
applied  
sciences

Article

On the Use of Structured Prior Models for Bayesian
Compressive Sensing of Modulated Signals

Yosra Marnissi 1,*, Yasmine Hawwari 1,2,† , Amadou Assoumane 1,† , Dany Abboud 1,†

and Mohamed El-Badaoui 1,3

����������
�������

Citation: Marnissi, Y.; Hawwari, Y.;

Assoumane, A.; Abboud, D.;

El-Badaoui, M. On the Use of

Structured Prior Models for Bayesian

Compressive Sensing of Modulated

Signals. Appl. Sci. 2021, 11, 2626.

https://doi.org/10.3390/app11062626

Academic Editor: Emmanuelle

Abisset-Chavanne

Received: 13 February 2021

Accepted: 11 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SAFRAN TECH, Groupe Safran, Rue des Jeunes Bois, 78772 Chateaufort, France;
yasmine.hawwari@insa-lyon.fr (Y.H.); amadou.assoumane@safrangroup.com (A.A.);
dany.abboud@safrangroup.com (D.A.); mohamed.elbadaoui@univ-st-etienne.fr (M.E.-B.)

2 Department of Mechanical Engineering, Institut National des Sciences Appliquées de Lyon (INSA Lyon),
University of Lyon, LVA, EA677, Villeurbanne Campus, 69621 Villeurbanne, France

3 Université Jean Monnet St-Etienne, University of Lyon, LASPI, EA3059, F-42023 Saint-Etienne, France
* Correspondence: marnissi.yosra@gmail.com
† These authors contributed equally to this work.

Abstract: The compressive sensing (CS) of mechanical signals is an emerging research topic for
remote condition monitoring. The signals generated by machines are mostly periodic due to the
rotating nature of its components. Often, these vibrations witness strong interactions among two or
multiple rotating sources, leading to modulation phenomena. This paper is specifically concerned
with the CS of this particular class of signals using a Bayesian approach. The main contribution
of this paper is to consider the particular spectral structure of these signals through two families
of hierarchical models. The first one adopts a block-sparse model that jointly estimates the sparse
coefficients at identical or symmetrical positions around the carrier frequencies. The second is a
spike-and-slab model where the spike component takes into account the symmetrical properties
of the support of non-zero-coefficients in the spectrum. The resulting posterior distribution is
approximated using a Gibbs sampler. Simulations show that considering the structure in the prior
model yields better noise shrinkage and better reconstruction of small side-bands. Application to
condition monitoring of a gearbox through CS of vibration signals highlights the good performance of
the proposed models in reconstructing the signal, offering an accurate fault detection with relatively
high compression rate.

Keywords: compression sensing; Bayesian model; modulated signals; structure; hierarchical models;
block-sparse; spectrum; gearbox; diagnosis

1. Introduction

The condition monitoring (CM) of machines consists in observing the trend of physical
quantities and identifying the health state of mechanical components in order to avoid
system failures. Most CM systems in the industrial field are based on the analysis of
the vibration signal, which is easy to acquire and provides complete information on the
condition of the machines. In modern industries, online CM systems use cables with
exorbitant costs and a huge footprint. CM systems that are based on wireless sensors,
known as remote CM, are a new alternative and they offer easy installation and low power
consumption [1]. However, remote CM based on the analysis of vibration signals has
limitations. Indeed, the vibration signals are acquired at a high sampling frequency. That
of gears, bearings, or reactor blades in aeronautics can reach tens of kilohertz, leading
to an enormous amount of data. The challenge for remote monitoring is managing the
transmission of these volumes of data.Therefore, there is a need to reduce the size of
the samples that are acquired while preserving the useful information. In this context,
an alternative to the sampling theory has recently emerged, which shows that data can
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be recovered from far fewer measurements than what the Shannon–Nyquist theorem
states. This new theory, coined compressive sensing (CS) introduced in [2,3], relies on the
sparsity or compressibility of data. This technique was applied in several fields, such as
the medical, communication, presence detection, electromagnetic radiation, and structural
health monitoring fields [4–9], respectively.

The theory of CS is a rising branch of signal processing, whose primary goal is to
achieve compression during the sensing procedure, and to reconstruct the signal using just
a small set of randomly acquired samples. Therefore, this theory concerns not only the
reconstruction (decompression) of the signal, but also its sensing. The CS approach uses
the sparse characteristic of the observation for the reconstruction process. It results in a
representation of the observation in a specific dictionary, which is the set of elementary
signals-or atoms-used to decompose the signal. The fundamental idea of the CS is that
the observation must be sparse (or compressible) enough in the corresponding dictionary
to reconstruct all important information. The choice of the dictionary that sparsifies the
observation is one of the basic problems in the CS approach [10]. The Fourier dictionary,
known as an orthogonal basis, is the most and probably the first used dictionary for
periodic signals. In fact, the spectrum of a multi-sine waveform can be represented by a
complex-weighted spike train. This means that sinusoidal components constructing the
signal of interest are sparse in the Fourier transform basis [11,12]. Here, it is useful to report
that this paper deals with the CS of smoothly modulated signals. These signals have a
well known structure in the Fourier domain. The Fourier spectrum of such a signal only
contains a family of harmonics (made up of carriers) around which sidebands appear. All
the rest of the spectrum is zero or not significant. Such a representation is well sparse and
offers an ideal basis for describing smoothly modulated signals. This is the reason why the
Fourier basis will be exploited in the rest of this paper.

