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Abstract: Although the solution of inverse kinematics for a serial redundant manipulator has been
widely researched, many algorithms still seem limited in dealing with complex geometries, including
multi-finger anthropomorphic hands. In this paper, the inverse kinematic problems of multiple
fingers are an aggregate problem when the target points of fingers are given. The fingers are
concatenated to the same wrist and the objective is to find a solution for the wrist and two fingers
simultaneously. To achieve this goal, a modified immigration genetic algorithm based on workspace
analysis is developed and validated. To reduce unnecessary computation of the immigration genetic
algorithm, which arises from an inappropriate inverse kinematic request, a database of the two
fingers’ workspace is generated using the Monte Carlo method to examine the feasibility of inverse
kinematic request. Furthermore, the estimation algorithm provides an optimal set of wrist angles for
the immigration genetic algorithm to complete the remaining computation. The results reveal that
the algorithm can be terminated immediately even when the inverse kinematic request is out of the
workspace. In addition, a distribution of population in each generation illustrates that the optimized
wrist angles provide a better initial condition, which significantly improves the convergence of the
immigration genetic algorithm.

Keywords: inverse kinematics; genetic algorithm; workspace analysis; multi-fingered anthropomor-
phic hand

1. Introduction

The solution of inverse kinematics (IK) is one of the most critical and elemental
issues in robotics. Many related research areas such as motion planning, robotic grasping,
manipulation, and manufacturing are all involved in IK. The IK of a manipulator is used to
find the map between the joint coordinate (θ) and the Cartesian coordinates (x, y, z), where θ
represents the joint angles of each joint in the manipulator and (x, y, z) represent the position
of the manipulator’s end-effector. While most IK solutions are performed on simple
manipulators, several studies focus on redundant manipulators. For a redundant robot,
in addition to the basic accurate positioning, different requirements such as computation
time, robustness, and minimum displacement are considered suboptimal conditions. One
of these complex redundant manipulators is the multi-fingered anthropomorphic robotic
hand, whose joints of fingers move simultaneously and two wrist joints are deemed as
the base of the hand. To obtain the IK solution of the anthropomorphic hand, a robust
algorithm is essential to solve this multiple end-effector problem.

Traditionally, there are three kinds of methods used to acquire the IK solutions of
a redundant manipulator, namely, the algebraic [1,2], geometric [3], and iterative meth-
ods [4–7]. Each of them has its own advantages and disadvantages. For example, the
algebraic method can derive a closed-form solution from a Denavit and Hatenberg (D–H)
table [8] and, thus, offers efficiency in computation. However, the algebraic method cannot
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guarantee a closed-form solution for all configurations of manipulators. On the other
hand, the geometric method can obtain a closed-form solution, while it is usually limited
in specific configurations such as sphere–revolute–sphere manipulators. Likewise, the
iterative algorithm utilizes local linearization to get a linear trajectory, and it is suitable for
most manipulators. Nevertheless, the iterative method may encounter a singularity prob-
lem in which it can accidentally converge to the same solution if the same initial point is
given. All of these traditional methods have one point in common, i.e., high computational
efficiency, but they all inevitably suffer from certain restrictions. Alternatively, thanks to
the advancement of computer hardware, compute-intensive algorithms can come in handy.
For these reasons, although the computation is intensive, researchers have focused on
using biologically inspired optimization to solve the IK problem.

Recently, many papers associated with neural networks [9–13] and evolutionary
algorithms [14–18] have been published to allow obtaining the IK solution of redundant
manipulators with some convincing results. KöKer [19] presented a hybrid approach
using neural networks and the genetic algorithm (GA) to solve the IK problem under the
consideration of error minimization in the end-effector. Three Elman neural networks
were applied to create the floating-point initial population for the GA. The simulation
experiments were performed on a six-axis serial robot and showed a critical high precision.
Tabandeh et al. [20] presented an adaptive niching strategy to acquire several possible
solutions to IK problem. By using the niching genetic algorithm accompanied by the quasi-
Newton algorithm, the precision and resolution of the simulation results were improved
dramatically. A sequential mutation genetic algorithm combined with an extreme-learning
machine was presented by Zhou et al. [21]. In their study, the extreme-learning machine
first computed the preliminary IK solution. With the use of the simple GA, the refined
solution was optimized. The grasping experiments were then conducted on the 6 degree of
freedoms (DOFs) Stanford MT-ARM robotic manipulator, from which an improvement in
the computational time without reducing the accuracy of IK solutions was demonstrated.
Momani et al. [17] provided a continuous genetic algorithm to solve the IK problems of a 3R
planar manipulator. The continuous genetic algorithm operators used in the initialization
phase, crossover, and mutation were designed to smoothen the joint space while the
Cartesian path was kept accurate.

