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Abstract: The exponential growth of documents in the web makes it very hard for researchers to
be aware of the relevant work being done within the scientific community. The task of efficiently
retrieving information has therefore become an important research topic. The objective of this study is
to test how the efficiency of the text classification changes if different weights are previously assigned
to the sections that compose the documents. The proposal takes into account the place (section) where
terms are located in the document, and each section has a weight that can be modified depending on
the corpus. To carry out the study, an extended version of the OHSUMED corpus with full documents
have been created. Through the use of WEKA, we compared the use of abstracts only with that of full
texts, as well as the use of section weighing combinations to assess their significance in the scientific
article classification process using the SMO (Sequential Minimal Optimization), the WEKA Support
Vector Machine (SVM) algorithm implementation. The experimental results show that the proposed
combinations of the preprocessing techniques and feature selection achieve promising results for the
task of full text scientific document classification. We also have evidence to conclude that enriched
datasets with text from certain sections achieve better results than using only titles and abstracts.

Keywords: full text classification; preprocessing techniques; section weighing scheme; information
retrieval

1. Introduction

The overwhelming amount of available documents in the web justifies the current
need to develop tools to automatically classify documents, helping researchers to find
relevant documents for their research tasks. Text mining can contribute to make these
systems effective.

Text classification is a learning task for assigning documents to a set of the predefined
classes, using the content (words) as attributes [1]. In supervised learning, the classifier
learns through a set of examples (called the training set), generating a model that is tested
through the application of the model to a set of unseen examples (called the test set).

The classifier learns to distinguish between classes by using features (terms) that are
automatically extracted from the training dataset. While there are several measures avail-
able to assess the model performance, the most well-known and used is accuracy, which
represents the percentage of correct classifications regarding the total number of cases.
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Most of the relevant studies done in this area rely only on scientific article
abstracts [2,3]. However, users searching full texts are more likely to find relevant articles
than when searching only abstracts. This finding affirms the value of full text collections
for text retrieval and provides a starting point for future work in exploring algorithms that
take advantage of rapidly-growing digital archives.

In this research, we analyze the efficiency of text classification algorithms when a
section weighing scheme is applied. The scheme takes into account the place (section)
where terms are located in the document, and each section has a weight that can be
modified depending on the corpus. The purpose of section weighing is to determine which
sections are less important in the document and therefore do not need to be processed.

In order to evaluate the proposed scheme, we process documents to compare the use
of abstracts only to that of full texts, as well as the use of section weight combinations to
conclude their significance in the scientific article classification process.

To improve the classification performance, we also apply several preprocessing tech-
niques to the full text documents. This not only reduces the number of attributes, but
also provides better discrimination of terms that belong to the relevant or non-relevant
documents. We have performed an empirical study using several learning algorithms
available on the WEKA tool to gather evidence to determine which algorithms perform
best in full or semi full text classification tasks.

1.1. Related Work

Scientific text mining has been carried out mainly on collections of abstracts, due to
their availability. In addition, studies on smaller collections of abstracts and full text articles
have shown that certain information is available in the entire content of the document.
Nonetheless, to date there has been no large-scale comparison of abstracts and full text
articles in corpora that are similar in size to MEDLINE.

In [4] the detection of text similarity in MEDLINE biomedical publications is done
using full texts. The authors apply the text similarity comparison methods of the ETBLAST
tool to compare the documents. They also make a comparative analysis of full text ver-
sus abstract-only, concluding that abstract-only is not necessarily predictive of full text
similarity or sections therein, and asserting that full text analysis is needed for a more
credible evaluation.

Westergaard et al. [5] analyze 15 million English-language scientific full text arti-
cles from Elsevier and the open-access subset of PubMed Central. The articles were
published during the period from 1823 to 2016. They compare four different corpora
comprising all full text articles (14,549,483 articles), full text articles that had a separate
abstract (10,376,626 articles), the abstract from the full text articles (10,376,626 abstracts),
and the MEDLINE corpus (16,544,511 abstracts).