The problem of CS reconstruction, in a particular dictionary, is a linear inverse prob-
lem that is described by an underdetermined system of equation [13]. Two categories of
approaches are used to solve the CS reconstruction problem. In the first category, the re-
construction problem is modeled as a minimization problem searching for the sparsest
signal that yields the observations. One popular sparsity promoting penalization function
is the `0 pseudo-norm. The latter corresponds to the number of non-zero coefficients in
the sparse domain. The solution to such an optimization problem is known to be com-
putationally intractable or NP-Hard, so it is more realistic to solve a computationally
tractable alternative. Greedy iterative methods attempt to find approximations to this
minimization problems [14] like matching pursuit [15], orthogonal matching pursuit [16],
and compressive sampling matching pursuit [17]. These algorithms are known to have
low computational complexity, but they have the drawback of providing a large recon-
struction error. Another attempt is based on convex optimization that relaxes the `0 loss
by using the `1-norm [18], then solving the problem using the basis pursuit [19], linear
programming [20], gradient projection sparse reconstruction [21], or shrinkage and se-
lection operators [22].The second category covers the Bayesian methods. Unlike the first
category, the Bayesian approaches treats unknown signal and model parameters as random
variables by assigning them probability distributions and provides an entire posterior
distribution [23,24].The latter can be used not only to compute point estimates, but also to
provide additional information, such as credible regions. It has also shown that Bayesian
methods outperform certain deterministic methods [25].

Other than the sparsity of the signal, structures on the sparse patterns of the signal have
also been used as an additional prior in numerous works, in which the signal is described
as a finite set of sparse vectors [26]. Those vectors share a common cluster (zero or non-zero
coefficients) in the chosen dictionary, and this allows for considering the signal as the
so-called block sparse structured signal [27]. The block sparse structure naturally arises for
example when dealing with multi-band signal [28,29], measurement of gene expression [30],
or magnetoencephalography signal [31]. Taking the block sparse structure in the signal into
account reduces the number of required compressed measurement samples and enhances
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the recovery efficiency [32].Taking advantage of the signal structure, Bayesian approaches
have been proposed to treat signals with block-sparse structure [33,34].

This paper concerns the block sparse Bayesian CS framework for the vibration data
recovery in the context of mechanical condition monitoring. Vibration-based Condition
monitoring is the process of observing the evolution of the vibrations that are generated by
a mechanical component, aiming to identify a significant change that can be correlated with
the health state of that component. The reason why CS is beneficial in such applications is
that vibration data analysis is usually performed while using a relatively high sampling
frequency. This results in a huge amount of data to be stored and transmitted. For example,
a health monitoring system installed on a Vestas V47 wind turbine measures 2 terabytes per
month [35] . In addition, such acquisition systems require high power consumption which
can significantly affect the autonomy of the condition monitoring system. The latter point
can be problematic in many applications, such as offshore wind turbines and airplanes
remote monitoring. The use of CS for industrial signals is quite recent. Some works have
been done on the condition monitoring of machine tools, structures [36,37], bearings, and
gears [38–40] using traditional CS reconstruction algorithms. Few works have attached
importance to the use of specific structures of the signal [39,41].

A gearbox is the monitored component addressed in this paper, being frequently used
in mechanical systems to transmit and convert speed and torque into different part of the
power transmission chain. The vibration signal that is generated by such a component
is well studied in the literature and known from a signal point of view [42]. The CS
of the gearbox vibration signal has already been addressed in previous works, since it
is sparse in Fourier domain, Wigner-Ville distribution [38], and wavelet domain [43].
However, none of these works exploit the natural sparse structure of those types of signals.
In fact, the resulting vibration manifests through amplitude and frequency modulations
of a periodic carrier. The periodicity of the carrier is the same as that of the meshing
phenomenon and it can be computed through a simple kinematic study. The occurrence
of a fault results in an increase in the modulation, whose period depends on the faulty
element. In the Fourier domain, the signal turns to a set of harmonics located at the
(known) meshing frequency and its integer multiple, with (unknown) sidebands (location)
around these harmonic representing the modulation effect. This natural structure allows
for describing the gearbox vibration signal by a set of sparse block structures. Indeed,
in the spectrum domain, the modulations are quasi-symmetrical and they appear at the
same location around the carrier. To our knowledge, there is no proposed models that take
the symmetrical structure of the spectrum of smoothly modulated signals into account.

This paper investigates the reconstruction of smoothly modulated signals in a Bayesian
framework by exploiting, for the first time, the structured support of their spectrum. This
paper is organized, as follows. Section 2 exposes the proposed method with an insight in the
vibration signals and their structures in spectrum domain. Section 3 presents an application
on both simulated and real gearbox vibration signal to evaluate the performance of the
proposed method. Section 4 concludes the paper.

2. Proposed Method

The main contribution of our work consists in designing prior models that take
advantage of not only the sparsity property, but also the structured form of the spectrum
of periodically modulated signals. We also propose a Gibbs sampler that offers an efficient
sampling of all parameters of the resulting model. In this section, we first formulate the
compressive sensing problem of periodically modulated signals. Subsequently, we propose
a structure of the support of the target spectrum through hierarchical models and their
relevance for gearbox signal analysis is addressed. Finally, we discuss the difficulties of the
sampling step of the model parameters and propose a solution for efficient sampling.
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2.1. Problem Formulation

This part starts with a brief review of the characteristics of gearbox signals and points
out at the relevance of non-regular sampling model. Next, the problem is formulated under
the Bayesian framework.

2.1.1. Technical Background

Gearboxes are perhaps the most known component where modulations phenomena
are encountered. The diagnosis of gears is well established in the literature. It is known
that the vibration of the gears is mainly generated by the contact between two teeth; which
leads to a periodic signal at the meshing period of the teeth. According to the Fourier series
theory, this translates into a set of harmonics associated with the meshing frequency and
its integer multiples [44].

Often, gears are subject to manufacturing errors, leading to (i) a non-uniform spacing
between the teeth and (ii) irregularities on the contact surface of the teeth. These create
local vibratory events during the contact phase. Because of the rotating motion of the gear,
each of these events will reproduce after each complete revolution of the same gear. These
(slower) periodic events interact with the (fast) meshing phenomenon through periodic
modulations. We distinguish two types of modulations, namely amplitude and phase
modulations, generated by different physical phenomena. Periodic amplitude modulations
are often due to an uneven distribution of the stiffness along the teeth surface. Phase
modulations are often the result of a change in the meshing period, defining the contact
duration between two meeting teeth, which can be physically associated with the change
in the spacing among the teeth. Amplitude and phase modulation are well modeled in the
literature and they are characterized in the spectral domain by lateral bands around the
meshing frequencies, as illustrated by Figure 1 [45].