Although the aforementioned algorithms made a great contribution to solving the IK
of redundant robots, they focused only on single kinematic chain redundant manipulators
which are widely used in industry. For instance, the most common applications using GA
to solve the IK problem are 6-DOFs manipulators, although there are closed-form solutions
already; this can also be found in 7-DOFs manipulators, for which GA is quite applicable
because it includes one redundant DOF in the joint space when the end-effector moves in
the Cartesian coordinate system. Given that previous research did not consider the inverse
kinematic problem of multiple manipulators such as robotic hands and dual-arm robots,
further investigation on the IK problem of multiple kinematic chain manipulators is crucial.
The other drawback of GA is its ignorance of an unreachable target. Specifically, GA is
implemented regardless of feasibility, which is a fatal flow in solving the IK problem of
a dual-arm robot. Without checking the viability in advance, it is frequently found that,
when two target points are given to each arm, only one arm can reach the target point while
the other one fails because of the limited range of motion. Therefore, feasibility analysis
beforehand is indispensable.

In this paper, a workspace-analysis-based immigration genetic algorithm (IGA) is
proposed to solve the inverse kinematics of a multi-fingered anthropomorphic hand. The
architecture of the proposed algorithm is divided into two stages, namely, the offline stage
and the online stage. In the offline stage, workspaces of the exemplary index finger and the
thumb are established by the Monte Carlo method and stored in a database for the feasibility
check. In the online stage, a feasibility estimation function examines whether the IK request
is out of the workspace or not. If the request is unreachable, the algorithm is suspended
immediately. Conversely, with a reachable request, the feasibility function provides a better



Appl. Sci. 2021, 11, 2668 3 of 18

initial condition for the IGA to get high-precision IK solutions. This paper aims to solve
the IK problem of multiple chain manipulators and to provide a mechanism that can avoid
unnecessary computation if the target point is inappropriate. Meanwhile, the proposed
mechanism can offer a superior range to variables, which improves the convergence
of the IGA. The performance of this algorithm is validated through simulations, which
include both reachable and unreachable IK requests. A population distribution during the
evolutionary process is conducive to the understanding of the improvement in convergence.

The remainder of this paper is organized as follows: in Section 2, the configuration of
the anthropomorphic hand is described, and the IK problem is defined. In Section 3, the
establishment of the workspace and mechanism to check the feasibility is explained. Sec-
tion 4 introduces the architecture of the proposed algorithm and illustrates details of each
operator in IGA, while Section 5 presents the simulation results of the proposed algorithm
applied to several IK requests. Lastly, the contributions of this paper are summarized in
the conclusion.

2. Problem Formulation

In this section, the geometric description of the anthropomorphic hand and the sce-
nario of the motion task are discussed. The anthropomorphic hand is designed according to
the human hand anatomy. In this anthropomorphic hand, the wrist mechanism is designed
to possess two degrees of freedom in order to mimic the motion of a human’s wrist. For
fingers, the thumb and index finger each has three joints, namely, the metacarpophalangeal
(MCP), the proximal interphalangeal (PIP), and the distal interphalangeal (DIP) joints,
as shown in Figure 1. Among these three, the PIP and DIP joints of a human finger are
anatomically coupled by a tendon. As a result, to mimic a human finger’s anatomy, the
design of a four-bar linkage mechanism to create coupled motion by a ratio of 1:1 is adopted
in this research, whereby θt3 is equal to θt4 and θi3 is equal to θi4, where subscript t stands
for thumb and i stands for index finger. As many dexterous gestures and tasks are executed
by the thumb and index finger, such as picking up small items and handling a key, the
kinematics of the thumb and index finger of the anthropomorphic hand is the main focus
of this paper. The other fingers, i.e., the middle finger, ring finger, and little finger, could
also be taken into consideration for the IK problem by using the same procedure presented
in this study. However, to fix ideas and to convey the concept clearly, the remainder of this
paper uses only the thumb and index finger as examples for simplification.
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Figure 1. Schematics of (a) the design and (b) the kinematic structure of the model anthropomorphic
hand.

