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Abstract: Considering the relationship between inhomogeneous plastic deformation and fatigue
damage, deformation inhomogeneity evolution and fatigue failure of superalloy GH4169 under
temperature 500 ◦C and macro tension compression cyclic loading are studied, by using crystal
plasticity calculation associated with polycrystalline representative Voronoi volume element (RVE).
Different statistical standard deviation and differential entropy of meso strain are used to measure
the inhomogeneity of deformation, and the relationship between the inhomogeneity and strain cycle
is explored by cyclic numerical simulation. It is found from the research that the standard deviations
of each component of the strain tensor at the cyclic peak increase monotonically with the cyclic
loading, and they are similar to each other. The differential entropy of each component of the strain
tensor also increases with the number of cycles, and the law is similar. On this basis, the critical
values determined by statistical standard deviations of the strain components and the equivalent
strain, and that by differential entropy of strain components, are, respectively, used as fatigue criteria,
then predict the fatigue–life curves of the material. The predictions are verified with reference to the
measured results, and their deviations are proved to be in a reasonable range.

Keywords: deformation inhomogeneity; prediction; fatigue–life curve; fatigue indicator parameter
(FIP); crystal plasticity

1. Introduction

To evaluate the fatigue behavior of metals, we need to have a stress- or strain- fatigue–
life curve obtained from a series of fatigue test data by fitting. From the studies by Basquin,
Coffin, Manson, Morrow and other researchers, the fatigue–life curve was regarded as
the basic information on fatigue characteristics of the material and was used to evaluate
the fatigue performance of structures [1]. To reveal the mechanism of fatigue failure and
the law of fatigue life of materials, the material fatigue damage was studied, respectively,
from the perspectives of phenomenology and microstructure evolution [1,2]. Furthermore,
the damage evolution was described by adopting the cumulative specific plastic work
(or dissipation hysteresis energy) of the material under cyclic loading [3,4]. Continuum
damage mechanics were introduced to reflect the damage effects on constitutive behavior
and fatigue failure of the material [5–8]. The studies were also carried out on the fatigue
damage evolution considering the failure mechanism from the micro and meso level [9–12].
Considering that fatigue failure consists of two stages of microcrack nucleation and growth,
the relationship between crystal slip surface and potential crack path and the method for
predicting the life of microcrack nucleation were studied [9,11,12]. Additionally, the crystal
plasticity was utilized and dealt with damage and micro-structures evolution by extending
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crystal slip into the analytical model to study the material structure evolutionary processes
and the regularity of fatigue failure [13–17].

In a cyclic loading process, the random irregular mesoscale structure and anisotropy of
the material cause the meso-level inhomogeneity in mechanical properties. This produces
the considerable difference in local strain or stress and may generate the fatigue damage
accumulation and potential source of local fatigue failure. The inhomogeneous slip is
related to the movement of geometrically necessary dislocations (GNDs) and the local
strain gradient. Some crystal plasticity analyses considered these factors and studied the
evolution of micropore damage [18,19]. The damage is intrinsic that is hard to observe in
test [20]. Some studies were conducted that based on the entropy increasing principle and
the irreversibility of material damage [21,22], the introduction of entropy from thermo-
dynamics, informatics or statistical mechanics can be combined with continuum damage
mechanics to establish a material fatigue model based on entropy generation rate [23–26].
To investigate the relationship among the inhomogeneous hysteresis behavior, damage
and the fatigue life, the crystal plasticity analysis utilizing representative Voronoi volume
element (RVE) models for polycrystals were performed for exploring the mechanism of
low-cycle fatigue of metal at the grain level. The fatigue indicator parameter (FIP) is the
vital key. It is necessary to characterize the damage and reflect the failure mechanism of the
material. Various attempts for this purpose were made. For instance, the local cumulative
plastic strain and plastic work were employed as a FIP [27–29]. Under stable cyclic loading,
the local cumulative plastic strain and specific plastic work at the tension peak of the cycles
increase monotonously, in an approximately constant rate. Hence, they can be applied to
fatigue damage analysis conveniently, without tracking the whole cyclic process. However,
some studies indicated that the critical values of the above two parameters for indicat-
ing fatigue failure occurrence vary significantly under different strain amplitudes [28,29].
Zhang et al. performed low-cycle fatigue analysis of pure copper T2 and nickel-based
superalloy GH4169, respectively [30,31]. They observed the change in distribution of
micro-strains at the cycle’s tension peak, and uneven growth of the distribution with cycles.
Based on that, several FIPs to characterize the deformation inhomogeneity were proposed,
such as the statistical deviation of the longitudinal strain and the mean or maximum of
the first principal strain, etc. [30–32]. Additionally, it was found that the growth rates of
these FIPs with the cycle number were not linearly in a fairly large range of cycles. Hence,
determination of the FIPs requires us to track the whole process of cycles.