Figure 1. Spectrum of a typical modulated signal.

In the presence of a defect, like a tooth spall or pittings, the vibratory event is stronger
and more impulsive, and so are the modulations, resulting in stronger and richer sidebands
around the meshing frequency and its harmonics. This explains why the information on the
gears health state is mainly contained in the modulations which are traditionally estimated
thanks to a demodulation around the meshing frequency [45]. It is worth noting that
periodic amplitude modulations result in a perfectly symmetrical sidebands, as opposed
to periodic phase modulations. However, amplitude modulations are more dominant in
gearbox vibration analysis; thus, still leading to an inner symmetry in the sidebands. This
property will be integrated in the proposed hierarchical model of the propose Bayesian
CS approach.

Eventually, it should be remembered that meshing phenomena are generally fast and
their frequency is often very high. For example, the meshing frequency of the driving gear
of an ARRIEL helicopter powerturbine gearbox would reach 16 kHz, which means that a
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sampling frequency of 200 kHz is needed to ’see’ the first five meshing harmonics. This
explains why a compressive sensing approach is needed to reduce the amount of data.

2.1.2. Observation Model

Let s be the target periodically modulated signal. As previously pointed out, these
signals manifest in the spectrum through a set of harmonic with sidebands, thus being
perfectly sparse in the Fourier domain. Therefore, the Discrete Fourier Transform (DFT) is
well suited to analyze these signals. Precisely, these harmonics are located at the carrier
frequency and its integer multiples, with sidebands equally spaced by the modulation
frequencies. The carrier frequency is assumed to be known a priori and it will be denoted by
fc, while the frequency locations of the modulating signal are unknown. This is commonly
the case when the modulating signal consists of many sinusoids of unknown frequencies,
such as in vibration-based condition monitoring of planetary gearboxes [46] or in complex
drive-trains. In some rare cases, the machine kinematics may be unknown, and so is the
meshing frequency. This particular case is out of the scope of the present paper. The
proposed method aims at estimating the target signal s ∈ RN from a non-regular sub-
sampled signal y ∈ RM with M << N (i.e., samples are not taken as equally spaced in
time). The considered problem can be formulated, as follows

y = HΦ−1x + ω (1)

where Φ is the normalized DFT ( φk,n = 1√
N

exp(−iπ(k − 1)n/N), so that Φ†Φ = IN ,

where Φ† denotes the conjugate transpose of matrix Φ and IN is the identity matrix of size
N) , H ∈ RM×N is the non-regular sampling matrix being formed with 0 and 1, x ∈ CN is
the vector of sparse unknown Fourier coefficients to be estimated (i.e., x = Œs), and ω is
an additive noise.

It should be mentioned that the sparsity hypothesis in the DFT basis may be altered
due the spectral leakage for a short or/and non-stationary observation. The spectral CS
problem under these conditions has been addressed in a large number of works (see [12]
for an example). In this paper, we assume that the signal to be recovered is sufficiently
long to ensure a good frequency precision and that the speed variations are sufficiently
small to be neglected.

2.1.3. Bayesian Framework

The CS problem is considered through a Bayesian framework. This will offer not only
an automatic recovery algorithm to compute point estimates, but also a full posterior distri-
bution to compute additional information, such as credible bars. Furthermore, Bayesian
approaches with sparsity-inducing priors offer a large flexibility via hierarchical models
and require less restrictions when compared to standard approaches involving `0 and `1

penalty functions [47].
In the sequel, the coefficients of ω are assumed to be i.i.d Gaussian variables of

unknown variance τ > 0. The observation distribution density is then given by

p(y|x, τ) = (2πτ)−
M
2 exp

(
−‖y−HΦ−1x‖2

2τ

)
(2)

We aim at estimating τ jointly with x. Hence, we assign a non-informative Jeffrey
prior for τ: p(τ) ∝ τ−1 [48].

The use of sparsity-favoring prior distributions is the core of Bayesian CS modeling.
In this paper, we particularly consider hierarchical models, as they exhibit large flexibility
to take the structures of sparse coefficients through latent variables into account. In this
paper, we will consider two families of models, namely continuous hierarchical models and
spike-and-slab models (see Appendix A, for a review of these families of models). In the
following, we will discuss their extensions to take the structure of the target spectrum into
account.
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2.2. Structured Spectrum of Periodically Modulated Signals

Actually, the spectrum of periodically modulated signals exhibits the following prop-
erties. First, only few coefficients around the carrier frequency and its integer multiple
harmonics are non-zero where the remaining coefficients can be considered as zero. Sec-
ond, the spectrum is quasi-symmetrical around the carrier frequency. Third, the position
of non-zero coefficients around the different harmonics of the carrier frequency remains
almost identical. Consequently, given that the carrier frequency fc is known, the target
spectrum can be modeled to be a block-sparse signal with partially-known active block
positions. In fact, the center location of active blocks is known and equal to the carrier
frequency, but the locations of non-zero coefficients inside the active block are unknown.

Let B be the number of carrier harmonics, i.e., the number of active groups. Each
active group b is centered on the harmonic b. fc. We further assume that active blocks are
not overlapping and are quasi-symmetrical, i.e., each active block b contains the same
number Q of coefficients on the left and the right side of b. fc. This also means that we
assume non-overlapping modulations, which is almost the case when the carrier frequency
is very large when compared to the fundamental modulations frequencies. We also denote,
by A, the union of all active B groups, then card(A) = B(2Q + 1). This means that we
assume, at most, B(2Q + 1) non-zero coefficients (B carrier harmonics and 2Q non-zero
coefficients around each carrier. It is worth noting that the number of non-zero coefficients
around each carrier is actually much lower than 2Q. Let Ā denote the set of the remaining
non-active coefficients, i.e., zero coefficients. In the following, for every b ∈ {1, . . . , B},
we denote, by x0,b, the coefficient at the frequency bin b. fc and, for every q ∈ {1, . . . , Q},
we denote, by x−q,b and xq,b, the qth coefficient at the left of b. fc and its symmetric with
respect to b. fc, respectively (see Figure 1). Note that each coefficient xq,b can be easily
obtained from x by applying a suitable sparse matrix Pq,b containing one appropriate line
of a permutation matrix i.e., xq,b = Pq,bx.