In this study, the target points of the index finger and the thumb are given at the
same time as the inverse kinematic requests and the associated task space is restricted only
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to a translation of posture. Because both the index finger and the thumb are connected
to the wrist, it is evident that the robotic hand has multiple serial kinematic chains, and
each of them is dependent. In other words, the tips of both the index finger and the
thumb comprise the same angle θw1 and θw2, where the subscript w represents the wrist.
Mechanically, the inverse kinematics of the two fingers are highly coupled.

With the problem described according to Cartesian coordinates, an IGA is then used
to solve this highly nonlinear and coupled inverse kinematics. However, from theory, an
IGA always returns a minimum value that it has computed even if the target point is out of
the workspace. To avoid this ambiguous situation, a procedure to generate the workspace
is proposed, and a technique to check the feasibility to assist the computation of the inverse
kinematics is discussed in the next section.

3. Workspace Analysis
3.1. Forward Kinematics

Through kinematic analysis, the relationship between the position of the end-effector
and the angles of each joint can be easily defined for a robot. The kinematics can be
conducted using two analyses, namely, forward kinematics analysis and inverse kinematics
analysis. The forward kinematics analysis allows one to obtain orientation and translation
of the end-effector on the basis of the given angles of joints. Therefore, the workspace of
the fingers is easily acquired using the forward kinematics analysis.

Before analyzing kinematics, the problem must be formulated using a mathematic tool.
Denavit and Hatenberg in 1995 introduced the convention for two spatial coordinates [8].
From this convention, a matrix, which contains the information on the translation and
rotation, can be obtained. To access the values of the D–H parameters, the coordinate
of each joint must be defined first. The long axis of each cylinder, as shown in Figure 1,
represents the rotational direction of each joint for the index finger and the thumb. Tables 1
and 2 give the geometric parameters of the index finger and the thumb, respectively. The
forward kinematic model of the index finger or thumb is given through D–H parameter
convention, and the transformation between adjacent i-th and (i− 1)-th joint coordinate
systems can be written in the form of the following homogeneous transformation matrix:

i−1T i(θi) =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1

, (1)

where αi, ai, θi, and θi are D–H parameters. From Tables 1 and 2, one can observe that
each finger has six joints from the base to its fingertip. Starting from joint 0 to joint 5, the
homogeneous transformation matrix 0T5 can be written as

0T5 = 0T1·1T2·2T3·3T4·4T5 =


nx ox ax Px
ny oy ay Py
nz oz az Pz
0 0 0 1

, (2)

where (Px Py Pz)
T is the position vector of the fingertip measured from the base coordinate

system. By giving many sets of joint angles, the workspace of the finger can be collected
through the forward kinematics analysis.

3.2. Database Collection

The workspace of the robot mathematically represents all possible solutions of loca-
tions that the robot’s end-effector can reach in space. To ensure that the finger of the model
anthropomorphic hand can reach the target points, careful analysis of its workspace is
crucial.
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Table 1. Denavit and Hatenberg (D–H) table of the index finger.

Joint i αi (◦) ai (mm) θi di (mm) Range

0 90◦ 33 θw1 0 −60◦ to + 60◦

1 −90◦ 93 θw2 38 −60◦ to + 90◦

2 90◦ 15.5 θi1 −4 −45◦ to 0◦

3 0 20 θi2 0 0◦ to + 90◦

4 0 25 θi3 0 0◦ to + 90◦

5 0 36 θi4 0 0◦ to + 90◦

Table 2. D–H table of the thumb.

Joint i αi (◦) ai (mm) θi di (mm) Range

0 90◦ 33 θw1 0 −60◦ to + 60◦

1 90◦ 1.8 θw2 38 −60◦ to + 90◦

2 −90◦ 21 θt1 31 −30◦ to + 90◦

3 0 20 θt2 0 −90◦ to 0◦

4 0 25 θt3 0 −90◦ to 0◦

5 0 36 θt4 0 −90◦ to 0◦

The conventional workspace analysis is to find the range of the locations according
to all joints. For example, the dual-arm robot investigated by Kang et al. [22] has two
workspaces to indicate the motion range of each arm. In this dual-arm robot, the two arms
are connected to the same fixed frame, and the joints of the left arm are independent of the
right arm’s joints. Consequently, we can simply use the workspace to check whether one
arm can reach the target point.