For improving and examining the current method further, it is required to investigate
the more statistical parameters of different strain quantity to measure the inhomogeneous
microstructure evolution or the damage accumulation. In this paper, we conduct the work
by taking the nickel-based superalloy GH4169 at 500 ◦C as the study sample and carry on
the investigations by using crystal plasticity calculation associated with polycrystalline
RVE: (1) Through tracking the entire strain cycles under different constant strain ampli-
tude, to study the distribution changes in the mesoscopic stress and strain. (2) Studying
the law of the inhomogeneity growth of respective strain component, the first principal
strain, maximum principal shearing strain and effective strain with the cycles number. (3)
Searching and verifying the FIPs suitable to measure fatigue damage accumulation and to
predict the fatigue–life curve of the material.

2. Material Model and Crystal Plasticity Model
2.1. Material

The experimental object is superalloy GH4169 at 500 ◦C. Its chemical composition is
shown in reference [33]. Additionally, this material is a precipitation-strengthened nickel-
based polycrystal superalloy. It has an approximate equiaxed polycrystalline structure
containing different phases. Its matrix phase is FCC (face center cubic) [34]. Figure 1 shows
the stable hysteresis loops for the strain amplitude of 0.00451, 0.005, 0.00601, 0.00801, 0.0103,
0.01306, and 0.015, respectively, which reflect the approximate Masing behavior of the
material, according to experimental results from refs [33].
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boundary, which is a geometric interface fully connected. The RVE is set as a material 
element, and its apparent response is the same as that of the uniform deformation section 
of the specimen under strain control. It needs to point that, considering the very large 
amount of calculation in the fatigue cycle simulation, so it is impossible to set too many 
grains and elements in the model. Therefore, the model does not consider the reinforce-
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Figure 1. Steady stress–strain loops of GH4169 at 500 ◦C (according to the test data from ref. [33]).

2.2. RVE Polycrystalline Material Model

Polycrystalline metal has a structure with randomly arranged grains, when studying
its fatigue failure mechanism, the inhomogeneous deformation caused by the anisotropy
properties and crystal slip of grain should be taken into consideration. To model the
material, referring to the literature [30,31,34], the Voronoi RVE is constructed using a
Voronoi polyhedron aggregation, see Figure 2. The RVE consists of 216 grains, divided
as 8000 eight-node hexahedral elements, and has 9261 nodes. In RVE, the shape, size and
crystal orientation of the grains is numerically generated in a random manner. The model
does not include the factors of cracks, micro holes, other metallurgical defects, and their
evolution as well. The boundary of adjacent element sets is regarded as the grain boundary,
which is a geometric interface fully connected. The RVE is set as a material element, and its
apparent response is the same as that of the uniform deformation section of the specimen
under strain control. It needs to point that, considering the very large amount of calculation
in the fatigue cycle simulation, so it is impossible to set too many grains and elements in the
model. Therefore, the model does not consider the reinforcement phase and phase interface
inside the grain but uses the approximately equiaxed ideal FCC crystal to simulate the
grain. The size effect and the strain gradient influence, which are related to the complex
microstructure, are neglected.
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The overall response of RVE is approximately isotropic, and Cauchy stress tensor Σ
and logarithmic strain tensor E separately equaled to the mean of the local Cauchy stress σ
and logarithmic strain ε over the RVE, approximately, and are, respectively, calculated by
the load per unit area and displacements of the surfaces. The reference coordinate system
chosen is identical to the both macro and micro stress strain tensor components, Σij and Eij
with σij and εij.
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In this paper, the boundary condition is designed as the deformation of RVE surfaces
macroscopically consistent with the specimen and maintaining uniaxial stress state. Un-
der the tensile-compressive cyclic loading at specified strain amplitude, the changes in
macroscopic strain of the specimen are controlled by the applied loading. The displacement
vector u on the RVE boundaries satisfies the equation.

u =
¯
F · X (1)

where
¯
F is the overall deformation gradient of the material, and X is the position vector.

In Figure 2, the three surfaces of RVE whose outer normal is opposite to the coordinate
axis are, respectively, fixed in normal, and the nodes of other surfaces are, respectively,
constrained linearly to ensure that the deformed surface keeping planar and the outer
normal remains unchanged. The peak values of the measured longitudinal strain Ea and
stress Σa are approximately constant, respectively. The stretching (longitudinal) direction is
parallel to the direction of coordinate axis 3. The macroscopic stress components: Σij = 0,
i 6= j; and Σii = 0, i 6= 3 (where the subscript index drawn with underline means no sum).

If the periodic boundary condition is used instead of plane assumption, the displace-
ment vector on the boundary must satisfy the equation.

u =
¯
F · X + v (2)

where v is a periodic fluctuation vector. To achieve this, we need to change the surface
node constraints mentioned above into the linear constraints of the corresponding nodes
of the positive and negative surfaces. It allows the parallel surface of the RVE to fluctuate
parallelly. In this paper, the periodic boundary condition is only used for the comparison
of one example.

