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Abstract: Remembering information is a fundamental aspect of cognition present in numerous natural
systems. It allows adaptation of the behavior as a function of previously encountered situations.
For instance, many living organisms use memory to recall if a given situation incurred a penalty or
a reward and rely on that information to avoid or reproduce that situation. In groups, memory is
commonly studied in the case where individual members are themselves capable of learning and a few
of them hold pieces of information that can be later retrieved for the benefits of the group. Here, we
investigate how a group may display memory when the individual members have reactive behaviors
and can not learn any information. The well known conditioning experiments of Pavlov illustrate how
single animals can memorize stimuli associated with a reward and later trigger a related behavioral
response even in the absence of reward. To study and demonstrate collective memory in artificial
systems, we get inspiration from the Pavlov experiments and propose a setup tailored for testing our
robotic swarm. We devised a novel behavior based on the fundamental process of aggregation with
which robots exhibit collective memory. We show that the group is capable of encoding, storing, and
retrieving information that is not present at the level of the individuals.

Keywords: collective memory; swarm robotics; swarm intelligence; adaptive complex systems

1. Introduction

The study and design of collective behaviors in the context of complex systems may
favor future developments in a multitude of applications. A relatively well known example
is swarm robotics, a field that focusses on the design and implementation of groups of
robots capable of taking advantage of their number to perform designated tasks. Desired
properties of these swarms include scalability, and increased robustness compared to
single robots [1,2]. Moreover, swarm robotics partly takes inspiration from collective
behaviors observed in biological systems and self-organized systems, with a focus on
decentralized implementations that use few behavioral rules [3,4] and favor local and
situated communication [5,6].

Another field that may strongly benefit from a better understanding of collective behav-
iors is synthetic biology, in which new steps are taken at a fast pace. Indeed, among other
possibilities, this field holds the promise of building biological machines, that is, robots
near the molecular scale, which opens up vast perspectives and possibilities [7,8]. In these
systems as well, the question of how to effectively coordinate large groups is crucial. By na-
ture, biological systems are effective at replicating material, for instance producing large
numbers of cells or other biological material, and their operating mechanisms can be rather
complex. However, increased complexity inevitably comes with a cost in terms of design,
building time, robustness, and required materials. It is therefore necessary to investigate
and build a repertoire of fundamental collective behaviors that may be reused, adapted,
and combined to design and implement such complex systems.
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In this paper, we focus on the cognitive capability of memorizing information in
groups. Memory is a common property that allows a system to adapt its behavior based on
its past experience. There are different ways to implement a collective memory, with the
most obvious one having all individuals retain the same information. This approach is
robust, but it involves large redundancy that implies more complexity at the individual
level. A variation of this approach that can reduce the implementation burden is to have
only a fraction of individuals retain all or fragments of information. Another approach
is stigmergy [9,10]: the group modifies its environment, adding marks that can later be
exploited. This is a sort of external memory which has been successfully exploited in Nature
(for instance, ants that deposit pheromones to maintain foraging paths), and much less in
artificial systems. Here, we propose a new mechanism to implement collective memory that
does not rely on individual memory nor on the modification of the environment. Instead,
the information is stored in the spatial configuration adopted by the group. To study and
demonstrate this collective behavior, we introduce an experiment based on Pavlov classical
conditioning that has been adapted for testing a robotic swarm.

The Pavlov classical conditioning experiment [11] is a simple and effective demonstra-
tion of how animals can learn to associate different stimuli. In its best known version (see
Figure 1), a dog is repeatedly presented food together with the sound of a bell, and it learns
to associate these two stimuli. After some training, the dog reacts to the sole bell sound and
starts to salivate even though it sees no food. The food is an unconditional stimulus (US)
that triggers salivation by anticipation, which is an unconditional response (UR) from the
dog. Initially, the dog salivates when presented food, and it does not display any particular
response when it hears the bell sound. Only after training has the dog learned to associate
the two stimuli, so that it may display a salivation response when hearing the bell sound,
which is thus referred to as the conditional stimulus (CS).
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Figure 1. Summary of the different phases of the Pavlov conditioning experiment with a dog. (A) Initially,
the dog is untrained and, when presented the conditional stimulus (CS, the bell ring), it shows no
reaction. When presented the unconditional stimulus (US, food), it starts to salivate by anticipation
(UR, the unconditional response). (B) In the training phase of the experiment, the dog is presented
food and at the same time it hears the bell ring (US + CS training). (C) In the testing phase, no food is
presented to the dog, but the bell ring alone triggers its salivation (CR, conditioned response). Hence,
with training, the dog learns to associate the two stimuli together and eventually reacts positively to
the bell ring even in the absence of food.