In this paper, we set that, for every k ∈ Ā, xk = 0. The following parts propose
a model for the coefficients in active blocks A that takes the structure of spectrum into
account.

2.3. Group Sparse Model for Modulated Signals
2.3.1. Related Works

One way to build a structured model is by jointly estimating the elements that are
assumed to share the same inherent structure. In particular, this is achieved in Block
Sparse Bayesian learning framework by modeling elements sharing the same group with
a multivariate Gaussian distribution [34]. The correlation within each block was also
encouraged in [49]. This model has been successfully applied to CS reconstruction of
bearing vibration signals [39]. The constructed model in the latter work takes advantage of
bearing signals spectrum structure, where non-zero coefficients tend to appear in small
groups, rather than isolated peaks.

2.3.2. Hierarchical Model

In our case, the target spectrum exhibits modulations around the carrier frequency
and its harmonics. Therefore, It is judicious to exploit the in-block quasi-symmetry of the
spectrum in each active block b by jointly estimating coefficients x−q,b and xq,b belonging
to symmetric frequency bins with respect to the bth harmonic of the carrier frequency b fc
(see Figure 1). In fact, if a non-zero coefficient is related to a modulating signal, then there
is a high probability that its symmetrical point with respect to the harmonic of the carrier
frequency in this block is also nonzero with a quasi-similar magnitude. In that respect, we
define the vector xq,b ∈ C2, where

∀b ∈ {1, . . . , B} ∀q ∈ {1, . . . , Q}, xq,b = [x−q,b, xq,b] (3)
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We further aim to exploit the similarities across active blocks. Our idea is to capture
such dependencies by jointly estimating the coefficients in the same position with respect
to the carrier harmonics. To do this, we stack the coefficients of all B groups at the same
position and their symmetrical points with respect to the carrier harmonics and then build
the following vectors of multi-block coefficients of size 2B

∀q ∈ {1, . . . , Q}, xq =
[
x>q,1, . . . , x>q,B

]>
(4)

where x>q,1 is the transpose of vector xq,1. We also denote, by x0, the vector of size B
containing the coefficients of the B carrier harmonics. The sparsity of the spectrum and the
dependencies between the Fourier coefficients are captured by assuming that (xq)16q6Q
are realizations of a heavy tailed multivariate distribution. We consider the class of scale
mixture of multivariate Gaussian (SMG)

∀q ∈ {1, . . . , Q}, xq ∼ CN
(
0, γqΣ

)
(5)

where CN , here, denotes the multivariate complex normal distribution (As the covariance
matrix is real-valued, (5) means that the real and imaginary parts of xq follow the Gaussian
distribution of zero mean and with covariance matrix τγqΣ), γq > 0 is the mixing parameter
following some mixing distribution and Σ = Diag(v)

⊗
I2 ∈ R2B×2B where

⊗
denotes

the Kronecker product, I2 the identity matrix of size 2 × 2, and v = [v1, . . . , vB]
> ∈

(R+)B. We further assume a Gaussian prior for the vector of carrier coefficients, i.e., x0 ∼
CN (0, τγ0Diag(v)), where γ0 > 0. It is noteworthy that, although we have considered a
diagonal covariance matrix, coefficients of xq are uncorrelated but still dependent. Note
that the block model (5), which is referred to as SMG-block, is a particular case of (A2)
for which the variance of the Gaussian depends on the position of the Fourier coefficient,
i.e., λk = vbγq. The variable vb acts as a global indicator of the overall magnitude of
harmonics in the active block b, while the local variable γq controls the sparsity inside the
blocks. In fact, if γq is too small, then the spectrum coefficients in the position q and those
in their symmetrical positions with respect to the carrier harmonics through the different
B active groups approach zero. Inversely, if γq is high, then all coefficients at positions q
and −q around the carrier harmonic in any active block b with non-zero vb, they are also
non-zero and then have a high probability to belong to modulations. It follows that the
sparsity inside the active blocks is ensured if almost γq are close to zero.

It is worth to note that model (5) promotes the structure of the spectrum through
the dependency that it introduces between coefficients magnitudes with respect to their
relative position to the carrier harmonics. One can interpret such dependency, as follows:
coefficients in the same or symmetrical positions relatively to their carrier frequency
contribute almost equally to the overall energy of the block where they lie. This is quite
different from the Spike-and-Slab model dependency we will introduce later.

2.3.3. Setting the Mixing Hyperparameters

Setting the global and local parameters in the block sparse model (5) is quite important.
In this paper, we propose the following hierarchical model for these parameters:

∀b ∈ {1, . . . , B}, vb ∼ IG(αb, βb)

∀q ∈ {0, . . . , Q}, √γq|φq ∼ C+(0,
√

φq),
√

φq ∼ C+(0, 1)

