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Featured Application: This article presents an application of dynamic segmentation for physical
activity recognition using machine learning techniques.

Abstract: Data segmentation is an essential process in activity recognition when using machine
learning techniques. Previous studies on physical activity recognition have mostly relied on the
sliding window approach for segmentation. However, choosing a fixed window size for multiple
activities with different durations may affect recognition accuracy, especially when the activities
belong to the same category (i.e., dynamic or static). This paper presents and verifies a new method
for dynamic segmentation of physical activities performed during the rehabilitation of individuals
with spinal cord injuries. To adaptively segment the raw data, signal characteristics are analyzed
to determine the suitable type of boundaries. Then, the algorithm identifies the time boundaries to
represent the start- and endpoints of each activity. To verify the method and build a predictive model,
an experiment was conducted in which data were collected using a single wrist-worn accelerometer
sensor. The experimental results were compared with the sliding window approach, indicating
that the proposed method outperformed the sliding window approach in terms of overall accuracy,
which exceeded 5%, as well as model robustness. The results also demonstrated efficient physical
activity segmentation using the proposed method, resulting in high classification performance for all
activities considered.

Keywords: activity recognition; machine learning; wearable sensors; spinal cord injury; telerehabilitation

1. Introduction

Individuals with spinal cord injuries (SCI) who rely on wheelchairs typically experi-
ence associated symptoms such as obesity and low muscular strength. These symptoms
may eventually lead to secondary complications, including diabetes and cardiovascular
diseases [1,2]. Rehabilitation processes, such as in-home strength exercises, play an essen-
tial role in avoiding such symptoms and redeveloping the motor skills that are needed
to perform daily activities and promote quality of life [3,4]. Currently, therapists rely on
patient surveys to measure their adherence to these activities. However, studies indicate
wide variability between self-reported and actually performed physical activity, which can
undermine rehabilitation progress [5]. Nevertheless, with rapid technological innovation,
physical activity recognition systems are emerging as a more reliable way to detect these
activities [6–9].

Based on the approach used to collect data, activity recognition can be broadly clas-
sified into two approaches: the vision-based and sensor-based approaches. Although
the vision-based approach is information-rich, it often suffers from ethical and privacy
concerns, especially in healthcare applications when dealing with patients. By contrast,
the devices used in the sensor-based approach, including wearable sensors, can operate
with limited cost and power, and they have no restrictions in terms of the surrounding
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environment or the location where activities must be performed. As a result, activity
recognition systems commonly adopt the sensor-based approach [10].

Several studies have been undertaken to investigate the impact of different sensor
positions on overall recognition accuracy. These studies indicate that sensor position should
be determined mainly based on the type of activity under study. Forms of locomotion,
including walking and running, as well as static activities, such as standing and sitting,
can be recognized with an accuracy of between 83% to 95% using lower-limb segments
(hip, thigh, and ankle) as the sensor positions. To improve accuracy when recognizing
upper-limb activities, sensors are placed on the wrist and upper arm [11]. Within this
context, the study in [12] considered different positions, such as hip, belt, wrist, upper arm,
ankle, and thigh, to recognize 20 types of activities, including both upper- and lower-limb
activities. The results showed high accuracy when combining different positions. However,
the study also demonstrated a slight performance decrease when using only the thighs and
wrists. In addition to the impact of sensor placement on accuracy, user preferences should
be considered to gain acceptance. To address this problem in the design of wearables, a
meta-analysis was undertaken in [13]. The study concluded that people prefer wearing
sensors on their wrist, followed by the trunk, belt, ankle, and, finally, armpit.