The study presents the potential of text mining by extracting published protein-protein,
disease-gene, and protein subcellular associations using a Named Entity Recognition (NER)
system, and a quantitative report on their accuracy using gold standard benchmark datasets.
The authors compare the findings to corresponding results obtained on 16.5 million ab-
stracts included in MEDLINE, and show that text mining of full text corpus outperforms
the MEDLINE abstracts in all benchmarked cases.

J. Lin [6] compares text retrieval algorithms on MEDLINE abstracts and spans (para-
graphs) within full text articles, using data from the TREC 2007 Genomics Track Evaluation.
Two retrieval models are examined: BM25 and the ranking algorithm implemented in the
open-source Lucene search engine. Experiments show that treating an entire article as an
indexing unit does not consistently yield higher effectiveness compared to an abstract-
only search. However, retrievals based on spans, or paragraphs-sized segments of full
text articles, consistently outperform an abstract-only search. Results suggest that the
highest overall effectiveness may be achieved by combining evidence from spans and full
text articles.
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In the literature there are articles that propose measures to evaluate the terms taking
into account the structure of the document but, generally, they do not study the relevance
of the sections. Thus, in [7] BM25F is applied in Information Retrieval systems, where it
is used to compute the relevance score for each document depending on a fixed query.
The formula takes into account the fields within a document, assigning a weight to each
field. However, it is only used to calculate the term frequency of a query term, in order to
create a ranking.

In [8] a retrieval model which combines XPath and a vector space model for XML
information retrieval is presented. Through extending the term concept to term with path,
the authors introduce the concept of the structural term. A document is represented as
a bag of structural terms, and a structural term is a term with a path from root node or
certain node to the term itself.

Lastly, in [9] the authors discuss three intrinsic problems of a specific type of Paragraph
Vector (PV) model with distributed Bag-of-Words assumption (PV-DBoW) model, that
restrict its performance in retrieval tasks. PV-DBoW uses the document to predict each
observed word in it. The authors describe modifications to the model that make it more
suitable for the information retrieval task, and show their impact through experiments and
case studies. The concept of “paragraph” stands for texts with varied lengths, which can
be sentences, paragraphs or the whole document.

With regard to the impact of the canonical sections of scientific papers in the clas-
sification process, in [10] the authors conclude that using the Discussion section alone
outperforms the cases where both the Title and Abstract sections were used together.
Title and Abstract achieve significantly better results regarding precision.

The authors of [11] work with full text biomedical documents. The full text dataset also
has a standard section structure (Abstract, Introduction, Materials and Methods, Experi-
mental Procedures, Results and Discussion). The authors perform a rhetorical zone analysis,
which is an application of Natural Language Processing (NLP) in which areas of text in
scientific papers are classified according to argumentation and intellectual contribution, in
order to pinpoint and distinguish certain types of information.

In [10] the authors investigate how NLP statistical techniques can be applied to assign
Gene Ontology (GO) codes to genes by using either the titles and abstracts of articles about
related genes or the full text with the following sections: Title, Abstract, Introduction,
Materials and Methods, Results, and Discussion in this order, or with Materials and
Methods at the end. In the experiments, the full text achieves both the best recall and the
worst precision. The full text has maximum potential for including positive indicators of
biological process just as it has maximum potential for including misleading indicators.
With the exception of Title, all individual sections seem to under perform compared to the
baseline of Title and Abstract with regard to equally-weighted F-measures. Similarly, nouns,
stemmed words and stemmed nouns produce a lower equally-weighted F-measure than
the baseline of bag of words. Discussion is the only dataset section that outperforms Title
and Abstract with regards to recall, while Title alone is the only section that significantly
outperforms Title and Abstract on precision.