2.3. Constitutive Model of Crystal Plasticity

To describe the crystal slip in the grains, the paper adopts the crystal plasticity constitu-
tive model and corresponding integral algorithm suggested in ref. [30]. The fundamentally
theoretical framework arises from the works by the pioneer scholars [35–37]. The relation

between the shear strain rate
.
γ
(α) and the shear stress τ(α) on the α-slip system is described

based on Hutchinson’s power law [38], in which the Bauschinger effect is considered
through back-stresses, and nonlinear kinematic hardening is introduced [39]

.
γ
(α)

=
.
γ0sgn(τ(α) − x(α))

∣∣∣∣∣τ(α) − x(α)

g(α)

∣∣∣∣∣
k

(3)

where x(α) is the resolved back-stress on the α-slip system;
.
γ0 denotes the reference shear

rate, regarded as a constant for all the slip systems; k is the rate sensitivity parameter,
and g(α) defines the yield limit or the elastic domain beyond which the material behaves
inelastic. It evolves as [40]

.
g(α)(γ) =

n
∑
β

hαβ(γ)
∣∣∣ .
γ
(β)
∣∣∣, γ =

∫ n
∑
β

∣∣∣dγ(β)
∣∣∣ (4)

where hαβ(γ) are the hardening moduli. It was proposed that [41]

hαβ(γ) = h(γ)[q + (1− q)δαβ] (5)

where q is a constant, and it was suggested that [42]

h(γ) = h0sech2
(

h0γ

τs − τ0

)
(6)
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where h0 is the initial hardening rate, τ0 and τs are the critical resolved shear stress and its
saturation value, respectively. They are regarded as material constants.

The evolution of back-stresses, x(α), is introduced as [30]

.
x(α) = a

.
γ
(α) − c [1− e1

(
1− exp(− e2γ))] x(α)

∣∣∣ .
γ
(α)
∣∣∣− λx(α) (7)

where a, c, e1, e2 and λ are material constants. This equation includes three terms, strain
hardening term, dynamic recovery term and a static recovery term. By numerical simula-
tions comparing with cyclic tests, the material constants in Equations (3) and (5)– (7) can be
identified [30,31].

The initial slip direction vector is m(α), and the initial normal vector is n(α) to the
slip plane of the slip system α, respectively. Referring to the literature [35–37], the Schmid
tensor, P(α)∗, written as

P(α)∗ =
1
2

(
m(α)∗n(α)∗ + n(α)∗m(α)∗

)
(8)

in which m(α)∗ = F∗ ·m(α), n(α)∗ = n(α) · F∗−1, where F∗ is the elastic part of the deforma-
tion gradient tensor F. Then, the plastic deformation rate tensor can be calculated as

Dp = ∑ P(α)∗ .
γ
(α) (9)

While the resolved shear stress can be calculated as

τ(α) = P(α)∗: σ (10)

Since the elastic strain is small, the rate-constitutive equation can be expressed as

.
σ

J
=

<4>
C : D∗ =

<4>
C : (D−Dp) (11)

where
.
σ

J is the Jaumann rate of Cauchy stress,
<4>
C is the fourth-order elasticity tensor with

respect to the fixed global coordinate axes, D∗ is elastic part of the deformation rate tensor
D. Since the cyclic loading result in the material deformation and rotation, the crystal
coordinates axes for every individual point in the grain are rotated along with the changing
configuration according to the lattice rotation.

Therefore, the incremental change in the Cauchy stress tensor determined by the
material’s constitutive behavior can be calculated as

t+∆tσ =t σ+
<4>
C : (∆ε− ∆εp) (12)

where the increments ∆ε and ∆εp are calculated by integrating the corresponding rates D
and Dp.

For details of the numerical implementation as a user-supplied subroutine UMAT in
the FE code ABAQUS, see the literature [30].

2.4. Parameter Calibration of Constitutive Model

Material parameters of the above crystal plasticity model are determined (see Table 1)
by comparing the tested hysteresis loops, via the trial-and-error by the RVE and the crystal
plasticity simulation [30,31]. The elastic constants in Table 1 are determined by referring
to the data of the same material at 650 ◦C [31] and the test data in reference [33]. Figure 3
shows the comparison between the simulated and the test ones, which certifies that with
the material parameters of Table 1, the simulation reasonably reproduces the macroscopic
hysteresis behavior of the material.
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Table 1. Elastic constants and crystal plasticity parameters of the GH4169 superalloy at 500 ◦C.

Elastic Constants Material Parameters of the Crystal Plasticity Model

C11 C12 C44 τ0 τs h0 a c λ e1 e2
.
γ0 q k

GPa GPa GPa MPa MPa MPa GPa GPa s−1 s−1

230.05 153.57 81.97 289 295 80 59 0.428 0 0 0 1 × 10−3 1 160

Figure 3. Simulative and experimental steady hysteresis loops.

3. Measurements of Deformation Inhomogeneity and Predictions of Fatigue–Life Curve

Based on the model mentioned above, the different measurements of the deformation
inhomogeneity at the grain level, and on this basis, the curve predictions of the low-cycle
fatigue life are discussed below. The test data of cyclic fatigue life for various strain
amplitudes Ea are showed in Table 2 (from the literature [33]).

Table 2. Experimental fatigue lives data of GH4169 at 500 ◦C.

Ea 0.0045 0.005 0.00601 0.00801 0.01003 0.01306 0.015

Nf, Cycles 15,855 10,289/11,087 3436 1181 811 229 246

3.1. Distribution and Inhomodeneity of Strain and Stress in RVE

Through the numerical simulation tracking cycle one by one for different strain
amplitudes, by using the RVE and the crystal plasticity calculation, the distribution trans-
formation of both local stresses σij and local strains εij in the RVE with the cyclical increase
is obtained. The stresses and strains at the grain level in RVE present non-uniformly
because the model takes the anisotropic elastoplastic deformation mechanism and random
orientation of the grains into account.