This experiment raises interest in studying memory in groups because it provides a
simple and straightforward method to demonstrate basic learning capabilities. The experi-
ment can be divided into two main phases: first, a training phase in which the subject of the
experiment learns to associate two different stimuli, that is, memorize simple information;
second, a testing phase in which the subject must recall the information and use it to
produce an adapted response.

In the following, we present the robots used, the experimental setup we devised,
and detail how we transposed the Pavlov conditioning experiment to groups of robots,
in order to test collective memory. A new collective behavior is introduced that can encode
information in the group and extract the information when needed. The specificity of this
behavior is that the group can display memory as a cognitive capability, although individual
members have a purely reactive behavior and do not memorize any information. We then
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report results of simulated experiments that demonstrate collective memory and finally we
discuss the future perspectives of this group behavior.

2. Experimental Setup
2.1. The Robots

In this experiment, we have simulated underwater autonomous robots, modeled after
the aFish (and its predecessor, the Jeff robot), which have been created respectively in the
subCULTron and CoCoRo EU projects [12,13]. These robots are able to detect target objects
using a camera or using other signals such as acoustics or modulated light. To remain in
a delimited area and not spread out in the open, the robots can rely on acoustic signals
from a beacon at the surface. Moreover, robots can perceive each other using LEDs that
produce light signals at short range (perceived in one meter range in daylight conditions).
Robots can also perceive a stimulus from an experimenter, using a dedicated acoustic signal.
Finally, the robots can navigate in three dimensions in the water body using three thrusters,
two at the back to provide forward motion and one near the front that provides lateral
motion. They can also regulate their underwater depth using a buoyancy system that
operates by moving a piston against a rubber membrane, thereby modifying the overall
volume of the submersed robot.

Figure 2 shows the robot that is simulated and summarizes the different sensors
and actuators that are relevant in this experiment. It would have been possible to con-
sider other robots to perform this experiment, for instance, wheeled robots moving in
two dimensions, with the ability to advertise themselves and perceive local neighbors,
and perceive additional stimuli in the environment such as a target object and signals from
an experimenter.

Light signals Acoustic signals
emitters & receivers emitter & receiver

_ Thrusters

Buoyancy system w

Figure 2. The aFish robot from the subCULTron project serves as a model for the simulated robots. It

measures about 50 cm long, and 20 em high. The main sensors and actuators used include thrusters
(forward and backward motion, lateral rotation) and a buoyancy system for navigation. An acoustic
transceiver is present for long range communication (<500 m) and modulated light transceivers
disposed around the body are used for short range communication and perception of other robots
(<0.5m). A camera oriented towards the bottom allows for detecting target objects. In the simulations,
the light transceivers are implemented with a perception cone to take into account range and aperture,
and visual occlusions are not considered.

2.2. The Setup

The setup is described in Figure 3. The simulated experiments take place inside a
circular pool (12.5 m diameter), with a surface beacon maintained in the center. The surface
beacon is used as an aggregation device that periodically emits acoustic signals. The robots
detect and use these signals to aggregate under the beacon to remain in range and stay
together. The beacon is perceived by robots in a range of 1.75 m. During the experiments,
different stimuli can be sent to the robots using acoustic messages. These stimuli are
perceived at once by all the robots. The unconditional stimulus (US) produces an uncondi-
tional response from the robots (UR), but the conditional stimulus is not a priori connected
to a specific response. Experiments are carried out with groups of 30 robots in total.
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Figure 3. The experimental setup in our simulations is a circular pool (12.5 m diameter), with a
beacon in its center that periodically emits acoustic messages and acts as an aggregation device to
maintain the robots together (1.75 m range). Conditional and unconditional stimuli can be presented
to the robots at any time, by triggering long-range acoustic signals.