Mullen et al. [11] classify sentences by taking into account their position in the docu-
ment or the section in which they appear. Results improve when the sections where the
information appears are included. The paper does not include a comparison with Title and
Abstract alone.

In [4] the full text similarity of biomedical publications in PubMed Central is ana-
lyzed. They conclude that Abstract similarity alone is not necessarily predictive of full text
similarity or sections therein, and thus full text analysis is needed to give a thorough and
comprehensive picture of the complete text similarity. The authors also study the associ-
ation between Abstract similarity and text similarity in different sections (Introduction,
Methods and Results/Discussion) and conclude that, compared to other sections in full
text biomedical literature, Method sections are the most likely to be re-used.
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There are several papers which analyze the importance of sections. Habib and Afzal [12]
develop a method that allow to recommend scientific papers similar to another paper, giv-
ing a weight to the references based on their position within the sections of
the paper.

In [13], the authors study how different sections in scientific papers contribute to a
summary and determine that there isn’t a definitive section from which summary sentences
should be extracted.

Li and Lepage [14] introduce a method which makes use of only some sections to
generate a summary, and show that the Introduction and the Conclusion are the most
useful sections to generate accurate abstracts.

Thijs [15] proposes the use of a neural network architecture for word and paragraph
embeddings (Doc2Vec) for the measurement of similarity among those smaller units of
analysis. It is shown that paragraphs in the Introduction and the Discussion Section are
more similar to the abstract, that the similarity among paragraphs is related to -but not
linearly- the distance between the paragraphs. The Methodology Section is least similar to
the other sections.

In the end, Hebler et al. [16] provide recent results on the number of paragraphs
(pars.) per section used in articles published in major medical journals, and investigate
other structural elements (number of tables, figures and references and the availability of
supplementary material). The authors conclude that papers should be composed by the
standard IMRAD (Introduction, Methods, Results And Discussion) structure to increase
the likelihood for publication.

In this paper, we analyze the efficiency of classification of full text scientific documents
in MEDLINE based on the relevance of sections, where each section receives an associated
weight according to their importance in the document.

The objective of our paper is different from the aforementioned approaches because
they do not use any section weighing scheme. Our objective is to determine that com-
binations of weighted sections allow to improve the classification of documents with
full text.

The rest of the paper is organized as follows. Section 2 presents the model to assign the
weight of sections in the documents and calculate the weight of the terms in the sections.
Section 3 describes the corpus used in the study and the text pre-processing techniques
applied to the original data. Section 4 reports on the experiments made, Section 5 shows
the main results achieved and, finally, Section 6 presents the most relevant conclusions of
the study.

2. Theory
2.1. The Vector Space Model

Automatic text classification requires documents to be represented as a set of features
(terms). The well-known Bag-of-Words (BoW) representation assumes that the words
are independent of each other. Documents can be represented using the vector space
model, where the value of a term is given by the standard TF-IDF (Term Frequency-Inverse
Document Frequency) [17].

Through this representation, a document can be viewed as a collection of terms and
their associated weights, which reflects the importance of each term in the document.
The best known term-weighting scheme uses weights wij which are given by

wij = tfij ∗ idfi (1)

where t fij is the normalized frequency of the term i in the document j, calculated as

tfij =
freqij

maxl freql j
(2)
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f reqij states the number of times the term i appears in the document j, and maxl f reql j
represents the maximum frequency of all terms l which are mentioned in the document j.

The inverse document frequency for the term i is given by

idfi = log
N
Ni

(3)

where N represents the total number of documents in the collection and Ni is the number
of documents where the term i appears.

Several variations of the above expression for the weight wij are described by Salton
and Buckley [18]. However, in general, it provides a good weighting scheme for many
collections and improves retrieval performance.

2.2. Assigning Weight to Sections

A document also can be viewed as a set of sections. In this study, each section has an
assigned weight according to its relevance in the corpus. Additionally, each term in the
vocabulary has a weight that reflects its importance within each section.