Figure 4 displays the contours and distribution of the longitudinal strain and longi-
tudinal stress at the third (close to cycle beginning) and 840th (near to the critical point
for failure) tensile peak for strain amplitude 0.01003. Some essential phenomena can be
observed from Figure 4 that (1) the distribution of the longitudinal stress and strain is
presented inhomogeneous, however the inhomogeneity change in extent with cycles for
both is very different; (2) the distribution range of strain with the cycles increasing has
an increase more than tenfold, but the distribution range of stress varies little (since the
change in stress is determined by Hooke’s law, whereas the elastic strain change is very
small relative to the total strain change); (3) both distributions for longitudinal stress and
strain are nearly Gauss alike.
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3.2. Different Measurement of Statistics of Strain Inhomogeneity

The results above imply that throughout the cycle process, the new non-uniform
plastic deformation continuously arises, and the material structure changes geometrically
at the grain level (i.e., the microstructure evolution), which can be regarded as the factor
leading to material degradation of the ability to resist damage. This urges us to find a
method to measure the variation of deformation nonuniformity with cycle number. Since it
is able to describe the extent of the inhomogeneity of a physical quantity distribution,
the statistical standard deviation (SD) is applied as a fatigue indicator parameter (FIP) to
describe fatigue damage. For any strain quantity, x, it is calculated by:

x̂ =

√√√√nRVE

∑
k=1

x2
kvk − x2 (13)

where nRVE is the total number of finite elements in the RVE, vk = ∆Vk/V, with ∆Vk being
the volume of k-th element and V the total volume of the RVE. This parameter is applied
as the characteristics of the inhomogeneous strain components distribution of the RVE.
For tension compression fatigue, SD of the longitudinal strain component can be used
as FIP.

Additionally, the inhomogeneity of the deformation can be quantified by using Shan-
non entropy. The entropy is initially referred to as a probability function characterizing
the state of a thermodynamic system and is a measure of system’s disorder. Shannon and
Weaver [43] transferred the concept to quantitative measurement of information. For a
model such as the RVE, which has the continuous variables, people can adopt the concept
of entropy for continuous distribution, which is also referred to as the differential entropy
(or continuous entropy). It can calculate as

H = −
∫ ∞

−∞
fx log fxdx (14)

where fx denotes the probability density function for a random variable. The differential
entropy retains many of the properties of its discrete counterpart, but with some important
differences. In an RVE, the interval [xmin, xmax] of the variable x is equally divided into n
subintervals [xi, xi+1], i = 1, 2 . . . , n. That is, the interval [xi, xi+1] in calculation is taken
as a constant and ∆xi = xi+1 − xi =

(
xmax − xmin)/n. Then, the integral of the entropy

described by Equation (14) can be numerically calculated according to the following
formula for the strain quantity:

Hx = −
n

∑
i=1

[
pxi
∆xi

log
(

pxi
∆xi

)
∆xi

]
; pxi ≥ 0. (15)

where pxi is the relative volume fraction, ∆Vi/VRVE, of the region where [xi, xi+1].
When the RVE and crystal plasticity calculation are used to simulate the fatigue cycle

process with different strain amplitude, the values of the above parameters (standard
deviation and differential entropy) at the corresponding cycle peak can be calculated.
Both the statistical standard deviation and differential entropy reflect the disorder degree of
a distribution variable. Additionally, they increase numerically with the disorder. It implies
the standard deviation and entropy are consistent in irreversibility.

3.3. Fatigue Indicator Parameters (FIPs), Life Prediction and Verification

Next, let us discuss the applicability of the parameters aforementioned on measuring
the heterogeneity of strain of material at tension peak under cycles and the correlation
between the parameters with fatigue failure.
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3.3.1. Inhomogeneity Measurement of Distribution of Different Strain Components

Taking Ea as a parametric variable, the curves of SD ε̂ij(Ea, N), ε̂eq(Ea, N), ε̂1(Ea, N)

and ε̂M
13(Ea, N), which are obtained from simulation, are plotted in Figure 5. They, respec-

tively, reflect the growth of deformation inhomogeneity of the material with the cycle
number at tension peak of cycles, under different strain amplitude cycles. The strain
quantity εij,εeq,ε1 and εM

13(here, εM
13 = 1

2 (ε1 − ε3)) is strain components, effective strain,
first principal strain and maximum principal shear strain, respectively. In the figure,
the horizontal axis is logarithmically scaled.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 18 
 

1
 log  ;   0.

n
xi xi

x i xi
i i i

p pH x p
x x=

  
= − Δ ≥  Δ Δ  
  (15)

 
where 

xi
p is the relative volume fraction, R V EiV VΔ , of the region where [ 1i ix ,x+ ]. 