Activity recognition systems have a wide variety of applications, including rehabilita-
tion and physical therapy. These systems allow monitoring of patients and the identification
of exercises being performed [14]. In this regard, Pernek et al. [15] proposed a monitoring
system consisting of a network of wearable accelerometers and a smartphone to recognize
the intensity of specific physical activities (e.g., strength exercises). The system used two
Support Vector Machine (SVM) layers to detect the type of activity being performed and
determine its intensity. The study demonstrated that the hierarchical algorithm achieved
an accuracy of approximately 85% in recognizing a set of upper-body activities. The study
in [16] presented a methodology to recognize three fundamental arm movements using two
different classifiers: Linear Discriminant Analysis (LDA) and SVM. The overall average
accuracy was 88% using data collected from accelerometers and 83% using gyroscope
data. With the same objective, Panwar et al. [10] designed a model to recognize three
physical activities of the human forearm, relying on data collected from a single wrist-worn
accelerometer. Lin et al. [17] proposed a model for recognizing the physical activities
performed to rehabilitate frozen shoulder. Based on wireless sensor networks (WSN), the
model could recognize six physical activities with an accuracy ranging from 85 to 95%. The
study showed the applicability of using these types of models to recognize the rehabilitation
exercises that are ubiquitous in healthcare self-management. In [18], Cai et al. developed
an upper-limb robotic device to rehabilitate stroke patients. The system works by initially
recognizing the activity performed by the healthy side of the patient and then provides
mirror therapy to the affected side. The method used surface electromyography (sEMG)
signals to train and test the model, and SVM was applied to classify the activities. To
provide stroke survivors with feedback to maintain a correct posture during rehabilitation,
Zambrana et al. [7] proposed a hierarchical approach using interrail sensors to monitor arm
movements. This approach consisted of two levels: the first level distinguishes between
movements and non-movements of the arm, while the second level determines whether
the movement was purposeful.

Similar to other pattern recognition problems, continuous raw data should be divided
into smaller fragments before proceeding to feature extraction and other following oper-
ations. The selection and application of an efficient segmentation method substantially
influence the classification process, which directly results in accurate activity recogni-
tion [19]. The sliding window is the most widely used approach and, to date, it is still
considered the best available approach [19–21]. In this method, continuous data obtained
from sensors are segmented into windows of either static or dynamic sizes based on time
intervals. For the former, two different algorithms are available: fixed-size non-overlapping
sliding window and fixed-size overlapping sliding window. The first algorithm is con-
sidered a simple segmentation process, where the number of windows can be calculated
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exactly since no overlap exists. The second algorithm includes data overlap between two
consecutive windows, where the percentage overlap can be referred to as the window shift.
Since different activities have different periods of motion, the size of the window depends
on the type of activity that is evaluated [22]. However, determining the effective window
size is considered a critical issue. A short window size may split an activity’s signal into two
or more consecutive windows, whereas a long window size may combine signals for more
than one activity. Ultimately, these cases may affect the accuracy of activity classification
because information is lost or noise is introduced into the signal, respectively [23,24].

In dynamic sliding windows, data are segmented into different window sizes accord-
ing to specific features. One of the challenges is to optimize different window sizes while
considering activities with both short and long duration. Numerous studies have sought
to resolve the limitation of the sliding window approach. Feda et al. [22] investigated
the impact of using different window sizes on the accuracy of recognizing activities with
different durations, reporting that a 1.5-second window size may represent the best trade-
off. Other researchers have proposed adaptive window size techniques. In this context,
Santos et al. [25] used entropy feedback to adjust the window size and time continuously,
thereby increasing classification accuracy. Nevertheless, the algorithm is computationally
complex since shorter time shifts increase the rate of classifications per second. In [24], Noor
et al. presented a segmentation technique based on adjusting the window size according to
the probability of the signal. Initially, the approach specifies a small window size suitable
for splitting static and dynamic activities. In turn, this size expands dynamically when
a transitional activity is encountered, which stems from its longer duration. Similarly,
using cluster analysis for period extraction, [21] proposed a technique to differentiate
between basic and transitional activities during segmentation. Sheng et al. [26] designed an
adaptive time window by using pitch extraction algorithms to divide the data into periodic
and non-periodic activities. The study in [27] designed and implemented a segmentation
method based on the sliding window autocorrelation technique and the Gaussian model.
Using a dataset consisting of readings from an accelerometer embedded in a smartphone,
the method successfully divided the data into distinct subsets of activities. Based on a
change detection algorithm, an activity segmentation method was presented in [19]. To
identify stationary, dynamic, and transitional activities, starting window positions were
dynamically detected.