2.3. The Learning and Testing Phases

The Pavlov experiment relies on two main stimuli, the unconditional stimulus (food)
that triggers an unconditional response (salivation by anticipation), and a conditional
stimulus (bell sound) which does not a priori elicit a specific reaction from the subject. In a
first training phase, the subject is presented the unconditional stimulus together with the
conditional stimulus. Later, in a testing phase, the subject is only presented the conditional
stimulus. When the subject has learned to associate the two stimuli together, it reacts to
the conditional stimulus and produces what is called a conditioned response. As a control,
in the absence of training, the conditional stimulus does not elicit the conditioned response.

The Pavlov experiment is rather straightforward to adapt to a group of robots, starting
by defining the specific stimuli that the robot can use. The unconditional stimulus is a
target (implemented here as an acoustic message) that robots are tasked and rewarded
to detect. When robots make a successful detection, they provide a positive response
and advertise the finding with their status LEDs, displaying the equivalent of the dog’s
salivation. The conditional stimulus (CS) is also an acoustic message that can be perceived
by all the robots at once when triggered. This stimulus has no specific reward associated.

Figure 4 shows the unfolding of a collective memory experiment with a group of robots.
The experiment starts with the initial state of the robots which are randomly scattered in the
pool. In the training phase, the robots are presented either the unconditional stimulus alone
or the unconditional and the conditional stimuli together. During that time, the robots
move with a random walk and may stop when they are in range of the central beacon, thus
aggregating together. In the testing phase, the robots are presented only the conditional
stimulus and their response is observed. The robots are expected to collectively respond
to this stimulus if they have learned to associate it with the unconditional stimulus. They
advertise their response using their status LEDs. If the conditional stimulus was not
presented jointly with the unconditional stimulus during the training phase, the robots are
expected to provide a negative response with their status LEDs.
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Figure 4. Timeline of an experiment, with four main situations represented. (A) In the initial condi-
tion, robots are randomly scattered in the pool. (B) In the training phase, the robots can be exposed
two different conditions, either the unconditional stimulus alone, or both the unconditional and the
conditional stimuli together. During this time, robots perform a random walk and aggregate under the
beacon, in a mixed or segregated configuration depending on the stimuli perceived. (C) In the testing
phase, once robots are aggregated, the conditional stimulus is triggered alone to test whether robots have
learned to associate it with the unconditional stimulus. Robots observe their immediate neighbors to
form an opinion about their local configuration. (D) To obtain a collective response, robots exchange
their opinions in a peer to peer manner and converge to a single opinion.

3. Robot’s Behavior
3.1. Encoding Information in the Collective Memory

The behavior of the robots is purely reactive [4] and does not require any memory to be
implemented in the individual robots. As previously hinted, we implement the memory of
the group in the spatial structure formed by the robots. In this experiment, there is only one
bit of information to encode, whether to associate two stimuli or not. We therefore selected
a simple method to produce two spatial configurations to be discriminated. The basic idea
is to divide the group in two teams, with red and yellow robots, for instance, and let the
memory bit be 0 when robots are in a mixed state, and be 1 when robots are in a segregated
state. In the mixed state, the aggregated robots are each having on average the same
number of red or yellow neighbors. In the segregated state, the aggregated robots have
on average a majority of neighbors sharing the same color as itself. The coloring is a fixed
characteristic attached to each robot, and never changes (e.g., the robots are painted red or
yellow). Figure 5 summarizes the two spatial configurations that are used to encode the
single bit collective memory of the group.

Figure 5. The collective memory is encoded in the spatial structure, that is, the configuration adopted
by the group of robots. To this end, the robots are divided in two teams that differ only by their color,
red or yellow. On the left, the robots are aggregated in a mixed state, in which on average each robot
has the same number of red and yellow neighbors. On the right, the robots are in a segregated state
and they each have on average a majority of neighbors with the same color as themselves.