When the RVE and crystal plasticity calculation are used to simulate the fatigue cy-
cle process with different strain amplitude, the values of the above parameters (standard 
deviation and differential entropy) at the corresponding cycle peak can be calculated. 
Both the statistical standard deviation and differential entropy reflect the disorder degree 
of a distribution variable. Additionally, they increase numerically with the disorder. It 
implies the standard deviation and entropy are consistent in irreversibility. 

3.3. Fatigue Indicator Parameters (FIPs), Life Prediction and Verification 
Next, let us discuss the applicability of the parameters aforementioned on measur-

ing the heterogeneity of strain of material at tension peak under cycles and the correla-
tion between the parameters with fatigue failure. 

3.3.1. Inhomogeneity Measurement of Distribution of Different Strain Components 
Taking aE as a parametric variable, the curves of SD ˆ ( , )ij aE Nε , ˆ ( , )eq aE Nε , 

1̂ ( , )aE Nε  and M
13ˆ ( , )aE Nε , which are obtained from simulation, are plotted in Figure 5. 

They, respectively, reflect the growth of deformation inhomogeneity of the material with 
the cycle number at tension peak of cycles, under different strain amplitude cycles. The 
strain quantity ijε , eqε , 1ε and M

13ε (here, M 1
13 1 32 ( )ε ε ε= − ) is strain components, effective 

strain, first principal strain and maximum principal shear strain, respectively. In the fig-
ure, the horizontal axis is logarithmically scaled. 

It needs to be emphasized, the curves in Figure 5 show that the heterogeneity and its 
monotonously increase with the number of cycles are extremely similar, no matter what a 
measurement adopted for material deformation: strain component, effective strain, first 
principal strain or maximum principal shear strain. 

101 102 103 104
0.00

0.01

0.02

0.03

0.04

N , Number of cycles

123456
  ε11  ε22   ε33

1      
2      
3     
4     
5      
6      
7     

SD

Normal strain 7

 

101 102 103 104
0.00

0.01

0.02

0.03

0.04

N , Number of cycles

  ε12  ε13   ε23

1      
2      
3     
4     
5      
6      
7     

SD

Shear strain 1234567

 
(a) (b) 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 18 
 

101 102 103 104
0.00

0.01

0.02

0.03

0.04

N , Number of cycles

123456  εeq  ε
M

13   ε1

1      
2      
3     
4     
5      
6      
7      SD

7

 
(c)  

Figure 5. The curves of SDs under different strain amplitude vs. cycle number: (a) for normal 
strains 11ˆ ( , )aE Nε , 22ˆ ( , )aE Nε  and 33ˆ ( , )aE Nε ; (b) for shear strains 12ˆ ( , )aE Nε , 13ˆ ( , )aE Nε  and 

23ˆ ( , )aE Nε ; (c) for effective strain ˆ ( , )eq aE Nε , first principal strain 1̂( , )aE Nε and maximum prin-

cipal shear strain M
13ˆ ( , )aE Nε . 

By applying Equation (15) and taking aE as the parametric variable, the differential 
entropy curves ( )

ij aH E ,Nε  for all strain components i jε are plotted after the simulation 

tracking the cyclic process, with logarithmically scaled horizontal axes, as showed in 
Figure 6. One can see that the differential entropies of all strain components increase 
monotonously with the number of cycles, like the curves of SDs for them. Due to page 
limitation, the differential entropy curves for effective strain, first principal strain and 
maximum principal shear strain are omitted here. 

101 102 103 104

-6

-5

-4

-3

-2

N , Number of cycles

123456

  ε11  ε22   ε33

1      
2      
3     
4     
5      
6      
7      

En
tr

op
y

Normal strain 7

 

101 102 103 104

-6

-5

-4

-3

-2

N , Number of cycles

123456

  ε12  ε13   ε23

1     
2     
3     
4     
5     
6     
7     

En
tr

op
y

Shear strain 7

 
(a) (b) 

Figure 6. The curves of differential entropies at different strain amplitude cycle vs. cycle number: 
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12

( )aH E ,Nε , 
13

( )aH E ,Nε  and
23

( )aH E ,Nε . 

3.3.2. The Deformation Inhomogeneity Growing and Fatigue Failure Occurrence Pre-
dicting 

It can be seen from Section 3.1 that under macro uniform strain loading, the distri-
bution of longitudinal strain component in the material with respect to the tensile peak is 

Figure 5. The curves of SDs under different strain amplitude vs. cycle number: (a) for normal strains
ε̂11(Ea, N), ε̂22(Ea, N) and ε̂33(Ea, N); (b) for shear strains ε̂12(Ea, N), ε̂13(Ea, N) and ε̂23(Ea, N); (c)
for effective strain ε̂eq(Ea, N), first principal strain ε̂1(Ea, N) and maximum principal shear strain
ε̂M

13(Ea, N).

It needs to be emphasized, the curves in Figure 5 show that the heterogeneity and
its monotonously increase with the number of cycles are extremely similar, no matter
what a measurement adopted for material deformation: strain component, effective strain,
first principal strain or maximum principal shear strain.