In this context, the weight wisj of the term i in the section s in the document j is
defined as:

wisj = stfisj ∗ isfis (4)

where st fisj is the Section Term Frequency, that represents the frequency of the term i in the
section s, and is fis is the Inverse Section Frequency, that measures the inverse frequency of
a term i in the documents of the collection which have the section s.

The section term frequency of a term i, section s, document j, is calculated as

stfisj =
freqisj

maxl freqlsj
(5)

where f reqisj represents the number of times the term i appears in the section s of the
document j. maxl f reqlsj represents the frequency of the term l more frequent in the section
s of the document j.

The inverse section frequency for the term i, section s is given by

isfis = log
Ns

Nis
(6)

where Ns represents the total number of documents in the collection with section s and Nis
is the total number of documents with the term i in the section s.

Lastly, in order to establish the importance of each section in a corpus, a section rele-
vance factor fs is included. Thus, the weight of a term i in the document j is calculated as

wij =
Ns

∑
s=1

fs ∗ wisj (7)

A term has a weight according to its frequency of occurrence in each section of
each document, and the relevance of the section in the corpus. The weight of a term
in a document is obtained adding its weights by section. It is important to note that
the relevance factor of each section is a parameter that can be modified depending on
the corpus.
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3. Material and Methods
3.1. Dataset Characterization

For the purpose of this study, we have created a corpus based on OHSUMED (avail-
able at https://www.mat.unical.it/OlexSuite/Datasets/SampleDataSets-download.htm,
accessed on 7 March 2021) [19]. OHSUMED is composed of 34,389 MEDLINE documents
that contain title, abstract, MeSH terms, author, source and publication type of biomedical
articles published between 1988 and 1991.

Each document of OHSUMED has one or more associated categories (from 26 diseases
categories). To carry a binary classification, we select one of these categories as relevant
and consider the others as non-relevant. If a document has assigned two or more categories
and one of them is the one considered relevant, then the document is considered relevant
and is excluded from the set of non-relevant documents.

For example, in order to build a corpus for C14 Cardiovascular Diseases category,
we select documents that belong to C14 category as relevant. Then, from the common
bag of non-relevant categories, all the possible documents categorized as “Cardiovascular
Diseases”are removed. The resultant set is taken as the non-relevant set of documents.
By this way, the number of relevant and non-relevant documents on each corpus is shown
in Table 1.

Table 1. Number of relevant and non-relevant documents of the OHSUMED version used in the study.

Corpus Definition Relevant# Non-Relevant#

c01 Bacterial Infections & Mycoses 423 14,141
c02 Virus Diseases 1184 13,467
c03 Parasitic Diseases 64 14,208
c04 Neoplasms 5594 9072
c05 Musculoskeletal Diseases 338 13,978
c06 Digestive System Diseases 1688 12,909
c07 Stomatognathic Diseases 146 13,961
c08 Respiratory Tract Diseases 864 13,656
c09 Otorhinolaryngologic Diseases 215 14,280
c10 Nervous System Diseases 2826 11,809
c11 Eye Diseases 394 14,149

c12 Urologic & Male Genital
Diseases 1206 13,369

c13 Female Genital Diseases &
Pregnancy Compl. 1117 13,397

c14 Cardiovascular Diseases 2607 12,044
c15 Hemic & Lymphatic Diseases 459 14,102

c16 Neonatal Diseases &
Abnormalities 475 14,056

c17 Skin & Connective Tissue
Diseases 1236 13,437

c18 Nutritional & Metabolic Diseases 1067 13,606
c19 Endocrine Diseases 780 13,760
c20 Immunologic Diseases 1744 12,929

c21 Disorders of Environmental
Origin 1 14,672

c22 Animal Diseases 79 14,594

c23 Pathological Conditions, Signs &
Symptoms 7350 7271

c24 Occupational Diseases 17 12,676
c25 Chemically-Induced Disorders 176 14,336
c26 Wounds & Injuries 253 14,230

The original OHSUMED corpus does not have the full text documents but only
abstracts. In order to have a dataset of full texts we use the documents available at PubMed.

https://www.mat.unical.it/OlexSuite/Datasets/SampleDataSets-download.htm 
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MEDLINE 2010 MeSH Headings were mapped with OHSUMED categories through the
MeSH terms.