Unlike the dual-arm robot, the index finger and the thumb of the anthropomorphic
hand are connected to a moving palm. As they share the same degrees of freedom of the
wrist, the workspaces of two fingers are definitely dependent and coupled. Even if the
two target points of the index finger and the thumb are all in their workspaces, with the
traditional method, the calculated angle of the wrist may show different value at each
point, which implies that there may exist mechanical interference and that the index finger
and thumb cannot reach their target points at the same time. To resolve this problem, the
workspace analysis below is proposed to make the workspace of the thumb independent
of the workspace of the index finger in this research.

Unlike the traditional method to build a workspace, we propose the workspace
analysis under the condition that the angle of the wrist is separated from the angle of the
fingers. The angle of the wrist is denoted as

⇀
qw = [θw1, θw2]

T . The angles of the two fingers
are denoted as

⇀
q f 1 = [θt1, θt2, θt3, θt4]

T and
⇀

q f 2 = [θi1, θi2, θi3, θi4]
T , with the subscript f

standing for finger. Once the angle of the wrist is decided, the workspaces of the index
finger and the thumb are determined by substituting sets of

⇀
q f 1 and

⇀
q f 2 into Equation (2)

to generate the cloud of points, as shown in Figure 2a, in which the red dots represent the
possible positions of the fingertip of the index finger. The workspace of the index finger for
a given set of wrist angles is denoted as I

(
⇀
qw

)
and that of the thumb is denoted as T

(
⇀
qw

)
.

The Monte Carlo method, a statistical method to solve problems by random sampling,
was adopted to analyze the workspace. A considerable number of particles were used to
approach the real shape of the workspace. Algorithm 1 shows the details for generating
the workspace of the index finger and the thumb for a given set of wrist angle. Figure 2b,c
illustrate the point cloud of the index finger (red dots) and the thumb (green dots) under
different conditions of wrist angle.
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(
0
◦
, 0

◦)
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thumb’s tip at the wrist angle (θw1, θw2) =
(
12
◦
, 30

◦)
.

Since the purpose of workspace analysis was to roughly examine whether the target
point is near the finger’s workspace or not, the number of sampling points of each finger
in a certain configuration of wrist was intentionally set to be low. As a result, the sub-
workspaces I

(
⇀
qw

)
and T

(
⇀
qw

)
were established every 10 degrees in wrist angle to cover

the whole workspace. Using this algorithm, the database for two fingers was established
and the data were sorted by the angle of the wrist. With this database, a further estimation
function was created to check the feasibility of the IK request.
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Algorithm 1. Algorithm for constructing the workspace of fingers

Purpose: To obtain the workspace of the fingers at certain wrist angle
Input:

⇀
q w,

⇀
q f ,range

Output: S
1 : S = ∅, I

(
⇀
qw

)
= ∅, T

(
⇀
qw

)
= ∅

2: Choose sample size Nsample

3: for i ∈
{

1, 2, . . . , Nsample

}
do

4: Obtain
⇀

q f 1 from randomly sampling
⇀
q f ,range

5: Obtain
⇀

q f 2 from randomly sampling
⇀
q f ,range

6: PT = 0T5

(
⇀
qw,

⇀
q f 1

)
7: PI = 0T5

(
⇀
qw,

⇀
q f 2

)
8: add PT to T

(
⇀
qw

)
9: add PI to I

(
⇀
qw

)
10: end for

11: add T
(
⇀
qw

)
, I
(
⇀
qw

)
to S

12: return S

3.3. Feasibility Check

Now, we have two databases for the index finger and the thumb, and each of them
has many point clouds to indicate the workspace of the finger’s tip according to the angle
of the wrist. The feasibility of the motion command can be determined by computing the
nearest distance between the target point and the point in the workspace. This distance is
defined as