By applying Equation (15) and taking Ea as the parametric variable, the differential
entropy curves Hεij(Ea, N) for all strain components εij are plotted after the simulation
tracking the cyclic process, with logarithmically scaled horizontal axes, as showed in
Figure 6. One can see that the differential entropies of all strain components increase
monotonously with the number of cycles, like the curves of SDs for them. Due to page
limitation, the differential entropy curves for effective strain, first principal strain and
maximum principal shear strain are omitted here.
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Figure 6. The curves of differential entropies at different strain amplitude cycle vs. cycle number:
(a) differential entropies of normal strains,Hε11 (Ea, N), Hε22 (Ea, N) and Hε33 (Ea, N); (b) differential
entropies of shear strains,Hε12 (Ea, N), Hε13 (Ea, N) and Hε23 (Ea, N).

3.3.2. The Deformation Inhomogeneity Growing and Fatigue Failure Occurrence Predicting

It can be seen from Section 3.1 that under macro uniform strain loading, the distribu-
tion of longitudinal strain component in the material with respect to the tensile peak is like
Gaussian (cf. Figure 4). According to the theory of Gaussian distribution, for a variable
x > x + 3x̂, the probability is less than 0.07%. Therefore, the maximum value of x can be
approximately as,

xmax ≈ x + 3x̂ (16)

Taking the normal strain ε33 as an example (its direction is the same as that of the macro
loading axis). Its standard deviation curve ε̂33(Ea, N) is shown in Figure 5a. Additionally,
the curves (ε33 + 3ε̂33, N) corresponding to different strain amplitude cycles are drawn in
Figure 7a. For any specified strain amplitude Ea, the mean ε33 = Ea. If the fatigue failure of
the material can be determined by the maximum of the strain, this condition approximately
corresponds to ε33 + 3ε̂33 ≤ εcrit

33 .
Observing a curve in Figure 7a, for example, the curve of strain amplitude Ea = 0.00601,

sign the corresponding fatigue failure point by “#” (the black circle), according to the
test fatigue life Nf = 3,436. The parametric critical value can be obtained and εcrit

33 ≈ 0.078.

Then, it is applied as the critical strain value to determine the fatigue lives Npredict
f of

the respective fatigue cycles with various strain amplitude Ea. That is, obtain the point
sequence (Npredict

f , Ea) from the intersection between each curve in Figure 7a and the
horizontal line with the ordinate value of 0.078. Thus, the fatigue–life prediction curve
shown in Figure 7b can be obtained. Compared with the measured fatigue failure data,
the predicted results are reasonable.

Selecting any curve from Figure 7a, a critical value εcrit
33 can be determined. Then,

we can use different critical value to obtain different predictions of fatigue–life curve.
Hence, it is necessary to check if the different predictions obtained are all reasonable.
For this purpose, all the curves (ε33 + 3ε̂33, N) in Figure 7a are re-drawn in Figure 8a,
and the “F” is marked on the corresponding curves to sign the fatigue failure points,
according to the measured life value of different strain amplitude cycles. From the figure,
the value range of εcrit

33 can be in interval [0.071, 0.1048]. Thus, the point sequence for
fatigue–life curves corresponding to the lower bound and upper bound estimation can be
obtained from Figure 8a. Comparing them with the measured data in Figure 8b, one can
observe that the upper and lower bounds of prediction are reasonable.



Appl. Sci. 2021, 11, 2673 11 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 18 
 

like Gaussian (cf. Figure 4). According to the theory of Gaussian distribution, for a vari-
able ˆ3x x x> + , the probability is less than 0.07%. Therefore, the maximum value of x can 
be approximately as, 

max ˆ3x x x≈ +  (16)

Taking the normal strain 33ε  as an example (its direction is the same as that of the 
macro loading axis). Its standard deviation curve 33ˆ ( , )aE Nε  is shown in Figure 5a. Addi-
tionally, the curves ( 33 33ˆ3ε ε+ , N) corresponding to different strain amplitude cycles are 
drawn in Figure 7a. For any specified strain amplitude aE , the mean 33 aEε = . If the fa-
tigue failure of the material can be determined by the maximum of the strain, this condi-
tion approximately corresponds to crit

33 33 33ˆ3ε ε ε+ ≤ . 
Observing a curve in Figure 7a, for example, the curve of strain amplitude aE  = 

0.00601, sign the corresponding fatigue failure point by “○” (the black circle), according 
to the test fatigue life Nf = 3,436. The parametric critical value can be obtained 
and crit

33ε ≈ 0.078. Then, it is applied as the critical strain value to determine the fatigue lives 
predict
fN of the respective fatigue cycles with various strain amplitude aE . That is, obtain 

the point sequence predict( , )f aN E  from the intersection between each curve in Figure 7a 
and the horizontal line with the ordinate value of 0.078. Thus, the fatigue–life prediction 
curve shown in Figure 7b can be obtained. Compared with the measured fatigue failure 
data, the predicted results are reasonable.  

Selecting any curve from Figure 7a, a critical value crit
33ε can be determined. Then, we 

can use different critical value to obtain different predictions of fatigue–life curve. Hence, 
it is necessary to check if the different predictions obtained are all reasonable. For this 
purpose, all the curves ( 33 33ˆ3ε ε+ , N) in Figure 7a are re-drawn in Figure 8a, and the “★” is 
marked on the corresponding curves to sign the fatigue failure points, according to the 
measured life value of different strain amplitude cycles. From the figure, the value range 
of crit

33ε can be in interval [0.071, 0.1048]. Thus, the point sequence for fatigue–life curves 
corresponding to the lower bound and upper bound estimation can be obtained from 
Figure 8a. Comparing them with the measured data in Figure 8b, one can observe that the 
upper and lower bounds of prediction are reasonable. 