To encode information in the collective memory, we rely on the fundamental behavioral
component of aggregation, inspired from the behavior of cockroaches that gather under dark
shelters [14]. We define aggregation as the physical gathering of individuals in a cluster, such
that individuals in the aggregate can perceive or detect their immediate neighbors. As re-
ported in [14] and adapted to robot swarms in subsequent literature [15-17], the collective
behavior of aggregation can be implemented by having robots move randomly in their
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environment and stop when they encounter one or more other robots when in the range
of an aggregating device (here, the central beacon, which is equivalent to the shelter in
experiments involving cockroaches). Moreover, robots have a probability Q to leave and
resume motion that depends on the local density of robots D = X/x, with X the number
of robots under the shelter and « the carrying capacity of the shelter. This departure rule
prevents small clusters of two or three robots to be as stable as larger ones, hence leading
the largest aggregate to eventually attract all the robots.

We extend this behavior to achieve mixed or segregated aggregation states with a
group of robots made of two teams, red and yellow. When robots are aggregated, they
periodically make a decision with probability Q whether to remain static or to resume
motion based on the number of local neighbors, discriminating the red ones X,.; and the
yellow ones X, j;4,, Or more generally, the neighbors sharing the same color Xs, and the
ones with opposite color Xp. If robots indistinctively take into account all neighbors, red
or yellow, the group eventually aggregates in a mixed configuration because they have on
average the same probability to encounter either colored robots. However, if robots only
take into account local neighbors that have the same color as themselves, they will tend to
remain with similarly colored robots, and leave robots of opposite color, eventually leading
to a segregated configuration.

The probability Q of robots to leave an aggregate and resume motion is calculated
as follows:

_ 0
Q(a) ) +p(X5+,(“XO)2

where parameters 6 and p determine the minimum and maximum probabilities of leav-
ing the beacon area, and « is a parameter that represents the affinity with which robots
aggregate with other robots of the opposite color. Moreover, we used parameter x as a
normalization coefficient. Based on preliminary tests, we have fixed 8 = 0.9, p = 100,
and x = 40 (note that robots only estimate neighbors by counting perceived signals, there-
fore x # 30). In this paper, the robots are blind (x = 0) to opposite colored robots when the
unconditional and conditional stimuli are perceived together, leading to the encoding of
information via a segregated spatial configuration. Otherwise, robots do not discriminate
their neighbors by color (¢ = 1) and aggregate in a mixed spatial configuration. In the
following, we use the notation Pse = Q(0) to indicate that robots aggregate in a segregated
configuration, and Py,;; = Q(1) to indicate that robots aggregate in a mixed configuration.

To study all the possible configurations adopted by the robots with this behavior, we
have analyzed a mean-field mathematical model that we hereby introduce. As a means to
describe the mixed and segregated spatial configurations under a single beacon, we have
divided the aggregation zone (the range of the beacon) into two areas, named a; and a,.
When robots are mixed, they indifferently occupy any location under the beacon, but, when
they are segregated, they spatially divide into two teams that each occupy an area on its
own. As a consequence, the model uses four variables (Xs1, Xp,1, Xs2, and Xp ) that
describe populations of robots by their type (S for self, and O for opposite), and an area in
which they reside (1 or 2). To limit any potential confusion, we would like to stress that
the division of the aggregation zone in two areas is a pure abstraction introduced to allow
expressing and studying the robots” behaviour with a mathematical model.

One can write the rates at which robots of type S and O move from area 4, to area a; as:

M

Dsoy1 = o711
. 1+ p(Xsp +aXop)?
0
Pors1 = n @)

1+ p(aXso + Xo2)*
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where v = ( represents the saturation of area a; that is the degree to which it

1_ Xs,1+Xo,1>
K

can still accept new robots. Moreover, in the mathematical model, x represents the carrying
capacity of each area, so that the whole aggregation zone can contain at most 2« robots.
This formulation only considers robots’ exchanges between the two areas: individuals can
instantly move from one to the other, and the mathematical description of their transit
outside the aggregation zone and back to it is neglected.

We can therefore describe the dynamics of the robots in the aggregation zone as a sum

of incoming and outgoing flows using the following differential equations:

e
dtrl = —Xs51 Ps10+ Xsp Psrs1
i —X0,1 - Po1-2+ Xop - Po2s1, 3)

with the dynamics of robots in area a; that can, by the conservation law, be deduced
as dXgy = —dXg; and dXpy = —dXp 1. This mean field model is further detailed and
investigated in [18].