The objective of this research is to propose a novel signal segmentation method for
physical activity recognition that can enhance classification performance. Unlike previous
studies, this method is concerned with the segmentation of physical activities that belong
to the same category (i.e., dynamic activities). To achieve this objective, an experiment was
conducted to verify and compare the proposed method with the sliding window approach.
The comparison demonstrates the effectiveness of our method, particularly in terms of
enhancing recognition accuracy.

The remainder of this paper is organized as follows: Section 2 presents the set of
physical activities applied during the rehabilitation of SCI patients; Section 3 offers an
overview of the system; Section 4 describes the proposed segmentation method; Section 5
demonstrates the experimental setup; Sections 6 and 7 present and discuss the results,
respectively; and finally, Section 8 concludes the paper.

2. Physical Activity

Unlike stroke and other neurological conditions, SCI affects patients’ lower limbs. In
rare cases, SCI patients may suffer from complete paralysis based on the degree and location
of their injury. The focus of this work is on the former type of SCI, where individuals
need rehabilitation to avoid having associated symptoms, such as low muscular strength.
Rehabilitation through physical activity is also essential for developing upper-limb motor
skills, which enable patients to perform daily activities and promote quality of life [3,4].

Whenever the aim is to strengthen the upper limbs, the body parts of focus are the
elbows and shoulders [28–30]. The main activities required to strengthen the shoulder
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muscles are flexion, abduction, extension, internal rotation (IR), and external rotation (ER).
In addition, the main activities applied to strengthen the elbow’s major muscles are elbow
flexion (EF) and elbow extension (EE) [28]. An illustration of these activities is given in
Figure 1.
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Figure 1. Physical activities used to rehabilitate spinal cord injuries (SCI) patients: (a) Shoulder flexion; (b) Shoulder
abduction; (c) Internal rotation; (d) External rotation; (e) Extension; (f) Elbow flexion; (g) Elbow extension [28].

3. System Overview

A wireless sensor was used (Shimmer Research, Dublin, Ireland), each consisting
of a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. Due to
the efficiency of accelerometers in activity recognition, the dataset used in this research
was collected using a single tri-axial accelerometer [31–33]. It is a sensing device used to
measure acceleration in three orthogonal directions simultaneously. However, gyroscope
and magnetometer were excluded since prior studies indicate that accelerometers provide
higher overall accuracy [16]. In addition, the ferromagnetic materials that are commonly
available in domestic environments can affect magnetometers. The sensor was configured
to collect acceleration data with a sampling frequency of 30 Hz (range ± 2 g), which has
been shown to be sufficient for recognizing similar activities [30,31]. In addition, a previous
study demonstrated that the type and intensity of human activities can be recognized using
signals with a sampling rate equal to 10 Hz [34].

Sensors are placed on the wrist and upper arm when recognizing upper-limb activities,
both of which were examined in this research. However, due to the type of motion being
recognized, certain activities, such as EE, EF, and IR, lack upper-arm movements. This
meant that the sensor placed on the upper arm could not detect any motion. Accordingly,
the wrist was chosen as the sensor position.

In terms of axis orientation, the Y-axis was in parallel with the wrist, pointing toward
the fingers and across the X-axis. In addition, the Z-axis pointed away from the backside of
the wrist, as shown in Figure 2.
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4. Proposed Method

Since physical activities are performed sequentially rather than concurrently, a clear
activity pattern can be identified by observing the acceleration signal. Figure 3a shows the
raw data collected from a tri-axial accelerometer during 10 repetitions of abduction, where
each part enclosed within the dotted rectangle represents a single repetition.
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For all seven activities, each peak along the Y-axis corresponds to a single activity,
except for IR and extension, where two consecutive peaks represent the starting and ending
points of the activity. Figure 3b,c shows 10 repetitions of IR and extension, respectively,
where all data points enclosed within the dotted rectangles belong to a single repetition.
The underlying reason for this difference is the movement direction of the activity and the
hand position while moving.