Another important issue is that the scientific full text document corpus is aggregated
according to the following structure of sections: Title, Abstract, Introduction, Methods
(Materials and Methods, Methods, Experimental Procedures), Results (Results, Discussion,
Results and Discussion) and Conclusions.

3.2. Document Pre-Processing

In order to prepare the documents, the full text documents were pre-processed with
the following techniques that we previously evaluated in [20]:

1. Special characters removal: punctuation, digits and some special characters such
as (“, ”, “; ”, “.”, “!”, “?”, “′”, “[”, “]”, etc.) are removed. Characters such as “+” and
“−” are not removed because they might be important in some biology domains (for
example: “blood-lead”).

2. Tokenization, which splits the document sections into tokens, e.g., terms.
3. Stopwords removal, which removes words that are meaningless such as articles,

conjunctions and prepositions (e.g., “a”, “the”, “at”, etc.). We have used a list of 659
stopwords to be identified and removed from the documents.

4. Dictionary Validation: A term is considered valid if it appears in a dictionary.
We have gathered several dictionaries for common English terms (such as ISPELL
(http://www.lasr.cs.ucla.edu/geoff/ispell.html, accessed on 7 March 2021) and Word-
Net (http://wordnet.princeton.edu/, accessed on 7 March 2021) [21]), and for biolog-
ical and medical terms: BioLexicon [22], The Hosford Medical Terms Dictionary and
Gene Ontology (http://www.geneontology.org/, accessed on 7 March 2021) (GO). We
decided to accept a term if and only if it appears in one of the mentioned dictionaries.

5. Synonyms handling, using the WordNet (an English lexical database) for regular En-
glish (“non technical” words) and Gene Ontology for technical terms. Handling syn-
onyms makes it possible to significantly reduce the number of attributes in the datasets
without changing the semantic of words.

6. Stemming, this process removes inflectional affixes of words, thus reducing the words
to their root. We have implemented the Porter Stemmer algorithm [23].

7. Feature Selection: Feature selection is the process of identifying the relevant fea-
tures (strong and weak attributes), e.g., the set of features that best represent the
data [24]. Information Gain was used to determine which attribute in a given set of
training feature vectors is most useful for discriminating between the classes to be
learned [25,26]. In document classification, Information Gain measures the number
of bits of information gained, with respect to deciding the class to which a document
belongs, by using each word frequency of occurrence in the document [27]. We used
the WEKA (Waikato Environment for Knowledge Analysis) implementation of the
Information Gain attribute selector (called Info Gain Attribute Eval) [28,29], in order
to determine the effectiveness of the attributes with a threshold cut greater than 0.
It is important to note that this final step is applied with the proposed term-section
weighing as input.

4. Results
4.1. Experimental Data

In the experiments, the preprocessed OHSUMED corpora shown in Table 1 is used.
The chosen classifier is SMO (Sequential Minimal Optimization), that is the WEKA Support
Vector Machine (SVM) algorithm implementation. SVM is a widely used classifier, specially
in bioinformatics, and is based on statistical theory. The SVM has several advantages [2]
including robustness in high dimensional spaces, every feature is equally important and
most text classification problems are linearly separable.

In order to reduce bias and variance in evaluation we perform a ten-fold cross valida-
tion. Cross validation is widely accepted in the machine learning community and is seen

http://www.lasr.cs.ucla.edu/geoff/ispell.html
http://wordnet.princeton.edu/
http://www.geneontology.org/
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as a standard procedure for performance estimation. The ten-fold cross validation has been
proven to be statistically good enough in evaluating the performance of a classifier [30].