where IG(αb, βb) is the inverse Gamma prior with positive constant parameters αb and βb
and C+(0, e) denotes the half Cauchy distribution with location 0 and scale e. The intuition
for this choice is explained, as follows. First, the global variables vb adapts the underlying
sparsity in the active block: an appropriate small values of vb may lead to an over-shrinking
of the active coefficients especially those with small amplitudes. Thus, we preferred to
set its prior in such a way to avoid vanishing values of vb if active group b happens
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to be very sparse. This is motivated by our assumption of a known number of carrier
harmonics, i.e., in each active block, there exists at least one non-zero coefficient. Note
that, though, [48,50] recommend using the half Cauchy prior for both local and global
parameters to improve shrinking, we found, in our experiments, that the half Cauchy
prior for global parameters deteriorates the reconstruction of the small peaks as compared
to the Inverse Gamma. We think that the Inverse Gamma is a suitable choice for two
reasons: (1) its density vanishes in the origin that will artificially push away the values
of vb from zero, and (2) it is a conjugate density for the Gaussian distribution that will
facilitate the calculation afterwards. Second, unlike for the global scales, the local variables
γq are preferred to have vanishing values to appropriately model ultra-sparse signals. This
is ensured while using the half Cauchy prior that, in addition to its Cauchy-like tails, has
the merit when compared to the Inverse Gamma, of being non-zero at γq = 0. This allows
for the prior of xq to have an infinitely tall spike in the origin resulting on good shrinking
properties [51,52]. The hyperparameter φq offers another degree of freedom in the mixing
prior to γq. Third, the half-Cauchy prior does not bring additional difficulty in the posterior
inference as compared to Inverse Gamma using the trick of parameter expansion [48,53].
In fact, the above model can be equivalently written, as follows

∀b ∈ {1, . . . , B}, vb ∼ IG(αb, βb)

∀q ∈ {0, . . . , Q}, γq|ηq ∼ IG
(

1
2

,
1
ηq

)
, ηq|φq ∼ IG

(
1
2

,
1
φq

)
φq|ξq ∼ IG

(
1
2

,
1
ξq

)
, ξq ∼ IG

(
1
2

, 1
)

2.4. Structured Spike and Slab for Modulated Signals
2.4.1. Related Works

Spike and slab models that take the structure of the signals into account can be built
by imposing a dependency between the model parameters of elements sharing the same
cluster. For example, in [54], the authors exploit the statistical structure of the wavelet
coefficients of their data by setting the model parameters βk of each wavelet coefficient
according to the value of its parent in the wavelet tree, so that, if a parent coefficient
is zero, its children coefficients are likely to also be zero. In [55], the authors consider
relations between each coefficient of the signal and its neighbors by choosing βk from a
set a different candidates according to the number of non-zero neighboring coefficients,
yielding a high probability of a non-zero coefficients if all neighbors are non-zero. Such a
model is motivated by sparse signals, where non-zero elements tend to appear in groups
rather than isolated points. In [56,57], the authors take into account not only the spatial
structure, but also the time evolving structure though an hierarchical Gaussian process.
Such a model is convenient for temporal signals, where non-zero elements are clustered
in groups for each timestamp and that these groups can move and evolve in time. These
works are an inspiring point of our model.

In order to capture the structure form discussed above, the key idea is to set the model
parameters βk, zk, and λk in (A3), according to the position k of the Fourier coefficient xk in
the spectrum. In fact, if the coefficient xk ∈ A, then it is located at some position q in an
active block b, b ∈ {1, . . . , B}, q ∈ {−Q, . . . , Q}, and it follows that zk = zq,b and λk = λq,b.
Therefore, we can add constraints on model parameters for the block b to be either equal
or close for symmetrical positions q and −q in order to assure the quasi-symmetry of the
spectrum around a given carrier harmonic b. fc. The similarity of the support of non-zero
coefficients between actives blocks can be achieved while using additional constraints on
model parameters at the same or symmetrical positions, but belonging to different active
blocks b and b′.

In the following, we propose different spike-and-slab models that range from weak
to strong levels of prior symmetry assumptions and discuss their advantages and disad-
vantages. A spike-and-slab model is said to have a strong prior assumption on a given
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symmetrical structure if the latter is underlined through the binary selection variable zq,b,
while it has a weak prior assumption if it is only described through the prior probability
of zero coefficient βq,b and/or the slab component parameters. In that respect, we can say
that spike-and-slab models [54,55] are examples of models using a weak prior assump-
tion, as they only take the structure of the target signals into account sthrough the spike
probability βk.

It seems interesting to note that, dealing with the structure in the spike-and-slab model
is quite different from the continuous model (5), where the dependency is introduced in
terms of energy contribution through the mixing variables. Here, instead, we are interested
in the symmetrical properties of the support of non-zero coefficients in the spectrum rather
than their contribution in the overall spectrum energy. However, nothing prevents us
introducing energy constraints by setting the variance of the slab model well. This will
discussed in the following parts.

2.4.2. Strong Assumptions on In-Block Symmetry and Inter-Block Similarity

One would set zq,b = z−q,b in order to assure a perfect symmetry of the support around
a given carrier harmonic b. fc. In fact, if a non-zero coefficient is related to a modulating
signal, then there is a high probability that its symmetric with respect to the harmonic
of the carrier frequency in this block is also nonzero. Furthermore, in the ideal setting,
the modulations tend to have a similar magnitude, so that one can assume λq,b = λ−q,b. We
further aim to obtain a perfect similarity of the support across active blocks. One way to do
this may be is to set zq,b = zq,b′ , b′ ∈ {1, . . . , B}, so that the position of non-zero elements
remains always the same for all groups. Under these strong prior assumptions, we propose
the following spike-and-slab model (S&S):

∀q ∈ {1, . . . , Q}, xq ∼ (1− zq)δ0 + zqCN
(
0, Λq

)
(6)

zq ∼ B(φ(gq))

g ∼ N (m, R)

where B(.) stands for the Bernoulli distribution, Λq is the diagonal covariance matrix
formed by the slab variable λk of coefficients on position q, φ is the cumulative function
of the standard normal distribution ensuring a result on (0, 1) and the vector g is a Gaus-
sian latent variable with mean m and covariance matrix R. Regarding the latent variable,
the mean value m controls the expected degree of sparsity inside the block and the co-
variance matrix R expresses the prior correlation regarding the support. For example,
by choosing a covariance matrix R that has a non-zero positive correlation between two
neighboring positions q and q′, we promote slightly wide peaks in the spectrum (i.e., peaks
over more than one frequency bin in the spectrum). Such a latent variable for the prior
probability of the slab component is highly related to the latent Gaussian process in [56]. It
may be also used to promote group-sparse vector recovery, similarly to [55].