The proposed segmentation method consisted of three main steps. The first step
involved the selection of peaks in the Y-axis acceleration signal since it best represents the
start and end of all types of activities under study when applying the algorithm. Peaks
were selected based on a threshold and a distance, which represent the minimum value of a
peak and the minimum distance between peaks, respectively. The second step was to select
valleys using a second threshold that represented the highest value of a valley. Finally,
the signal’s characteristics were analyzed for each peak to identify suitable segmentation
boundaries. The method is explained in more detail in the rest of this section.

4.1. Selection of Peaks

Peaks, which represent the local maximum values in the Y-axis acceleration signal,
were first discerned. To avoid including false-positive peaks, as illustrated in Figure 4a,
a threshold value was used. To be detected, a peak must be equal to or greater than
Threshold 1. This can be calculated by separately averaging the peaks in the learning
dataset of each of the seven physical activities and, in turn, choosing the minimum value
among them as follows:

Threshold 1 = min (avgmax (PA1), avgmax (PA2), . . . ., avgmax (PAn)) (1)

where avg denotes the average, max is the local maximum in the processed axis (i.e.,
Y-axis), PA denotes physical activity, and n refers to the number of physical activities to be
classified. The identified peaks after applying the threshold are shown in Figure 4b.
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Moreover, to avoid detecting more than one peak within the data points that represent
a single activity, as shown in Figure 4a, a minimum distance between peaks was assigned.
This value can be obtained by calculating the average duration needed to perform the
shortest activity as follows:

Distance = min (avgduration (PA1), avgduration (PA2), . . . ., avgduration (PAn)) (2)
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4.2. Selection of Valleys

In addition to the peaks obtained from the first step, the method required the iden-
tification of valleys (i.e., local minimum values) in the Y-axis acceleration signal. In this
process, a second threshold was used to avoid detecting false-positive valleys. A valley
was chosen when it was less than or equal to Threshold 2. It can be obtained by averaging
the values of true-positive valleys in the learning dataset and, in turn, repeating the process
for each type of activity that consists of a single peak (i.e., in this research, abduction,
flexion, EE, EF, and ER). The maximum average was assigned as the threshold using the
following equation:

Threshold 2 = maximum (avgmin (PA1), avgmin (PA2), . . . ., avgmin (PAm)) (3)

where min denotes the local maximum in the processed axis (i.e., Y-axis) and m is the
number of physical activities consisting of a single peak in each repetition.

4.3. Determining Segment Boundaries

In dynamic activity segmentation, it was necessary to determine the segment time
boundaries to obtain a successful partition among different activities [27]. In the proposed
algorithm, there were two types of boundaries for the activities based on the number of
peaks in each activity. The first type was the peak boundaries, which was used when a
single activity contained two peaks (as in the case of IR and extension). In this type, as the
name suggests, these peaks were regarded as the boundaries of the segment. The second
type was the valley boundaries, which was applied when an activity consisted of only one
peak. In this type, the two valleys that directly preceded and followed each peak were
identified to represent the start- and endpoints of the segment, respectively. Therefore, the
length of a segment changed dynamically according to the duration of the corresponding
activity. To determine the suitable type of boundaries for the segmentation, the algorithm
checked the signal characteristics of each identified peak, as illustrated in Figure 5.
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Peak boundaries were chosen if the value of Y-axis was smaller than the value of
Z-axis at peaki and peaki+1, as shown in Figure 6a. Moreover, the algorithm checked the
signal’s characteristics between every two consecutive peaks. If there was no intersection
between Y-axis and X-axis along these peaks, as illustrated in Figure 6b, peak boundaries
were also applied. Otherwise, if an intersection existed at any point between the peak and
the valley that directly follows the peak, as shown in Figure 6c–g, valley boundaries were
used. The pseudocode that describes how to segment the acceleration signal of physical
activities adaptively is shown in Algorithm 1. The input values to Dynamic Segmentation
are represented in line 2, and the output value is represented in line 5. The input of the
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algorithm is a set of tri-axial accelerometer data S, which is divided into multiple segments.
The “for” loop in lines 9–28 represents the process of determining the type of boundaries
in all peaks except the last one. The “if” and “else if” statements in lines 10–14 and 15–23,
respectively, examine the signal’s characteristics in each peak and divide the signal using
peak or valley boundaries. Lines 28–36 repeat the process for the last peak using only
valley boundaries.