The metric used for the evaluation is the Kappa value [31]. Kappa value represents the
value of Cohen’s Kappa coefficients, a statistical measure that determines the agreement
between different classifiers. This measure takes into account the possibility of casual
successes, and can take values between −1 and 1, indicating the negative values that
there is no agreement, and the values between 0 and 1 the level of existing agreement.
Between 0.01 and 0.20 is a slight agreement, between 0.21 and 0.40 fair agreement, 0.41
and 0.60 moderate agreement, 0.61 and 0.80 substantial agreement and between 0.81 and
1.0 perfect agreement. Given these values, the larger the agreement, the more reliable the
results of the classifiers.

In order to demonstrate that the observed results are not just a chance effect in the
estimation process, we use a statistical test that gives confidence bounds to predict the true
performance from a given test set. A Student’s t-test is performed on the Kappa values
achieved in each evaluation test in the 10-cross validation process.

Tests were carried out using the LearnSec framework [32] of the authors. LearnSec
is a framework for full text analysis which incorporates domain specific knowledge and
information about the content of the document sections to improve the classification process
with propositional and relational learning.

4.2. Experiments

We prepare a study to determine the accuracy of the SVM classifier when using certain
sections of the documents against the traditional processing (Title-Abstract).

To conduct the experiments, we have applied 43 different preprocessing parameters
using combinations of sections with the weights shown in Table 2. The Title-Abstract
classical approach is represented by the combination 00, while the full text corresponds to
the combination 27.

Figure 1 shows the results obtained in the classification of the OHSUMED corpora
applying the weighing combinations shown in the previous table. Specifically, for each
weighing combination, we show the number of corpus in which that combination achieved
a Kappa value close to the best one in that corpus. For example, the weighing combination
15 [TA0,2-IM0,6-RC0,2] reaches a Kappa value close to the best Kappa value in 5 of the
analyzed corpus.

For clarity, the Figure 1 only includes the corpus where a Kappa greater than 0.6
(moderate or substantial agreement) is reached for some combination of weighing.

Figure 1. For each weighing combination, number of OHSUMED corpus with Kappa values close to the best Kappa value.
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As shown in the Figure 1, Title-Abstract alone -combination 00- reaches values close
to the best Kappa value in three of the analyzed corpus, whereas if the full text is processed
-combination 27- good Kappa values are reached in ten of the analyzed corpus. Conse-
quently, we conclude that the accuracy improves when we process the full text with respect
to Title-Abstract. This fact is corroborated by other authors, as noted in Section 1.1.

Table 2. Weighing of sections: Title (T), Abstract (A), Introduction (I), Methods (M), Results (R), and
Conclusions (C).

WEIGHING COMBINATION (T) (A) (I) (M) (R) (C)