It can be noted that letting λq,b = γqvb, where γq and vb can be defined as in (5), coeffi-
cients at symmetrical and same positions in the spectrum are encouraged to have relatively
close contributions to the energy of the block where they lie. Therein, model (6) can be
seen as a multivariate Bernoulli-block sparse model that promotes perfectly symmetrical
spectrum. The advantage of (6) compared to (5) is that it offers a strong level of sparsity,
so that group of coefficients that do not belong to modulations are all set explicitly to be
exactly zero, rather than small values.

2.4.3. Strong Assumptions on In-Block Symmetry and Weak Assumption for
Inter-Block Similarity

The strong prior assumption on symmetry enable shrinking components that do not
have their symmetrical counterparts in the spectrum. This can be particularly beneficial,
when the measured signal is perturbed with external interfering components. However,
this may fail in case of model mismatch, e.g., non-symmetrical components due to the
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noise level or the transfer function. In particular, it is common to observe in real industrial
signals multiple modulations components around the first carrier harmonic, while their
number decreases for higher carrier harmonics.

To offer more flexibility to the model to deal with this problem, we can relax the strong
prior assumption regarding the perfect similarity of the support around all the carrier
harmonics by setting

∀b ∈ {1, . . . , B}∀q ∈ {1, . . . , Q}, xq,b ∼ (1− zq,b)δ0 + zq,bCN
(

0, Λq,b

)
(7)

zq,b ∼ B(φ(gq))

g ∼ N (m, R)

where Λq,b is the diagonal matrix formed by elements λk of the slab component lying in
position q and −q in the block b. In model (7), only the strong assumption regarding the
symmetry around each carrier harmonic is kept unchanged while the similarity assumption
of the support through the different blocks is relaxed by letting the spike variables in differ-
ent blocks take different values. This means that the support is forced to be perfectly similar
around the carrier harmonic, while it may slightly differ from one carrier harmonic to
another, depending on the observed signal. Equivalently, the prior assumption on perfectly
similar support is relaxed to give an additional degree of freedom to the observation in
order to provide additional information as to whether the support is exactly the same
or not.

While the relaxation of this hypothesis helps to handle the above problem of model
mismatch, it may not help to recover low magnitude sidebands in a different block, es-
pecially in high noise levels. This may be compensated by adding, for instance, energy
constraints. Similarly to (6), letting the slab component parameter λq,v = γqvb, we en-
force symmetrical coefficients in the same block to have close magnitudes. In that way,
the spectrum is forced to be perfectly quasi-symmetrical around the same carrier harmonic.
Furthermore, coefficients lying in the same or symmetrical position will have close energy
contribution in their relative active blocks if there are not zero.

2.4.4. Weak Assumptions on In-Block Symmetry and Inter-Block Similarity

Another concern about models (6) and (7) is that the perfect symmetry assumption
about the support around the carrier harmonics may be somehow altered due to the sensor
transfer function or phase modulations. In that case, we can further relax this assumption
by letting either the local mixing value in the slab component or the selection variable in the
spike component (or both of them) take different values. This yields the following model

∀b ∈ {1, . . . , B}∀q ∈ {1, . . . , Q}∀j ∈ {1,−1}
xj.q,b ∼ (1− zj.q,b)δ0 + zj.q,bCN (0, λj.q,b) (8)

zj.q,b ∼ B(φ(gq))

g ∼ N (m, R)

Model (8) is very close to the univariate model (A2); the only difference is that a
structured prior about the support is implicitly assumed through the latent variable g.
Similarly to (6) and (7), we can set λj.q,b = γqvb to further upgrade the symmetry of
the spectrum.

2.5. Practical Implementation

In this part, we only consider the structured spike-and-slab model that is defined in
(8) for λj.q,b = γqvb. The derivation of the Gibbs sampler for the other models is straight-
forward.
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Let Θ = ∪
06q6Q

{γq, ηq, φq, ξq} ∪
16b6B

{vb} ∪ {z, g} be the set of unknown parameters

and hyperparameters of the proposed models. Figure 2 shows the generative graph of the
proposed hierarchical model. The related joint prior distribution is given by

p(x, Θ) = p(x|Θ)p(Θ) (9)

where

p(Θ) =
Q

∏
q=0

p(γq|ηq)p(ηq|φq)p(φq|ξq)p(ξq)
B

∏
b=1

p(vb)p(z|g)p(g) (10)

The resulting joint density reads

p(x, Θ, τ, y) = p(x, Θ)p(x|τ)p(τ) (11)

Figure 2. Generative graph of the proposed hierarchical model: variables in boxes denote prior
hperparameters, green box and circle are additional parameters for spike-and-slab models, colored
boxes and circles denote known variables, and dashed circle denotes an auxiliary variable added to
the model for computational reason.

We propose designing a Gibbs sampler that is able to efficiently sample from the
conditional distribution of the signal x, τ and the set of hyperparameters Θ. The main
challenge with industrial signals is their large size due to the high sample rate of the
target signal. To give the reader an idea, a vibrating signal from a mechanical system that
resonates at 5 kHz needs at least 10,000 samples per second. We propose adopting the data
augmentation strategy in [58] in order to tackle the tractability of sampling in such a high
dimensional problem. Appendix B provides the derivation of conditional distributions and
details about sampling steps.

3. Experimental Results

In this section, experiments are first conducted on simulated signals to study the prop-
erties of the proposed models and the associated sampling algorithm. We also investigate,
in our analysis, the choice of the proposed models and their effect on the structure of the
reconstructed support set. Next, the potentiality of the proposed model is evaluated on
real vibration data.
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3.1. Simulated Example

The compression rate is one commonly used criterion to evaluate compressive sensing
recovery. It is defined by cr = N−M

N . The noise level is a second important criterion for
industrial vibrations signals. In fact, mechanical vibration signals are very often acquired
by accelerometers that are mounted on operating mechanical components. Because of the
harsh acquisition environment, mechanical signals are always contaminated with high
levels of random noise as well as external interference, resulting in small signal-to-noise
ratio. Therefore, it is important to investigate the ability of the reconstruction methods
to reduce the noise and interfering components while providing an accurate estimate
of the signal. For this reason, the simulation part is organized, as follows. First, we
consider different compression rates and different Gaussian noise levels, and we aim to
numerically investigate the contribution brought by the proposed structure models to the
reconstruction quality. This is performed by comparing these models with their univariate
versions. Finally, we study the shrinking properties for interfering components.