Algorithm 1 Dynamic Segmentation

1: Input:
2: S: a set of tri-axial accelerometer data
3: Output:
4: A set of segments: Seg = {seg1, seg2, . . . ., segn}
5: peaks = indices of all peaks in Y-axis using Threshold1 and Distance
6: valleys = indices of all valleys in Y-axis using Threshold2
7: p = total number of peaks
8: v = total number of valleys
9: for i = 0 to p-2 do
10: if Y-axis value is smaller than Z-axis value at peak(i) and peak(i+1)
11: OR no intersection between X-axis and Y-axis from peak(i) to peak(i+1) then
12: for h = peaks (i) to peaks (i+1) do
13: Add S(h) to Segi
14: end for
15: else if intersection exists between X-axis and Y-axis at any point from peak(i) to next valley

then
16: for k = 1 to v-1 do
17: if valleys (k) is the valley that directly follows peaks (i)
18: AND valleys (k-1) is the valley that directly precedes peaks (i) then
19: For h = valleys (k-1) to valleys (k) do
20: Add S(h) to Segi
21: end for
22: end if
23: end for
24: else
25: i = i+1
26: end if
27: end for
28: for k = 1 to v-1 do
29: if valleys (k) is the valley that directly follows peaks (p-1)
30: AND valleys (k-1) is the valley that directly precedes peaks (p-1)
31: AND intersection exists between X-axis and Y-axis from peaks(p-1) to valleys (k) then
32: for h = valleys (k-1) to valleys (k) do
33: Add S(h) to Segp-1
34: end for
35: end if
36: end for
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5. Experimental Setup

An experiment was performed to evaluate and compare the results of the proposed
method. This section describes the overall process and experimental details.

5.1. Data Acquisition

This section describes the demographics of the participants. It also offers an overview
of the protocol used to collect data and perform the physical activities.

5.1.1. Participants

In the experiment, 10 healthy individuals (3 male, 7 female) aged between 25 and
50 years were recruited to perform the activities. Before the experiment, all participants
signed an informed consent form that explained the protocol and procedure.
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5.1.2. Activity Session

Before starting the session, participants were given practical advice and instructions
for the correct execution of the exercises. Finally, before each activity, a short demonstration
video was shown as a reminder for more optimal performance.

Each participant was asked to execute 10 repetitions of all activities, resulting in a total
of 700 repetitions. Furthermore, they were asked to separate each group of the same activity
with approximately 10 s, thereby marking the start of each new group of repetitions.

5.2. Data Preprocessing

The raw data acquired from wearable sensors, such as accelerometers, are prone to
noise and error. Hence, preprocessing is an essential step to obtain the most representative
format of physical activities that is suitable for predictive modeling [35,36]. In this research,
preprocessing was implemented in two steps:

• Smoothing

A moving average filter (MAF) was applied to smoothen the data and remove high-
frequency noise introduced due to physical effects [24]. This process, which is equivalent
to lowpass filtering, is important to ensure that small perturbations are insignificant to
the model.

An important aspect of the MAF relates to the problem of how to choose the optimal
length. This is a key consideration because different values can affect recognition perfor-
mance. In this research, different values were tested, which led to the discovery that a
length of 10 produced smoother data without losing key information.

• Removal of Undesired Data (Cleaning)

Since the participants were asked to separate each group of activity repetitions with
approximately 10 s, this meant that part of the collected data corresponded to a time when
no activity was undertaken. These parts were removed manually. It is worth noting that
this step was done only for the learning dataset, whereas patients in the real-world were
not given such directions. In addition, since the proposed method is based on detecting
the peaks and valleys, even the existence of such data will not affect the performance of
the algorithm.