κ(S, p) = min
xi∈S
‖p− xi‖, (3)

where S is the point cloud of the finger’s tip which is stored in the database, and p is the
target point. This function can be achieved by many algorithms such as the k-nearest
neighbor algorithm which returns the nearest point and the distance. Because the point
cloud is not concentrated enough, a threshold value is needed as the basis for proximity
to the workspace. Using Equation (3) and the database of reachable area, the coupling
phenomenon can be solved by the following equation:

Dist = min
[
κ
(

T
(
⇀
qw

)
, p1

)
+ κ
(

I
(
⇀
qw

)
, p2

)]
, (4)

where κ(a, b) denotes the operation with the k-nearest neighbor algorithm for entities a and
b, and p1 and p2 are the target points for the thumb and the index finger, respectively. Please
note that the angle set of the wrist

⇀
qw is intentionally set to be the same in the database of

the thumb and the index finger so that the inconsistency between the wrist angles of two
fingers can be avoided. The result of Equation (4) is used as a basis for performing the IGA
to prevent unnecessary computations. Moreover, the database is sorted in the order of the
angle of the wrist for quick search and access to the corresponding optimized angles of the

wrist. This optimized angle set of the wrist
⇀

qw
∗ is further provided to the IGA through the

estimation function below as the initial guess to accelerate the computation and to offer
better convergence. Equation (5) defines the estimation function.

θw1
∗, θw2

∗ = arg
⇀
qw

min
[
κ
(

T
(
⇀
qw

)
, p1

)
+ κ
(

I
(
⇀
qw

)
, p2

)]
. (5)

4. Algorithm

The proposed hybrid genetic algorithm mainly includes two steps:
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1. Examining the feasibility of the motion command on the basis of the workspace and
providing the angle set of the wrist if it is reachable.

2. Using IGA to solve the inverse kinematics and finding joint values of two fingers.

A schematic illustration of the proposed algorithm is depicted in Figure 3, and a
flowchart of the proposed hybrid GA is shown in Figure 4. A detailed explanation of each
step is addressed in the sections below.
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4.1. Feasibility Check and Feedforward of Wrist Angle

Utilizing the techniques elaborated in Section 3, in which collection and establish-
ment of the database are conducted, the feasibility check is performed when the inverse
kinematics request is assigned. The value obtained from Equation (4) is compared to the
heuristic threshold value to decide whether the motion command should be dropped out
or not. The heuristic threshold value and the fitness value of termination are the sum of the
distances between target points and end-effectors of the two fingers. Basically, the heuristic
threshold value is set to be a bit bigger than the fitness value of termination. Provided
that the heuristic threshold value is as low as termination value, the feasibility check will
frequently fail. On condition that the heuristic threshold value is much larger than the
fitness value of termination, the fitness value will not converge to termination 1. In this
research, the fitness value of termination is set to be 1 and the heuristic threshold value is
set to be 5.

On the assumption that the motion command passes the feasibility check, Equation (5)

yields an optimal wrist angle set
⇀

qw
∗ according to the aforementioned workspace database.

The new wrist angle range provided to the IGA is, therefore, generated in the form of
⇀

qw
∗ ± θw. The value θw is associated with the intervals of the wrist angle used in creating

the workspace database. A wider interval denotes a larger value of θw. In this paper, θw
was set to be 10◦ to cover the adjacent workspace. For example, the original range of θw1

was −60◦ to +60◦ and that of θw2 was −60◦ to +90◦. Supposing that the
⇀

qw
∗ provided by

the feasibility estimation function is [0◦, 12◦], then the new range of θw1 becomes −10◦

to +10◦ and that of θw2 becomes +2◦ to 22◦. Note that, if the new angle range exceeds the
original angle limit, the boundary shall be set to the original one.

4.2. Chromosome Coding

In an IGA, a chromosome is the individual in a population, and it consists of many
genes to show the individual differences. In this case, the chromosome represents a solution
to the IK problem, while a series of genes constitutes a chromosome. The population
contains many chromosomes and acts as a set of numerous possible IK solutions. To begin
with the IGA, it is necessary to encode the joint angle configurations as the genes for each
chromosome. The genetic encoding format is a binary string representation for each joint.
By concatenating the binary string of each joint, the chromosome is built and provided for
further operations. Figure 5 shows the binary encoding structure of the chromosome.
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The decoding process can help a joint angle recover from a chromosome. Using
binary–decimal conversion, the bit value is used to calculate the exact joint angle and to
ensure that the joint variable is within the bounded joint space, which is mathematically
written as