3.2. Decoding Information from the Collective Memory

To produce a collective response to the conditional stimulus, the group of robots need
to evaluate its collective memory and to determine whether it has associated the conditional
stimulus with the unconditional one. In practice, this means that the group must find out
whether it is aggregated in a mixed or segregated state. Intuitively, each robot can count
the number of surrounding neighbors of red and yellow colors. In a segregated state, one
might expect all the neighbors to be of the same color, while, in a mixed state, it would be
expected to have a balanced share of both colors. We name R the recall coefficient, which is
an estimate of the group’ spatial configuration made by a single robot based on its local
observations. It is formalized as:

X5 —Xo

— 25720 4
Xs+ Xo @

with Xg the number of signals received from neighbors with the same color, and Xp the
number of signals received from neighbors with the opposite color. When Xs and Xg
tend to the same value as is the case in a mixed configuration, the recall coefficient R
tends to 0. In a segregated configuration, Xs >> Xp, Xp tends to 0, and R tends to 1.
In reality, robots may not always have a clear cut local perception, where all the neighbors
belong to the same team, or with a perfectly balanced number of red and yellow neighbors.
Therefore, in the following section, we investigate R, the ideal threshold at which a robot
should consider it is in a segregated configuration in order to minimize false positives or
false negatives.

We investigated the perception of signals emitted by neighboring robots in mixed
and segregated configurations by monitoring the perception of all the aggregated robots
in repeated trials (1000 replications, 30 robots, for a total of 60,000 observations analyzed).
In Figure 6, we report the average perception observed in mixed aggregates, while, in
Figure 7, we report the average perception in segregated aggregates. Data clearly indi-
cate that mixed aggregates yield a very similar distribution of signals from both teams,
and segregated aggregates yield a significantly higher count of signals from the self team.
Hence, the two configurations can in principle be discriminated using the recall coefficient
R. However, the reliability of this procedure depends on the number of observations and
increases them. Individual robots estimate the aggregation configuration by measuring
local signals within a limited time window, thereby reducing the number of observed
signals and increasing the impact of noise and randomness on the recall coefficient.

To produce an homogeneous collective response from the group, we can strongly
reduce the impact of noise and random events by using a decision-making phase, also
called a quorum, in which each individual shares and updates its opinion in a peer to peer
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fashion so as to converge to a common decision, a consensus that averages out the various
random fluctuations of individual estimates. The quorum phase is implemented by having
the aggregated robots periodically advertise their opinion, with a rate of 3.3 signals per
seconds on average. They also observe signals from their neighbors during time windows
of 10 s and update their own opinion to the majority (including their own). This simple
algorithm and derivatives are well studied in the literature [19-22], and it has been shown
to converge to a coherent decision in the group, in favor of the opinion that is initially
most represented.

Team [ seif Other

o
W

o
(N]

Proportion

o
[

.IIIII..--______
0.0

1 3 5 7 9 11131517 19 21 23 25 27 29
Xs and Xq (# of signals perceived)

Figure 6. Average perception of a robot observing its neighbors in a mixed aggregate. The number
of signals perceived from robots of each team (X for self team and X for opposite team) is highly
symmetrical and shows that most frequent observations involve fewer neighbors’ signals. The range
and aperture of sensors (field of view) limit the detection of all present neighbors at once. Signals are
accumulated in time windows of 10 s, a total of 60,000 observations are represented.
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Figure 7. Average perception of a robot observing its neighbors in a segregated aggregate, which is
used to encode learned information in the collective memory. The number of signals perceived by a

robot from the opposite team (X)) is significantly lower than from its own self team (Xg). Signals are
accumulated in time windows of 10 s, a total of 60,000 observations are represented.

3.3. Behavior Implemented

The behavior executed by the robots is purely reactive, and depends only on the
signals perceived at present time. We describe this behavior in Figure 8 with a decision
tree that is the best suited in this case, as it clearly shows the decision path taken to
execute particular subroutines. On a technical side note, it should be noted that the specific
implementation on these robots requires short windows of time during which signals are
counted. This is due to the fact that robots identify their neighbors or exchange opinions
when doing a quorum using modulated light messages. These messages are corrupted if
they overlap spatially and temporally. To reduce the chances of message collisions, robots
are not constantly emitting, but rather they use a probability to emit. Therefore, robots
must count signals during a small time window to perceive local neighbors. This aspect is
specific to our robot design, and would not be relevant if, for instance, robots were painted
into two different colors and were using cameras to detect their neighbors. More broadly,
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any type of robot capable of aggregation and discriminating two types of neighbors would
be suited for this experiment.