5.3. Segmentation

To demonstrate the performance improvement of the proposed method on activity
recognition, two different segmentation methods were used for comparison purposes. The
first method was the commonly used fixed-size sliding window of length 2 s and 50%
overlap, which provided the highest recognition accuracy in [15]. This method was chosen
because their work involved some activities that were also considered in this research. The
second method was the proposed segmentation method. Figure 7 illustrates the result of
using both methods for segmenting the acceleration signal of EF.

5.4. Feature Extraction

To generate data that could be suitably fed into a machine learning algorithm, multiple
features were calculated from all the segments obtained using both methods. A diverse
set of features is available, including time/frequency-domain features as well as heuristic
features. For sensor-based human activity recognition, it is common to adopt time-domain
features due to their simplicity and effectiveness for activity recognition [15,37]. In this
work, only time-domain features were used since frequency-domain features have high
computation and memory requirements, which may be not applicable in low-power real-
time applications [38]. First, a magnitude (m) value was calculated using the signals (x,
y, and z) from the accelerometer (m =

√
x2 + y2 + z2). Furthermore, six time-domain

features were considered and extracted from raw data of the three axes (x, y, and z), as well
as (m). A list of the features used along with their definitions is presented in Table 1.
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Table 1. List of features used (notation: d ∈ (x, y, z, m); N is the number of data points; i is the index).

Name Definition

Minimum min(d) = lowest di, i = 1, 2, . . . , N
Maximum max(d) = highest di, i = 1, 2, . . . , N

Range range(d) = max(d) −min(d)
Mean mean(d) = 1

N ∑N
i=1 xi

Standard Deviation SD(d) =
√

1
N ∑N

i=1 (di −mean(d))2

Root Mean Square RMS(d) =
√

1
N (d2

1 + d2
2 + · · ·+ d2

N)

5.5. Model Training and Validation Strategies

Support vector machine (SVM) was used to train and test the classification model
due to its frequent use in previous physical activity studies [16,29,30]. Ten-fold cross-
validation was used to train the model, which means that data from nine subjects were
randomly divided into training and testing sets using 90 and 10% of the data, respectively.
The Waikato Environment for Knowledge Analysis (WEKA) toolkit was used in this
work. Using a personal computer with an Intel Core i5-2430M CPU (Toshiba International
Corporation, Texas, USA), the total time taken to build the model was 0.43 s.

Ten-fold cross-validation and leave-one-user-out (LOUO) were the evaluation pro-
tocols intensively used in the literature. Although 10-fold cross-validation is the most
accurate approach for model selection, LOUO performs better in terms of model robust-
ness, and it is recommended for human activity recognition [20]. In the latter protocol,
instead of randomly splitting data into evaluation and training sets, it selects data from
some subjects for training and data from the remaining for evaluation. As a result, the
protocol is considered robust to the overfitting problem since training, and testing data
never share samples belonging to the same subject [15]. Algorithm accuracy in this work
was evaluated using LOUO, which means that the algorithm was trained using data from
nine subjects and then evaluated on the remaining one. This process was repeated un-
til data from each subject were evaluated exactly once, and an average of performance
was obtained.
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6. Results

Various performance metrics have been used in prior works, including accuracy,
which refers to the ratio of correctly predicted observations to the total observations; recall,
which refers to the ratio of correctly predicted positive observations to all observations in
the actual class; precision, which is the ratio of correctly predicted positive observations to
the total predicted positive observations; and F-measure, which is a combination of the
precision and recall measures that are used to represent the detection result.

To evaluate the performance improvement of the proposed method, the experiment
was conducted in two phases. First, the abovementioned performance metrics were used to
determine the recognition performance using both segmentation methods: sliding window
and the proposed method. For comparison purposes, only values of similar activities,
as in [15], were presented. This study was chosen because it has the greatest number
of shared activities with the ones provided in this work (i.e., the shared activities are
abduction, flexion, and EF). In addition, it used the fixed-size sliding window protocol
for segmentation. In the second phase, for the purpose of determining the effectiveness
of the proposed method using the SVM classifier, other common classifiers, including J48,
K-Nearest Neighbors (KNN), and Naïve Bayes (NB), were used for comparison.