00. [TA1,0] 1.0 0 0 0 0

01. [T1,0] 1.0 0 0 0 0 0

02. [A1,0] 0 1.0 0 0 0 0

03. [I1,0] 0 0 1.0 0 0 0

04. [M1,0] 0 0 0 1.0 0 0

05. [R1,0] 0 0 0 0 1.0 0

06. [C1,0] 0 0 0 0 0 1.0

07. [RC1,0] 0 0 0 0 1.0

08. [IM0,2-RC0,8] 0 0 0.2 0.8

09. [IM0,4-RC0,6] 0 0 0.4 0.6

10. [IM0,6-RC0,4] 0 0 0.6 0.4

11. [IM0,8-RC0,2] 0 0 0.8 0.2

12. [IM1,0] 0 0 1.0 0 0

13. [TA0,2-RC0,8] 0.2 0 0 0,8

14. [TA0,2-IM0,2-RC0,6] 0.2 0.2 0.6

15. [TA0,2-IM0,4-RC0,4] 0.2 0.4 0.4

16. [TA0,2-IM0,6-RC0,2] 0.2 0.6 0.2

17. [TA0,2-IM0,8] 0.2 0.8 0 0

18. [TA0,4-RC0,6] 0.4 0 0 0.6

19. [TA0,4-IM0,2-RC0,4] 0.4 0.2 0.4

20. [TA0,4-IM0,4-RC0,2] 0.4 0.4 0.2

21. [TA0,4-IM0,6] 0.4 0.6 0 0

22. [TA0,6-RC0,4] 0.6 0 0 0.4

23. [TA0,6-IM0,2-RC0,2] 0.6 0.2 0.2

24. [TA0,6-IM0,4] 0.6 0.4 0 0

25. [TA0,8-RC0,2] 0.8 0 0 0.2

26. [TA0,8-IM0,2] 0.8 0.2 0 0

27. [T0,17-A0,17-I0,17-M0,17-R0,17-C0,17] 0.17 0.17 0.17 0.17 0.17 0.17

28. [A0,2-I0,2-M0,2-R0,2-C0,2] 0 0.2 0.2 0.2 0.2 0.2

29. [T0,2-I0,2-M0,2-R0,2-C0,2] 0.2 0 0.2 0.2 0.2 0.2

30. [T0,2-A0,2-M0,2-R0,2-C0,2] 0.2 0.2 0 0.2 0.2 0.2

31. [T0,2-A0,2-I0,2-R0,2-C0,2] 0.2 0.2 0.2 0 0.2 0.2

32. [T0,2-A0,2-I0,2-M0,2-C0,2] 0.2 0.2 0.2 0.2 0 0.2

33. [T0,2-A0,2-I0,2-M0,2-R0,2] 0.2 0.2 0.2 0.2 0.2 0

34. [TA0,2-I0,2-MRC0,6] 0.2 0.2 0.6

35. [TA0,2-I0,4-MRC0,4] 0.2 0.4 0.4

36. [TA0,2-I0,6-MRC0,2] 0.2 0.6 0.2

37. [TA0,2-I0,8] 0.2 0.8 0 0 0
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Table 2. Cont.

WEIGHING COMBINATION (T) (A) (I) (M) (R) (C)

38. [TA0,4-I0,2-MRC0,4] 0.4 0.2 0.4

39. [TA0,4-I0,4-MRC0,2] 0.4 0.4 0.2

40. [TA0,4-I0,6] 0.4 0.6 0 0 0

41. [TA0,6-I0,2-MRC0,2] 0.6 0.2 0.2

42. [TA0,6-I0,4] 0.6 0.4 0 0 0

43. [TA0,8-I0,2] 0.8 0.2 0 0 0

Table 3 shows the Kappa values obtained for each combination of weighing and
corpus. Likewise, the corpus included are those where a Kappa greater than 0.6 is reached
for some combination of weighing.

Table 3. Kappa values obtained by the weighing combinations in the OHSUMED corpora.