101 102 103 104
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Constant

N , Number of cycles

M
ea

n 
+ 

3S
D

 o
f ε

33

  Prediction  
using
 as FIP
  Test

1234567

Ea=0.00601
Nf=3436

 

102 103 104
0.003

0.006

0.009

0.012

0.015
0.018

1
2

3

4

5

6
7

 Prediction by the test Ea=0.00601
 Test

St
ra

in
 a

m
pl

id
e

Nf , Number of cycles
 

(a) (b) 

Figure 7. (a) Determining the critical value crit
33ε , by the intersection between curve of 33 33ˆ3ε ε+ ( aE  = 

0.00601) and dot dash line (Nf, test fatigue–life); determining the point sequence predict( , )f aN E , by 

the intersection between each curve and the horizontal line 33 33ˆ3 0.078ε ε+ = ; (b) predicted fa-
tigue–life curve and its comparison with tests. 

Figure 7. (a) Determining the critical value εcrit
33 , by the intersection between curve of ε33 + 3ε̂33

(Ea = 0.00601) and dot dash line (Nf, test fatigue–life); determining the point sequence (Npredict
f , Ea),

by the intersection between each curve and the horizontal line ε33 + 3ε̂33 = 0.078; (b) predicted
fatigue–life curve and its comparison with tests.
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The calculated strain value of RVE model is bounded. Whereas, according to ideal 
Gaussian distribution, the maximum value of the statistical variable tends to infinity, and 
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maximum value of a statistical variable in Equation (16) may mainly depend on the 
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Figure 8. Verification of fatigue indicator parameter (FIP) ε33 + 3ε̂33: (a) determining upper and lower
of critical value and determining point sequences (Npredict

f , Ea); (b) predicted fatigue–life curves and
their comparison with tests.

The calculated strain value of RVE model is bounded. Whereas, according to ideal
Gaussian distribution, the maximum value of the statistical variable tends to infinity,
and the maximum deviation from the mean value is far more than three times. Therefore,
the maximum value of a statistical variable in Equation (16) may mainly depend on the
standard deviation. It means that the criterion of material fatigue failure measured by the
maximum of ε33 is equivalent to ε̂33 ≤ ε̂crit

33 .
Furthermore, from the similarity of curves in Figure 5, the parameters ε̂ij,ε̂eq,ε̂1 and ε̂M

13
obviously can be considered as the FIP used to describe the condition of material fatigue
failure. Limited to the space, only the following three conditions ε̂33 ≤ ε̂crit

33 , ε̂23 ≤ ε̂crit
23

and ε̂eq ≤ ε̂crit
eq are verified for their validity as below. Firstly, determine the minimum

and maximum critical values for different FIPs (ε̂33, ε̂23 and ε̂eq) and the critical values
from the curves of Ea = 0.00601. Secondly, apply them to determine the corresponding
point sequences (Npredict

f , Ea); then, draw out the corresponding fatigue–life curves of
the material, see Figures 9–11. Checking Figures 9b, 10b and 11b, and comparing all the
predicted with the measured results, one can observe that the predicted ones are reasonable.
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Figure 9. Verification of FIP ε̂33(Ea): (a) determining upper and lower of critical value and de-
termining point sequences (Npredict

f , Ea); (b) predicted fatigue–life curves and their comparison
with tests.
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Figure 11. Verification of FIP
eqˆ ( )aEε : (a) determining upper and lower of critical value and de-

termining point sequences predict( , )f aN E ; (b) predicted fatigue–life curves and their comparison 

with tests. predict( , )f aN E . 
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with tests.
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Therefore, it can be regarded that the growth and accumulation of deformation inho-
mogeneity are the main mechanism leading to the low cycle fatigue failure of materials for
tension compression cycles. Thus, the fatigue–life curve can be predicted using the above
method and parameters by polycrystalline RVE combined with crystal plasticity calculation.

Additionally, let us see if the differential entropy is used to measure the inhomogeneity
of material deformation, whether it can be used to predict the fatigue–life curve. This is like
the previous discussion. Because of the similarity of differential entropy curves of all strain
components in Figure 6, it can be considered Hεij as FIPs. That is, it can be assumed that
the condition of material fatigue failure is Hεij ≤ Hcrit

εij
. Due to limited space, the following

only discusses the rationality of the condition Hε33 ≤ Hcrit
ε33

for fatigue judging.
In Figure 12, it can be seen that, the minimum and maximum critical values and the

critical values determined by Ea = 0.00601 cycle for Hε33 are taken respectively, then the
corresponding point sequence (Npredict

f , Ea) is determined (see Figure 12a) and the pre-
diction curve of material fatigue life is drawn (see Figure 12b). The above results show
that the fatigue–life curve can be reasonably predicted by using differential entropy as FIP.
This further proves that it is feasible to predict the low cycle fatigue failure of materials by
the accumulation of inhomogeneous deformation.
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3.3.2.1. Validation