Table 2 reports the classification performance of the proposed method in comparison to
the fixed-size sliding window approach. It indicates that not only a performance improve-
ment in accuracy measures was obtained when using the proposed method but also the
values for precision, recall, and F-measure showed statistically significant improvements.

Table 2. Performance comparison using accuracy, recall, and precision measures (mean ± standard
deviation) between segmentation using the proposed method and fixed-size sliding window.

Accuracy Recall Precision F-Measure

Our method 96.67 ± 2.7% 96.67 ± 1.2% 96.97 ± 1.9% 96.82 ± 1.5%
Sliding Window 91.44 ± 5.9% 91.90 ± 3.9% 92.51 ± 4.5 % 92.21 ± 3.8%

Additionally, an evaluation of activity type recognition accuracy and prediction error
was undertaken for each of the three physical activities. As shown in Table 3, the algorithm
had the greatest difficulties when recognizing abduction and flexion. This was expected
because these two activities are similar, especially with regard to the starting and ending
points of the movement, as well as the range of motion. However, the algorithm still
achieved a recognition accuracy of 96% for these physical activities.

Table 3. Confusion matrix of activity recognition (in %). Rows represent actual exercise, whereas
columns show algorithm predictions (cells with value 0 are left blank).

Abduction EF Flexion

Abduction 96 1 3
EF 98 2

Flexion 4 96
EF: Elbow Flexion.

Figure 8 depicts the recall, precision, and F-measure values for each activity obtained
by the model using the SVM classifier. Both segmentation methods achieved high classi-
fication performance in recognizing EF, and the enhancement achieved by the proposed
method was small. However, the enhancement became increasingly large when recogniz-
ing more similar activities: abduction and flexion. The increase in recall when using the
proposed method was 5% in abduction and approximately 4% in flexion, while precision
increased by 5% and 7% in recognizing abduction and flexion, respectively. In addition,
our method increased the F-measure of abduction by 7% and flexion by 5%. These re-
sults show that the proposed method not only enhanced performance but also increased
model robustness.
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To investigate the effectiveness of the proposed method using the SVM classifier,
three common machine learning algorithms were further used for the comparison. Table 4
shows the performance of the proposed method and sliding window using NB, J48, and
KNN classifiers.

Table 4. Recognition accuracy of both segmentation methods using different classification algorithms.

SVM NB J48 KNN

Our method 96.67 ± 2.7% 91 ± 3.4% 95 ± 5.1% 95.65 ± 1.9%
Sliding Window 91.44 ± 5.9% 84.49 ± 3.9% 89.78 ± 5.4% 90.28 ± 5.4%

7. Discussion

In this study, we proposed and verified a machine learning-based method for physical
activity segmentation using wearable sensors. Our method enabled the algorithm to
classify specific types of physical activity with an accuracy reaching up to 96%. Overall
classification performance improved by approximately 5% compared to a commonly used
approach, namely the sliding window. Furthermore, the results in Table 2 clearly indicate
that the statistically significant improvement occurred not only in terms of accuracy but also
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in all performance measures used in this work. This enhancement reflects the effectiveness
and applicability of the method on continuous data collected from a single accelerometer.

The algorithm enabled the accurate classification of similar activities, such as abduc-
tion and flexion. In contrast, when using sliding window segmentation, the algorithm
frequently confused these activities and experienced difficulties in recognizing them. This
demonstrates that the impact of the correct segmentation of raw data is not only on perfor-
mance but also on model robustness.

Table 4 shows that the new segmentation method achieved a recognition rate of more
than 91% using four different ML classifiers, and SVM outperformed the others. This
is consistent with expectations because SVM is highly regularized and works effectively
with small datasets and few classes. Moreover, the results of this table emphasize the
effectiveness of the proposed method, which outperformed the sliding window method
across all four classifiers with an average of 5.5%.

The results clearly show that wearable sensors are a promising technology for mon-
itoring and performing automated rehabilitation assessments. Despite the performance
enhancement obtained using specific sensor types, affordability and usability are also im-
portant factors for determining their applicability. The study in [18] used sEMG electrodes
to recognize different activities performed by stroke patients. Although the results sug-
gested that sEMG signals provide good accuracy in upper-limb activities, attaching these
electrodes is a sensitive process that requires an expert. This type of sensor is impractical
for use in certain applications, including monitoring in-home rehabilitation, especially if
the set of activities must be repeated daily or multiple times during the day. Contrastingly,
the accelerometers used in this research are low-cost and easy-to-use sensors.