Signal perceived °
O v N
C] Behavior
Y, N
Y N Y N

Stop Stop Stop
[(Pseg)] [(Pmix)] [Q“”“”ﬂ [(Pmix)J

Figure 8. Decision tree describing the reactive behavior implemented by the robots. In circles are

the signals that can be perceived by the robot, with B the beacon signal of the aggregating device,
US the unconditional stimulus, and CS the conditional stimulus (B, US, and CS are implemented in
simulation as acoustic messages that can be perceived by all robots at once). In rounded rectangles
are the subroutines that can be executed, with mainly the random walk, the quorum, and the decision
to stop any motion with a probability that can either depend on any (self or opposite team) nearby
robots (P,;y) or on the nearby robots of the same team only (Pseg). This behavior does not require
memory at the individual level as it is only based on the execution of different subroutines controlled
by the current perception of the robots.

4. Results

We start by analyzing the mean field model as defined by Equation (3) and their steady-
states (see [18] for details). The model possesses four types of solutions:

* ahomogeneous solution (referred to in the sequel as a mixed configuration), in which
all four variables are equal (Xs1 = Xp1 = Xs2 = X02),

¢ four semi-homogeneous solutions defined by Xs; = Xp ; (referred to in the sequel
as a default mixed configuration) and by Xgs1 = X (referred to in the sequel as a
segregation configuration),

e and four inhomogeneous solutions defined by x1 # x» # y1 # 2.

Figure 9A shows a bifurcation diagram of the steady solutions of Equation (3) with
fixed x and p values and varying «. As noticed, for increasing values of «, the system
switches from a segregated configuration, where each team Xg and X aggregates re-
spectively in one area, to a mixed configuration, where robots of each team are equally
distributed either in both areas, or all in a single area (default mixed configuration).

As a side note, the default mixed configuration may seem to be an artifact of the
mathematical model since the division of the aggregation zone in two areas is abstract and
only serves the purpose of mathematical description. However, this particular solution can
be interpreted as the result of competition between different early aggregates. If, by chance,
robots from the opposite team encounter and start forming an aggregate earlier than robots
of the same team, they offer an alternative aggregation site that may eventually capture
all the robots of each team, thereby producing a mixed configuration by default. Notice
that this state may only be observed when a > 0, which is not the case when robots are
segregating in our experiments.

Figure 9B shows a state diagram against parameters x and « for a particular value
of p where all the available states are available. In particular, we see that increasing the
carrying capacity « (the size of the aggregation zone) favors the mixed configurations for
large values of a. For small values of « and x, the segregated configuration dominates.
Finally, when alpha is small but « is large, we observe a simultaneous coexistence of mixed
and segregated configurations.

All in all, the model depicted by Equation (3) shows non-trivial features like different
aggregation configurations and coexistence between them. Of special interest is the segre-
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gated configuration that is not induced by any agonistic behaviors but only by the finite
size of aggregation zone, the individuals of the two teams interacting the same way.

m Mixed Mixed by default mmm Segregated mmm Mixed or segregated

@ A2.8

N
o

Area carrying capacity (k
N
D

Figure 9. (A) Bifurcation diagram of the steady states of Xg; of model (3) as a function of parameter
« for k = 2.1; (B) state diagram of the type of existing solutions as a function of a and «. Other
parameter values are p = 56.25.

In the following, we focus on results obtained with individual based simulations.
Figure 10 shows snapshots of simulated experiments. In the training phase, two different
conditions are tested: the robots are either exposed to the unconditional and the conditional
stimuli together, or the unconditional stimulus alone. During that phase, we observe that
robots exposed to the unconditional stimulus only form a single cluster under the central
beacon and aggregate in a mixed state, disregarding the color of their neighbors. When
the two stimuli are produced, the robots successfully aggregate in a segregated spatial
configuration. In the subsequent testing phase, the robots are exposed to the conditional
stimulus alone and their response is tested. Robots first make an initial opinion about
the local configuration and then proceed to make a collective decision to reach quorum
using peer to peer opinion exchange and update. At that time, robots display their current
opinion using black or white color, for mixed or segregated configuration, respectively. We
observe that, depending on their past experience, the group of robots reacts positively to the
stimulus only if it was previously perceived in association with the unconditional stimulus.