3.1.1. Test Signal

The test signal s is of length N = 50,000 and is simulated by multiplying two periodic
signals sc and sm (s = sc × sm). More specifically, we have used B = 3 carrier harmonics
with normalized fundamental frequency fc = 0.07 (the sampling frequency is fs = 5000 Hz)
and 6 modulations with normalized fundamental frequency fm = 0.005. We have set
Q = 1749, so that each active block has a frequency bandwidth of size fc. It is worth to note
that the test signal is expressed in the unit of the actual experimental signal (e.g., [m/s2]),
say [U].

The models that are followed in this paper can be applied to real applications in
different fields such as telecommunication, electricity, mechanics and optics where modu-
lated signals are frequently encountered. However, there is no versatile structured model.
For each application, the prior model should be well adapted to the intrinsic structure
shape of the considered spectrum (e.g., amplitude or phase modulations) and take possible
symmetry mismatch into account. For instance, in our experiments, we are particularly
interested in the modulated signals encountered in mechanical systems, such as Gearboxes.
Modulations appear in the spectrum mainly due to amplitude and phase modulations
(generated by transmission errors), leading to a quasi-symmetrical spectrum, as detailed
in Section 2.1.1. Furthermore, the energy of such a structure becomes stronger when a
damage appears in the gear pair. When the active blocs (composed each of a meshing
frequency harmonic and its modulations) are considered, one can notice that there is no
necessary rule concerning the energy of each bloc. Moreover, the transfer function between
the source (e.g., the gear pair) and the accelerometer (i.e., transducer measuring transverse
vibrations) alters the real signature that is produced by the source. All of these factors make
the vibration signal structure unpredictable and the reconstruction task quite challenging,
especially for small modulations in low signal-to-noise ratio (SNR) and high compression
rate conditions. Accordingly, the adapted constraints to test signal should be imposed to
approach the reality of vibration signals. In that respect, the test signal is set so as to have
quasi-symmetrical spectrum around the carrier frequencies (symmetrical support, but with
slightly different amplitude). Furthermore, the active blocks in the spectrum of the test
signal have different energy levels.

3.1.2. Considered Models

We compare the proposed structured models to their univariate versions in order
to study the contribution of the structured prior to the recovery performance. More
specifically, we consider:

• Continuous models: we compare the proposed group sparse model (5) (SMG-block)
with univariate models, namely the univariate Student’s t distribution (denoted by
t-univ) and the Horseshoe prior defined by (A2) for Inverse Gamma and Half Cauchy
mixing densities, respectively (denoted by H-univ).
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• Discrete models: we consider the univariate spike-slab that is defined in (A3), where λk
is assumed to follow an Inverse Gamma density and the (unknown) prior probability
of being non-zero is the same for all coefficients. We also compare six versions of
the proposed structured spike-and-slab, namely S&S-1A, S&S-1B, S&S-2A, S&S-2B,
S&S-3A, and S&S-3B, where the number i ∈ {1, 2, 3} denotes the prior assumption
(from weaker to stronger) given by models (6)–(8), respectively, and the letter B or A
denotes the use or not of additional prior assumption on energy contribution (i.e., λk
can take any value as for the univariate model for A and λk = γqvb for B).

Regarding the hyper-parameters of the structured Spike-and-Slab models, we have
set the mean m to correspond to a prior probability of being non-zero of 0.15 in order
to promote ultra-sparse spectrum. We further choose a Gaussian kernel to build the
covariance matrix R i.e., Ri,j = aR exp(−b−1

R |i− j|2) with aR = 4 and bR = 0.5, so that non-
zero correlations span over two neighboring bins. It is worth noting that most of structured
priors proposed for vibration monitoring deal with group sparse signals, where non-zero
coefficients appear to be clustered rather than isolated peaks. To our knowledge, there
is no proposed models that take the symmetrical structure of the spectrum of smoothly
modulated signals into account, so we are not able to undertake a comparison with other
structured models, as they are non-adapted to the structure of our signals.

3.1.3. Results

For the different models, we run the Gibbs algorithms for 6000 iterations, with the first
4000 iterations as burn-in. The last 2000 samples are used to empirically compute point
estimates (maximum a posteriori). We begin with comparing the performance of the differ-
ent models for different levels of Gaussian noise and compression rates. The noise level
is given in terms of SNR. The reconstruction quality is evaluated in terms of normalized

mean square error (NMSE) in Figure 3. The latter is defined as NMSE= ‖x−x̂‖2
2

‖x‖2
2

, in which x

is the real signal, x̂ is its estimate, and ‖.‖2 stands for the `2-norm.
A quick view of the NMSE plots shows that the proposed models (expect S&S-3A and

expect S&S-3B) always improve the reconstruction error as compared to their univariate
versions. We first discuss the results for continuous models then for spike-and-slab models
and, finally, we compare both of them.