θi = θimin +

(
∑n

j=1 χi[j] ∗ 2j
)

2n ∗
(
θimax − θimin

)
, (6)

where θimin is the lowest value for a certain joint, and θimax is the highest one. It is hard
for iterative algorithms based on the Jacobian matrix to avoid exceeding the joint limits.
Through this encoding mechanism, the resulting angles computed by the IGA always fall
in the range of the joint limit and, thus, prevent unpredictable errors.
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4.3. Evaluation and Selection

Better chromosomes are chosen from the population in order to reproduce the off-
spring during the process of the IGA. To evaluate a chromosome, a fitness function, which
is a quantitative measure, is adopted to measure how satisfactory a chromosome is. In
this study, the task-space is only within the position. As a result, the fitness function is
defined as

Errorp = ‖p1 − xt‖+ ‖p2 − xi‖, (7)

Errord = max
k=1,...,8

θk,i − θk, f , (8)

Fitness = Errorp + K·Errord, (9)

where p1 is the target point for the thumb, xt is the tip of the thumb, p2 is the target point
for the index finger, xt is the tip of the index finger, θk,i is the initial angle of each joint
before computing the IGA, θk, f is the angle of the joint contained in the chromosome, and
K is the weight of the second criterion (infinity-norm term).

The position of xt is calculated using the forward kinematics according to the angle
set contained in the chromosome. Equation (7) computes the distance in Cartesian space to
indicate how far the tips of fingers are from the target points and, thus, sums the distances
to be a criterion for the fitness function. Equation (8) takes the maximum absolute value
within the angle differences between the initial angle and the angle generated by the IGA.
Equation (8) is derived from the concept of the infinity norm and is used to guarantee the
smoothness of the motion. The fitness function is minimized by the IGA, which means that
the tips of two fingers are set to reach the target points as closely as possible, with each
joint having about the same angular difference.

On the other hand, to maintain the quality and diversity of the population, the
selection operator is performed to select superior chromosomes for breeding of the next
population. Supposing that the chosen chromosomes are always the best individuals,
the diversity of the IGA will be narrow. Hence, the k-tournament selection operator is
used to choose which chromosomes should reproduce new offspring. The k-tournament
selection randomly withdraws k chromosomes from the population and picks the top two
chromosomes for the crossover operator. The advantage of the k-tournament selection is
that it is unnecessary to sort the entire population to get the top two chromosomes, thereby
reducing computational resources. In addition, the top two chromosomes may be poor
ones, which keeps the population diverse and eliminates a local minimum.

4.4. Crossover and Mutation

In this step, the new chromosomes are produced by genetic operations, such as a
crossover and a mutation. The crossover operation is adopted to create two offspring from
two parent chromosomes. The parents swap with the partial section of genes and then
generate two children. Here, k-point crossover is used. The k-point crossover first selects
k crossover points to make the k + 1 interval in one chromosome and then changes the
section of genes every two intervals to form two offspring.

The crossover operation is followed by the mutation operation. Mutation is utilized
to change some genes of the children chromosomes. The mutation rate is defined as the
reciprocal of the chromosome’s length. The mutation operation is implemented on each
gene and flips it with the probability of the mutation rate. Because of these two genetic
operations, the diversity of the IGA is highly promoted; simultaneously, it becomes more
possible to get close to the global minimum.

4.5. Elitism

Elitism is a mechanism that guarantees the best chromosome will survive in every
generation. Elitism can accelerate the convergence of the IGA but slightly decrease the
diversity of the population. In this study, the feasibility check function was used to provide
an optimal wrist angle set that narrows down the search space of the IGA. Therefore, the
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possibility of being trapped in local minimum was lower, thus validating elitism as a good
strategy to be adopted.

4.6. Immigration

An immigration strategy can be performed periodically to maintain the diversity
level of the genetic algorithm [23]. The best individuals immigrate to the new popula-
tion to replace the worst ones at defined intervals, which is called “structured memory
immigration operator.” In this research, the immigration operator was set to occur every
three generations in order to obtain better optimal solutions. Half of the population was
replaced with the best individuals of the previous generation in the same quantity. As
mentioned, we can ensure that the solution to the IK problem is near the best individuals
of the population through the feasibility check. In this case, the introduced immigration
operator is more suitable for the population than a random immigration operator. As a
result, the tournament selection can have a better chance of selecting better chromosomes
and maintaining the diversity.