In a first series of experiments, we investigate R, the threshold applied to the recall
coefficient R, at which a robot considers it, is in a segregated configuration from a local
point of view. More precisely, this threshold is used by the robots to decide whether
the recall coefficient based on their local perception indicates segregation. Robots first
calculate the coefficient and use the threshold to form their initial opinion, and then enter
the quorum phase to elect the majority opinion. If this threshold is set too high, robots
will only consider whether they are segregated when they don’t perceive members of the
opposite team. However, because segregated teams are gathered at the same beacon, they
are in close proximity and have the chance to sometimes perceive each other. On the other
hand, if the threshold is set too low, a slight imbalance in the number of neighbors from
each team may lead a robot to decide it is in a segregated configuration. Thus, the threshold
Rt must be adjusted to minimize the risk of false positives where the group mistakenly
perceives its configuration as segregated, and false negatives where the group fails to detect
a segregated configuration.

In Figure 11, we report the impact of Rt on the robots” quorum answer, depending
on the mixed or segregated configuration of the group. Robots aggregate under the
beacon either in a mixed configuration (with a probability to remain stopped Q,;), or in
a segregated configuration (Qseg). After a period of 2500 s, sufficient to have the whole
group aggregated in the range of the beacon, the robots form an initial opinion about the
group configuration and entered a quorum phase. The quorum phase also lasts 2500 s to
ensure that the whole group has converged to a common decision. We explored Rt values
from 0 to 0.6 with a 0.05 increment. For each tested value, we performed 1000 simulations
in both conditions, with mixed or segregated aggregation. We measured the proportion of
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experiments that ended with an incorrect decision of the group, which are false positives in
simulations where the aggregated robots are in a mixed configuration, and false negatives
where the robots are in a segregated configuration. We observe an optimal value when
Rt = 0.3 that minimizes the risks of error when evaluating the configuration, mixed or
segregated, adopted by the group.

US+CS signal
= segregated

Initial condition Aggregation Quorum Decision

Figure 10. Snapshots of the simulated experiments, relating the different phases of the experiments
and the resulting behavior of the robots. In the initial condition, the 30 robots start randomly scattered
in the pool. Two different conditions are tested: in the upper part of the figure, only the unconditional
stimulus (US) is presented to the robots. In the lower part of the figure, the unconditional stimulus
(US) and the conditional stimulus (CS) are presented together as acoustic messages that are perceived
at once by all robots. During the training phase, the robots aggregate in the range of the beacon,
adopting different spatial configurations depending on the perceived stimuli. During the testing
phase, each robot forms an initial opinion that is advertised using white and black colors from their
status LEDs. They then carry out a quorum after which the whole group has converged to a collective
decision. In these snapshots, when the robots are exposed to the US and CS stimuli during the
training phase, they afterwards respond positively to the CS stimulus alone, indicating that they
have learned the association. When only the US stimulus is presented during the training phase,
the robots produce a negative response to the CS stimulus in the testing phase, indicating that they
did not learn the association.

With the optimized setting of the Rt parameter, we have run two sets of experiments
with 1000 simulations involving 30 robots for each condition. The results reported in
Figure 12 show data obtained from the testing phase of the experiments, after robots
are aggregated and right when the conditional stimulus alone is produced. We observe
that the quorum process is always strongly converging, starting with about 70% of the
robots sharing the same opinion about their current spatial configuration, and ending
with the whole group electing the majority opinion. While the group always ends up
making a collective decision, it may nevertheless collectively produce an incorrect response.
For instance, in the first condition, the robots are exposed to only the unconditional stimulus
during the training phase. They are thus expected to not learn any association between
the two stimuli and, when exposed to the conditional stimulus in the testing phase, they
should produce a negative response and not recall information. We observe that, in the first
condition, robots have not memorized the association in 79% of the trials, but produce a
mistaken response 21% of the time. In the second condition, in which robots are expected to
learn the association, we observe a successful recall of the information in 82% of the trials,
and 18% in which robots do not recall the information. Results are statistically significant
(binomial test, p-value < 0.001).
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Figure 11. Impact of the recall threshold R on the retrieval of information in the collective memory.

