PID could meet the requirements well.

According to the histogram of the tracking errors, it can be seen that the error distribu-
tion of BPNN-SP-PID was concentrated around zero, showing better precision than the
other two controllers. The addition of the neural network and Smith predictor made the
control system more robust and quicker, resulting in a reduction of the tracking error.
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4.3. Discussion

The specific indicators [33] of the three controllers are listed in Table 3.
It can be learned that there were some gaps between the experiment and simulation

results. First, the steady state error in the experiment could not be ignored like that in
the simulation because of the environmental noise, the sensor error and other nonlinear
factors (such as the motion of the robot, air source instability and cylinder friction). Second,
some indicators in the experiment, such as the settling time and the errors of the sinu-
soid track, were even better than those in the simulation. This was mainly because the
simulation started from the linear approximation model, while the experimental model
was estimated through experimental data. Despite this, the simulation and experiment
results both showed the same result: the BPNN-SP-PID had the best performance among
the three controllers.

BPNN-SP-PID and BPNN-PID were obviously better than traditional PID, as the
BPNN could adaptively adjust the PID parameters when dealing with the influence of
nonlinear factors. The indicator of the maximum overshoot proved that BPNN-SP-PID had
the best robustness. On the other hand, it is interesting to find that the performance gap
between BPNN-SP-PID and BPNN-PID was different in the step response and sinusoid
track. In the case of the step response, the BPNN-SP-PID showed a huge improvement
compared with BPNN-PID. The maximum overshoot and settling time of BPNN-SP-PID
were reduced by 68% and 65% in the experiment, respectively. In the case of the sinusoid
track, however, the BPNN-SP-PID was just a litter better than the BPNN-PID controller.
The maximum error and average error of the BPNN-SP-PID were only reduced by 9% and
8% in the experiment, respectively. The reason for this was probably that the setting force
in the sinusoid track process was time-varying, which would partially affect the fitting
precision of the Smith predictor and weaken the effect of it. A potential solution is adding
a neural network identifier to update the ANN2 to further enhance the matching degree of
the theoretical model and the actual one.
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Table 3. Comparison of overall performance indicators of three controllers.

Performance Indicators of Three Controllers

Type PID BPNN-PID BPNN-SP-PID

Simulation
Step response

Steady-state error (N) ~0 ~0 ~0
Settling time1 (s) 0.76 0.76 0.59

Maximum overshoot (%) 6.10 0.45 0.15
Sinusoid track

Maximum error (N) 3.22 2.65 2.63
Average error (N) 2.09 1.68 1.59

Experiment
Step response

Steady-state error (N) 0.18 0.12 0.12
Settling time1 (s) 0.48 0.46 0.16

Maximum overshoot (%) 9.70 4.90 1.56
Sinusoid track

Maximum error (N) 2.70 2.06 1.88
Average error (N) 0.98 0.74 0.68

1 The minimum time required for the system response to reach and maintain a value within 5% of the final value.

5. Conclusions

Aiming at the nonlinearity and time delay of pneumatic constant force actuators,
this paper proposes an improved PID control method combining a BPNN and the Smith
predictor. An on-line BPNN ANN1 is used for adjusting the PID coefficients intelligently,
which can enhance the robustness of a nonlinear system. The Smith predictor, with the aid
of off-line neutral network ANN2, compensates the pure time delay, which can improve the
adjustment speed of the system. The simulation and experiment results both showed that
the BPNN-SP-PID control method was feasible and superior compared with the traditional
PID controller.

The matching error between the theoretical model and the actual model is concerned
with the control performance. In a simulation, Smith predictor can compensate almost all
of the time delay. In practical applications, the posture of the actuator is time-varying, and
the system model will also change accordingly. As the offline ANN2 cannot fully fit the
time-varying nonlinear system, the time delay compensation effect is not as good as that
found in simulation. Adding a neural network identifier to update ANN2 will be beneficial
for identifying the actual model in time so that the adaptability of the controller will be
stronger. This will be the focus of future work.
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26. Özbek, N.S.; Eker, İ. Design of an optimal fractional fuzzy gain-scheduled Smith Predictor for a time-delay process with
experimental application. ISA Trans. 2020, 97, 14–35. [CrossRef] [PubMed]

27. Fliess, M.; Marquez, R.; Mounier, H. An extension of predictive control, PID regulators and Smith predictors to some linear delay
systems. Int. J. Control 2002, 75, 728–743. [CrossRef]

28. Parr, A. Hydraulics and Pneumatics. Plast. Syst. Eng. 1999, 4, 85–124.

http://doi.org/10.1016/j.jmoneco.2018.05.014
http://doi.org/10.1016/S1474-6670(17)48592-2
http://doi.org/10.1016/j.precisioneng.2016.07.007
http://doi.org/10.1016/j.rcim.2017.05.011
http://doi.org/10.3390/act9030086
http://doi.org/10.3390/app7101074
http://doi.org/10.1109/70.478438
http://doi.org/10.1109/TMECH.2015.2483520
http://doi.org/10.1109/TMECH.2016.2614966
http://doi.org/10.3233/THC-150958
http://doi.org/10.1016/S0959-1524(02)00015-X
http://doi.org/10.1016/j.neucom.2013.03.065
http://doi.org/10.1016/j.precisioneng.2012.03.001
http://doi.org/10.1016/j.neunet.2016.08.012
http://www.ncbi.nlm.nih.gov/pubmed/27662217
http://doi.org/10.1016/j.precisioneng.2018.09.001
http://doi.org/10.1002/asjc.1374
http://doi.org/10.1016/j.jmaa.2003.09.035
http://doi.org/10.1016/j.isatra.2019.08.009
http://www.ncbi.nlm.nih.gov/pubmed/31445786
http://doi.org/10.1080/00207170210140852


Appl. Sci. 2021, 11, 2685 18 of 18

29. Abo-Elmagd, M.; Sadek, A.M. Development of a model using the MATLAB System identification toolbox to estimate 222Rn
equilibrium factor from CR-39 based passive measurements. J. Environ. Radioact. 2014, 138, 33–37. [CrossRef] [PubMed]

30. Hecht-Nielsen, R. Theory of the backpropagation neural network. In Proceedings of the International 1989 Joint Conference on
Neural Networks, Washington, DC, USA, 1 February 1989; pp. 593–605.

31. Somwanshi, D.; Bundele, M.; Kumar, G.; Parashar, G. Comparison of Fuzzy-PID and PID Controller for Speed Control of DC
Motor using LabVIEW. Procedia Comput. Sci. 2019, 152, 252–260. [CrossRef]

32. National Instruments. LabVIEW User Manual [Z]; National Instruments: Austin, TX, USA, 1998.
33. Dorf, R.C.; Sinha, N.K. Modern control systems. IEEE Trans. Syst. Man Cybern. 1981, 11, 580. [CrossRef]

http://doi.org/10.1016/j.jenvrad.2014.07.024
http://www.ncbi.nlm.nih.gov/pubmed/25128775
http://doi.org/10.1016/j.procs.2019.05.019
http://doi.org/10.1109/TSMC.1981.4308749

	Introduction 
	System Description 
	Controller Design 
	BPNN-PID 
	Smith Predictor 

	Results and Discussion 
	Simulation Results 
	Step Response 
	Sinusoid Track 

	Experimental Validation 
	Step Response 
	Sinusoid Track 

	Discussion 

	Conclusions 
	References