Nº c02 c04 c06 c08 c10 c11 c12 c13 c14 c17 c19 c20

00 0.730 0.683 0.720
01 0.755 0.686 0.743 0.750
02 0.746
03 0.810
09 0.809
10 0.702 0.684
14 0.812 0.745 0.778
15 0.816 0.892 0.708 0.753 0.782
16 0.815 0.707 0.755
17 0.811 0.743
18 0.715 0.681 0.696
19 0.745 0.723 0.711 0.705 0.792 0.690 0.744 0.702 0.782
20 0.808 0.894 0.746 0.725 0.716 0.715 0.794 0.696 0.770 0.750 0.712 0.777
21 0.814 0.895 0.747 0.728 0.711 0.718 0.792 0.691 0.768 0.748 0.714
22 0.726 0.788 0.687 0.713
23 0.736 0.708 0.707 0.794 0.697 0.718
24 0.893 0.742 0.734 0.712 0.708 0.793 0.698 0.747 0.719
25 0.732 0.782 0.685 0.715
26 0.738 0.711 0.786 0.696 0.719
27 0.813 0.894 0.747 0.724 0.713 0.713 0.789 0.771 0.750 0.703
28 0.813 0.707 0.700
29 0.716 0.717 0.788 0.695 0.694
30 0.742 0.787 0.695 0.698
31 0.894 0.726 0.708 0.785 0.693 0.747 0.705 0.779
32 0.895 0.745 0.726 0.711 0.714 0.796 0.700 0.768 0.749 0.711 0.778
33 0.811 0.893 0.748 0.730 0.717 0.707 0.790 0.688 0.749 0.708 0.782
34 0.815 0.750
35 0.816 0.892 0.708 0.753 0.782
36 0.810 0.710 0.785 0.683 0.748
37 0.697
38 0.809 0.746 0.719 0.713 0.708 0.792 0.697 0.749 0.704 0.783
39 0.894 0.742 0.731 0.711 0.719 0.794 0.694 0.769 0.748 0.712
40 0.893 0.732 0.784 0.693 0.745 0.721
41 0.736 0.708 0.707 0.794 0.695 0.718
42 0.740 0.700 0.724
43 0.741 0.695 0.722

5. Discussion

The study shows that adding document sections in the classification process substan-
tially improves the results of Kappa in the vast majority of the analyzed corpus with respect
to the processing of the Title-Abstract only.
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In addition, it is possible to analyze how the weighing of the sections affects the
accuracy of the model. For instance, in the Table 3 we can observe that the weighing
combination 32 [T0,2-A0,2-I0,2-M0,2-C0,2] (that is to say, regardless the Results section)
reaches better values than full-text (combination 27) in c04 corpus (0.895 versus 0.894), c08
(0.726 versus 0.724), c11 (0.714 versus 0.713), c12 (0.796 versus 0.789), c13 (0.700 versus a
Kappa value less than 60) and c19 (0.711 versus 0.703).

There are also differences in the results obtained in the classification according to the
weight assigned to each of the sections. For example, when the weighing combination 17
[TA0,2-IM0,8] is applied (that is, 80% of the weight is given to the terms that appear in
the Introduction and Methods sections, and 20% of weight to the terms that appear in the
Title and Abstract sections) only a Kappa value above 0.6 is achieved for 2 of the 26 corpus
analyzed. On the contrary, if the attributes of Title and Abstract are given more importance
following the combination 21 [TA0,4-IM0,6], then the accuracy grows substantially, being
even better than the full-text.

6. Conclusions

In this paper, we analyze the impact of text pre-processing techniques combined with
the use of weights of sections on the text classification process.

The study shows the importance of the different sections in the classification process.
In the scientific corpus used in the experiments, based on PUBMED, there are sections
with little relevant content that could be discarded when carrying out the pre-processing
classification, and sections with terms whose importance could be decreased reducing
their weights. This last option leads to the best efficiency, measured in terms of Kappa.
In addition, it results in a reduction of vocabulary and corpus processing time.

To demonstrate the impact of the weighing scheme, experiments were carried out
combining the weights of the sections in the range of 0 to 100. More specifically, weights
used were 0, 20, 40, 60, 80 and 100.

For the analyzed corpora, the Introduction section contributes significantly to increase
the performance of the SVM classifier. The combinations that include Title and Abstract
with weight 40%, and Introduction with weights between 20% and 40% obtain the best
results, which are similar to (in some occasions more efficient than) full-text.

The main limitation of the present research is that to apply the term-weighting scheme
to another corpus, the best combination needs to be calculated experimentally.

The automation of the weighing calculation process for each section would undoubt-
edly improve the system, allowing a better fit depending on each specific corpus, which is
a clear future research line.

Supplementary Materials: The supplementary materials (corpus used for testing) are available at
shorturl.at/jwRY3.
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