Proportion of trials with error

The quorum responses of the robots in two different configurations, mixed or segregated aggregates,
are tested for different values of Rt. For each configuration and each tested value, 1000 simulations
are performed. When Rt is low, robots will have higher chances to consider that their configuration
is segregated based on their local observations. Therefore, lower Rt values increase the risk of false
positives when robots are in mixed configuration. Conversely, when Ry is high, robots have higher
chances to detect a mixed configuration. Higher Rt values increase the risk of false negatives in
which the group fails to detect a segregated configuration. In addition, 95% confidence intervals are
displayed around the proportion of errors in the experiments.
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Figure 12. Outcome of the testing phase in the Pavlov experiment (1 = 1000 trials, group of 30 robots).
Left plots show the dynamics of the quorum and how the majority opinion is gradually propagating
until the whole group has made a collective decision (median +95% CI). Right plots show the
response advertised by the group resulting from the quorum and in response to the conditional
stimulus (CS) in the testing phase. The results show that, when the group is trained with the
unconditional stimulus (US), it does not recall information in the testing phase in 79% of the trials.
However, when the group is trained with the unconditional and the conditional stimuli together, it
learns to associate the two stimuli and recalls the association during the testing phase, providing a
positive response in 82% of the trials.
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5. Conclusions

We introduced a novel collective behavior that allows groups to memorize simple
information, although the individual members of the group do not use any memory.
Instead of relying on the individuals, the information is encoded and stored in the spatial
configuration of the group when it is aggregated.

The seminal Pavlov experiment was adapted to work with groups of robots, providing
a simple and straightforward method to demonstrate the collective cognitive capability
of memorizing information. We detailed a specific implementation of the behavior for a
swarm of underwater robots, including a method to produce two different types of robot
aggregates which represent a single bit of memory. This was achieved by dividing the
group in two colored teams that can cluster in a mixed or in a segregated configuration.
To put to use the information collectively stored, we introduced a local estimate, the recall
coefficient that allows each individual member to form an opinion about the state of the
collective memory. The whole group then processes all opinions with a quorum phase
in which we have shown that all the robots converge to a collective decision that follows
information stored in the collective memory. We have shown that the proposed behavior
successfully recalls information in 82% of our repeated experiments (n = 1000).

The results show that, with relatively simple agents and simple behavioral rules,
a group can have a memory of its own, independently of the internal state of its members.
This first experiment is rather simple and involves a single bit memory to learn to associate
two stimuli. There are several directions that may be considered to investigate how more
information may be stored: it would be interesting to introduce more teams, and also
multiple aggregation sites. Encoding more information may also be achieved with a larger
palette of spatial configurations, but this might in turn involve higher individual complexity
in order to create the configurations and to discriminate them effectively. Only with one
aggregate, two basic mixed and segregated states, and three teams may we encode up to 12
different configurations. Another point of potential improvement is the accuracy of storing
and recalling information. We suggest that mainly two aspects of the experiments can
play a large role: first, the quality of individual perception because it directly impacts the
ability of the robots to perceive their spatial configuration, and therefore what information
is stored. Second, randomness that is inherent in this work (in particular when robots move
using a random walk, and when they make a decision to remain stopped) will cause spatial
configurations themselves to be less accurately defined. The impact of random events may
strongly be reduced by working with larger group sizes. For instance, when segregated,
a smaller fraction of the teams will perceive both colors.

The collective behavior introduced in this paper may seem complicated for a task
that is routinely achieved by most of the electronic devices in existence. However, we
believe it bears significant interest in two cases: when the cost of implementing memory
in an individual is high, for instance in synthetic biology with molecular machines and
engineered bacteria, or in more elementary biochemical systems (to produce cognitive
capabilities such as habituation or solve the detour problem), and when studying the
behavior of groups with collective memory properties that may remain hidden when
examining the individual members separately.
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