It can be viewed in Section 3.3.2 that after cycle simulation, according to the life data
measured by the test of one strain amplitude cycles test, one point sequence of fatigue
life and strain amplitude (Npredict

f , Ea), that is, one fatigue–life curve, can be predicted.
Therefore, different strain amplitude tests will give different fatigue curve predictions.
For example, three prediction curves for each FIP are determined in the section above. In-
cluding upper and lower bound curve prediction, and curve prediction based on the test at
strain amplitude of 0.00601, see Figures 8b, 9b, 10b, 11b and 12b, respectively. The predicted
values (ordinate) and measured values (abscissa) in these figures are plotted in Figure 13c,
and the predictions made with different FIPs are given, respectively: (a) the prediction
according to the test at strain amplitude 0.00601; (b) the upper bound prediction; (c) the
lower bound prediction. They, respectively, show the deviation between the predicted and
the measured fatigue life. It can be seen from the figure that the predicted results are within
the interval factor of 2, except for one point predicted by the upper bound of the fatigue
failure criterion, see Figure 13b. It implies that this method is able to rationally predict
fatigue–life curves, according to the FIP critical value, which determined using fatigue tests
of any single specified strain amplitude.
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In the above study, only one RVE model was used, so it is necessary to discuss the
dependency of RVE of the method. It involves the reproducibility of this method, that is,
whether similar results can be reproduced by another random model generated by the
same method. In reference [31], the RVEs with the same grain number but finite element
number of 8000, 27,000 and 64,000 were calculated, respectively. Although the local stress
and strain in RVE vary with the finite element size, the statistical mean strain value of the
model remains unchanged, and the statistical standard deviation only increases slightly
with the decrease in the element size. To further discuss this problem, let the loading of
RVE changed from the axis-3 to axis-1 direction. This change makes the polycrystalline
structure and grain orientation in the model vary greatly. Taking the fatigue cycle analysis
with a strain amplitude of 0.01003 as an example, the difference in results between the
two simulations is compared. As can be seen from the results in Figure 14, the statistical
standard deviation only slightly changes in value, while the law of the result curve does
not change. Therefore, under the condition of this paper, the change in the above model
has no obvious effect on the fatigue judgment.

In the calculation above, boundary conditions of RVE deformation by Equation (1) are
shown. In the following, we use the periodic boundary conditions described by Equation
(2) for calculation and compare the results with the above. Similarly, fatigue cycle analysis
with a strain amplitude of 0.01003 is taken as an example, and it is loaded in the direction
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axis 1. The calculated statistical standard deviation curve is also presented in Figure 14,
from which it can be observed that the statistical standard deviation difference between the
results by two boundary conditions is also very small. Therefore, if the periodic boundary
conditions are used for all strain amplitude cycles, similar results will be obtained.
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Figure 14. The curves of SD at strain amplitude 0.00601 vs. cycle number under different conditions:
loading on axis-3 and on axis-1 and loading on axis-1 adopting periodic boundary conditions.

4. Discussion and Conclusions

In this paper, deformation inhomogeneity evolution at the grain level of a superal-
loy GH4169 under macro uniform tension compression cyclic loading and temperature
500 ◦C is studied by using polycrystalline RVE associated with crystal plasticity simula-
tion. Based on the statistical parameters of standard deviation and differential entropy
ε33 + 3ε̂33,ε̂33,ε̂23,ε̂eq and Hε33 , the various FIPs are taken into account as the measurement
of deformation inhomogeneity. Additionally, the relationship between the FIPs and low
cycle fatigue of materials is discussed. These monotonically increased parameters reflect
the irreversible inhomogeneity of the material deformation and the evolution of material
microstructure with the number of cycles. Furthermore, criteria using these parameters’
critical values are applied to predict the strain fatigue–life curve of the material. Based on
these investigations, we conclude:

(1) At grain level, the standard deviation ε̂ij and differential entropy Hεij of the respective
strain tensor component εij increase monotonously with the cycle. The standard
deviation values of each strain component are almost the same, and the law of their
growth with the increase in cycle number is similar. The values of components of
differential entropy Hεij are close to each other, and the law of that with the number
of cycles is also similar.

(2) The respective standard deviations of the effective strain ε̂eq, first principal strain ε̂1

and maximum principal shear strain ε̂M
13 are similar in numerical and growth law with

the number of cycles.
(3) The parameters ε33 + 3ε̂33,ε̂33,ε̂23,ε̂eq and Hε33 can be used as fatigue index parameters,

and the corresponding critical values can be determined by a single strain amplitude
cycle fatigue test, based on which the fatigue–life curve can be predicted.

It should be pointed out that (1) from conclusions 1 and 2, all components for ε̂ij, and ε̂1

and ε̂M
13 can be used as FIPs and for use for fatigue–life curve prediction, but the detailed

results are not shown due to the limited space. This result implies that the proposed method
may be also effective under the loading condition of complicated stress state. (2) The FEM
is used to analyze, and the calculation results may be affected by the size of mesh to a
certain extent. The numerical results may be different with mesh sizes varying, but the
regularity of the results will preserve unchanged [23].
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