This work can be considered as a systematic approach to dynamic signal segmentation,
which could be applied to other types of physical activity. However, slight modifications
should be taken into account when needed. For the segmentation of a wider range of
activities, more signal characteristics might be needed. One possible solution is to exploit
statistical and time series analysis to detect the signal variation.

The new method presented in this paper overcomes the limitation of the sliding
window approach through the adaptive segmentation of physical activities. However, we
acknowledge that certain limitations are evident in our work. First, only an accelerometer
was used for physical activity recognition. Although studies have proven the effectiveness
and efficiency of accelerometers, additional types of sensors, such as gyroscopes and
magnetometers, may improve recognition performance. Second, this work focused on
the segmentation of physical activities applied during the rehabilitation of SCI patients.
Further research should be undertaken to study the effect of this method on other physical
activities. Third, the data were collected in a controlled environment. Future work might
consider collecting data from real scenarios in which participants perform activities at
home. Finally, the selection of a threshold value depends on the training data. In future
work, the threshold could be chosen with the ability to update periodically according to
the incoming signal.

In addition to the abovementioned future work, the impact of the method on the rest
of the activities will be investigated. In addition, frequency-domain features and additional
time-domain features will be identified to facilitate performance enhancement. Finally,
the method will be introduced into hospital-based rehabilitation sessions to examine the
performance on SCI individuals.

8. Conclusions

In physical activity recognition using machine learning algorithms, data segmentation
is an essential step that may influence accuracy. Nevertheless, studies mostly adopt the
sliding window technique and rely on the window size used in previous works. Although
this approach is considered simple, it might be ineffective, especially for activities with
different durations.
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This study proposed a novel segmentation method that can be applied to enhance
the recognition of physical activities performed in a rehabilitative context. To adaptively
segment the raw data, the algorithm identifies the time boundaries to represent the start-
and endpoints of each activity. Peak boundaries and valley boundaries are used depending
on the signal characteristics.

The proposed algorithm was also verified in this paper. The results, which were
generated using data from a single accelerometer located on the wrist, approved the
effectiveness and applicability of the method on continuous raw data. Moreover, adopting
the proposed method generally improved recognition performance, and the improvement
was more substantial for similar activities.
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29. Nas, K.; Yazmalar, L.; Şah, V.; Aydin, A.; Öneş, K. Rehabilitation of spinal cord injuries. World J. Orthop. 2015, 6, 8–16. [CrossRef]

[PubMed]
30. Côté, M.-P.; Murray, M.; Lemay, M.A. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success

and Failure. J. Neurotrauma 2017, 34, 1841–1857. [CrossRef] [PubMed]
31. Janidarmian, M.; Fekr, A.R.; Radecka, K.; Zilic, Z. A Comprehensive Analysis on Wearable Acceleration Sensors in Human

Activity Recognition. Sensors 2017, 17, 529. [CrossRef] [PubMed]
32. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks.

Appl. Soft Comput. 2018, 62, 915–922. [CrossRef]
33. Garciamasso, X.; Serra-Añó, P.; Gonzalez, L.M.; Ye-Lin, Y.; Prats-Boluda, G.; Garcia-Casado, J. Identifying physical activity type in

manual wheelchair users with spinal cord injury by means of accelerometers. Spinal Cord 2015, 53, 772–777. [CrossRef]
34. Siirtola, P.; Laurinen, P.; Roning, J.; Kinnunen, H. Efficient accelerometer-based swimming exercise tracking. In Proceedings of the

2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 11–15 April 2011; IEEE: New York,
NY, USA, 2011; pp. 156–161.

35. Han, S.; Meng, Z.; Omisore, O.; Akinyemi, T.; Yan, Y. Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy
Improvement—A Review. Micromachines 2020, 11, 1021. [CrossRef]
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