5. Results and Discussion

In this section, the performance of the proposed hybrid GA is validated by examination
through parametric numerical simulations. The simple GA and the IGA are also performed
to compare the results. To highlight the capability of determining the feasibility, both
appropriate and improper IK requests are given to different algorithms for computing
IK solutions. The detailed parameters used in the illustrated cases through numerical
simulations with the proposed algorithm are shown in Table 3.

Table 3. Parameters used in the proposed hybrid genetic algorithm. GA, genetic algorithm.

Parameter Value

GA type Generational
Representation Binary

Chromosome length 80
Population number 500

Selection 10-tournament
Crossover 2-point

Crossover rate 0.8
Mutation Bit-flip

Mutation rate 1/L
Survivor 1000

Termination 3 s or fitness lower than 0.6

Among the parameters in Table 3, the fitness value of termination dominates the
computation time. As exhibited in Table 4, when the termination value increases, it takes
less time to compute, while the accuracy of the solution is sacrificed. It also compares
the average execution time of the simple genetic algorithm and the performance of the
proposed hybrid GA, which shows that the proposed hybrid GA is two times faster than the
simple GA. Additionally, it is known that the selection of the fitness value of termination
depends on the application scenario. Thus, the termination condition applied in different
tasks was varied accordingly.
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Table 4. Effect of termination value on the convergence speed of GA.

Termination Fitness
Value

Average Number of
Generation

Average Execution
Time (s)

Simple GA
1

52 4.41
Proposed hybrid GA 24 2.06

Simple GA
5

18 1.68
Proposed hybrid GA 10 0.72

Simple GA
10

7 0.63
Proposed hybrid GA 4 0.35

In calculating the inverse kinematics, two points were assigned as the target points
of the index finger and thumb. Different algorithms were performed to solve the inverse
kinematics, and the best fitness values were recorded for the graphical representation to
analyze the performance of each algorithm. Table 5 lists the conditions and results for
three illustrated cases. The illustrated case #1 and case #2 were those with reachable target
points, whereas an unreachable target point was assigned in the illustrated case #3. In the
illustrated case #1, the target fingertip point sets were (50, 0, 130) and (75, 30, 125) for the
index finger and the thumb, respectively. As shown in Figure 6a, the two target points were
in the workspace of two fingers and they passed the feasibility check. Additionally, the
corresponding angle set of the wrist (θw1, θw2) = (12◦, 15◦) was provided to the hybrid
GA as the initial condition. By using the solutions computed by the GA, the tips of the
index finger and the thumb reached their target points. The simple GA and IGA were
also performed to solve the same IK problem as a comparison. As shown in Figure 6b, the
proposed hybrid GA was observed to have a lower fitness value than the other GAs in
the beginning. The proposed hybrid GA was found to obtain the solution for the inverse
kinematic problem faster than the other GAs with fewer generations.

Table 5. Results of illustrated cases performed by the proposed algorithm.

Case Target Points
(mm) Feasibility Feedforward

Wrist Angle
Solutions of the Proposed

Algorithm

Error Sum of
Two Fingers

(mm)

#1

Index finger:
(50, 0, 130)

Thumb:
(75, 30, 125)

Pass θw1 : 12
◦

θw2 : −15
◦

θw1 14.4981◦

0.5795

θw2 −5.0000◦

θt1 14.9817◦

θt2 −8.4396◦

θt3 −21.9780◦

θi1 −45.0001◦

θi2 55.2968◦

θi3 45.0110◦

#2

Index finger:
(45, 52, 172)

Thumb:
(81, 60, 111)

Pass θw1 : 0
◦

θw2 : 0
◦

θw1 0.2515◦

0.5875

θw2 −4.9987◦

θt1 15.0110◦

θt2 −19.6923◦

θt3 −8.8571◦

θi1 −19.6374◦

θi2 14.5494◦

θi3 41.4726◦

#3

Index finger:
(50, 0, 300)

Thumb:
(60, 50, 125)

Drop out Not
Computed Not Computed Not

Computed
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In the illustrated case #3, the target fingertip point sets were (50, 0, 300) and (60,
50, 125) for the index finger and thumb, respectively. As shown in Figure 7a, the target
point of the index finger was obviously out of the workspace. In this circumstance, as
shown in Figure 7b, the proposed hybrid GA immediately ceased the inappropriate motion
command to prevent unnecessary computation. However, the other GAs still conducted
computation until meeting certain termination criteria. As a result, Figure 7b shows high
fitness values of the simple GA and IGA, while the proposed hybrid GA successfully
stopped computing. The hybrid GA, thus, was successful in avoiding the unnecessary
computation for a given inappropriate IK request.
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Results in Table 6 demonstrate the distribution of population by exemplary gener-
ations during the evolution process in the illustrated case #1 for the simple GA and the
proposed hybrid GA. The blue dots represent all the thumbs’ tips of the population in one
generation, whereas the red dots serve as those of the index finger. The corresponding cross
marks stand for the target point or the answer of the IK problem. In the initial generation,
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the population distribution of the simple GA was scattered more widely than that of the
proposed hybrid GA. Because of the feedforward wrist angle, the proposed hybrid GA
started with a smaller searching scope. When the generation increased, the proposed
hybrid GA had more chances to get close to the target points and, therefore, converged
faster than the simple GA.

To surpass the performance of the other GA, the workspace of two fingers plays an
important role in the proposed hybrid GA. Initially, the workspace analysis can provide
the nearest distance between the target point and the workspace. As a result, the feasibility
of the IK request can be checked accordingly. Second, the workspace was pre-established
and stored in the order of the wrist angle. Consequently, the workspace analysis gives a
feedforward wrist angle to the hybrid GA. The hybrid GA then reduces the variable range
of the wrist angle to offer a superior initial condition. In general, the proposed hybrid GA
has better convergence than the other GA and can effectively terminate the computation
when an improper IK request is given.

Table 6. Comparison of population distribution at different generations in the illustrated case #1.

Proposed Hybrid GA Simple GA

Generation No. 1
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Table 6. Cont.

Proposed Hybrid GA Simple GA

Generation No. 20
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In addition to the interaction between a thumb and an index finger, the proposed
algorithm can solve the IK problem for a thumb and the other three fingers. Numerical
simulations were performed to solve the IK under all three scenarios, namely, the IK
of the thumb and middle finger, the IK of the thumb and ring finger, and the IK of the
thumb and little finger. Similarly, the same procedures were adopted in these IK problems,
including building the database of the workspace, checking the feasibility, and providing
the feedforward wrist angle. Figure 8 shows a schematic illustration of the IK solutions
for the thumb and the other three fingers. The diagram of the best fitness value over
generations indicates that the proposed algorithm outperformed the simple GA and the
immigration GA. Through these cases, it was confirmed that the proposed algorithm is
capable of solving the IK problem of a multi-fingered robotic hand.
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6. Conclusions

In this study, a workspace-analysis-based immigration genetic algorithm was pre-
sented to solve the inverse kinematics of a multi-fingered hand. In the offline stage,
the kinematic model of fingers is built to perform forward kinematics, from which the
workspace database of the fingers can be established using the Monte Carlo method. In
the online stage, an estimation function is used to check the feasibility of the target point
whenever an IK request is assigned. If the target point is within the workspace, the esti-
mation function then provides an optimal set of wrist angles for the IGA to compute the
solution; contrarily, the estimation function terminates further calculation. This estimation
function enables the searching range to be narrowed to the neighborhood of the solution.
Therefore, the distribution of the population is less widespread, and the IGA can have
better initial condition and greater convergence. Numerical simulations were conducted
to verify the performance of the proposed hybrid GA. For the unreachable targets, the
estimation function could efficiently abort the entire computation. For the reachable targets,
the proposed algorithm took fewer iterations to obtain accurate results than the simple GA
and the IGA. As a whole, this study presented an algorithm to solve the multi-fingered
inverse kinematics, which enables the tips of the index finger and the thumb to move to
their target points concurrently; likewise, the same approach can be applied to the other
fingers. The results can also be applied to the IK problem of a dual-arm robot that has
degree of freedoms in the waist. The proposed method is believed to have the potential to
be employed in many industrial robots.
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