In the one hand, for continuous models, H-univ and t-univ lead approximately to
the same reconstruction error, while the continuous SMG-block achieves almost the best
results among all models. The contribution of the support structure in continuous models
is mainly noticed for increasing noise levels. Using the SMG-block instead of H-univ and
t-univ helps to decrease the error for 5% for low noise levels until 20% for higher noise
levels. In order to evaluate the reconstruction error visually, we plot the reconstructed
spectra using the H-univ, t-univ, and SMG-block in Figure 4 and in Figure 5 for the lowest
noise level (13.97 dB) and a compression rate equal to 0.9 and for a high noise level (0dB)
and a compression rate equals 0.85, respectively

We can see that, for very low noise levels, all of the continuous models recover the
modulations, but the SMG-block better shrinks background noise, since we observe some
peaks that are related to noise in the reconstructed spectrum by the univariate models.
For the high noise level, although the NMSE values are close for continuous models, t-
univ and H-univ fail to reconstruct modulations with small amplitudes, while SMG-block
enhances the reconstruction of these small sidebands.
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Figure 3. Normalized mean square error (NMSE) (in logarithmic scale) for different Gaussian noise levels and compres-
sion rates.
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Figure 4. Reconstructed spectra using (from top to bottom) t-univ, H-univ, and scale mixture of multivariate Gaussian
(SMG)-block for compression rate 0.9 and noise level 13.97 dB .
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Figure 5. Reconstructed spectra using (from top to bottom) t-univ, H-univ, and SMG-block for compression rate 0.85 and
noise level 0 dB .
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On the other hand, the addition of structure in the spike-and-slab model spectacularly
improves the numerical results. In particular, we can see that S&S-1A and S&S-2A achieve a
good improvement in the reconstruction error when compared to the S&S-univ. This means
that adding the weak or strong assumption of the perfect symmetry of the support around
the carrier frequencies is very advantageous, especially for low noise levels. The contribu-
tion of the assumption on support symmetry is less noticed for high noise levels, where
the reconstitution error is only slightly improved when compared to S&S-univ. The use of
additional constraints on the energy for S&S-1B and S&S-2B contributes to further enhance
the results especially in high noise levels. In Figure 6, we display the reconstructed spectra
using the S&S-1A and S&S-1B for initial SNR 1.93 dB and a compression rate equals 0.7.
We can see that the addition of energy constraints in S&S-1B improves the recovering of
the small sidebands as scompared to S&S-1A.

Figure 6. Reconstructed spectra using S&S-1A (top) and S&S-1B (bottom) for noise level 1.93 dB and
compression rate 0.7.
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We can also note that a weak and strong assumption about support in-block symmetry
(with the weak assumption about the support inter-block similarity) yields close results.
The strong assumption does not bring additional improvement to the results. It is worth to
recall that this the test signal exhibits perfectly symmetrical support. However, this perfect
symmetry may sometimes be altered in real applications. Therein, we recommend adopting
the default choice of the weak assumption about the in-block symmetry of the support.

In contrast, S&S-3A and S&S-3B generally yield less good results when compared to
the other spike-and-slab models especially in low noise levels. This leads us to say that
the strong assumption on the similarity of the support for the different carrier harmonic is
not always advantageous. This can be explained by the relatively high shrinking power of
such model that may be good to promote perfectly similar support, but which may not be
adapted when modulations magnitudes are highly imbalanced.

When comparing these different families of models, the results show that the per-
formance of spike-and-slab models are poorer than those of continuous models in low to
medium noise levels. For example, the SMG-block yields better results than its discrete
version, namely S&S-1B, S&S-2B, and S&S-3B for the first four noise levels, while, for
medium and high noise levels (for SNR < 6 dB), theses discrete models achieve similar or
slightly better results than the SMG-block. We may explain this observation, as follows.
The assumption regarding the support increases the shrinking behavior of the model. This
is beneficial, as it allows for impressively reducing the background noise by shrinking the
unwanted components that do not have their symmetrical part in the spectrum, at the cost
of an over-shrinking of the small coefficients. In high noise levels, the reconstruction error
is mainly dominated by the shrinking effect of background noise. While, in low noise levels,
the effect of over-shrinking the small components is more dominant. This can also explain
the small value of correlation in low compression rates that were observed for S&S-univ
when compared to continuous univariate models in low noise levels. Another concern that
may explain our observations is the muli-modality of the posterior for spike-and-slab mod-
els, which makes the inference task more challenging for them than for continuous models.
Therefore, the authors recommend the default use of continuous models for signals sharing
the same properties as this test signal (only few non-zero coefficients, with symmetrical
spectrum support and unbalanced amplitudes). More specifically, we recommend the
SMG-block, since it achieved better performance for all scenarios in our experiments.

We now investigate the effect of presence of interfering components in the measured
signal. Interfering components in real applications may come from external environment
or simply other rotating components in the mechanical system, like fans, turbines, com-
pressors, and so on. We simulate a small interfering sinusoidal signal s3 of frequency
0.13, and we add it to the test signal in addition to Gaussian noise. We investigate the
shrinking behavior of the continuous models for a compression rate of 0.8 and for an initial
signal-to-noise ration of 0 dB. Figure 7 shows zooms on the reconstructed spectra around
frequency 0.13. We see that only the SMG-block succeeds in eliminating the interfering
component. This can be also seen in the posterior marginal densities of the coefficient
related to the interfering component. In fact, the additional symmetrical properties regard-
ing the structure support included in SMG-block yield a marginal density, whose mass is
concentrated at values near zero.
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Figure 7. Zoom on spectra around the interfering component (left) and marginal density for co-
efficient related to the interfering component using models (from top to bottom): t-univ, H-univ,
and SMG-block.

3.2. Application to Gearbox Vibrations

Here, we consider real data from CETIM (Centre technique des industries mécaniques,
France). They consist of vibration signals, expressed in [m/s2], which were acquired at high
sampling rate ( fs = 20 KHz) with an accelerometer mounted in the vicinity of a gearbox
reducer. The latter comprises two gears meshing together under constant speed. More
specifically, one signal is acquired per day, during 12 days. A progressive fault in one
wheel appeared around day 9. In such a system, the meshing forces are the main source
of vibration that result from the teeth contact of the two wheels. The meshing force is
naturally modulated by the rotation of the two wheels due to gears imperfection and the
systematic variation of stiffness along the teeth. These modulations are typically weak for
healthy signals, but their numbers and amplitude grow as the fault occurs and progresses.
The energy of sidebands around the meshing frequencies in the spectrum are thus a good
indicator about the health of the gear. In our test bench, the normalized meshing frequency
is around fc = 0.0165. Given a sub-sampled vector of vibration measurements, the goal is
to detect this fault by estimating the sidebands around the meshing frequencies. A standard
practice in vibration-based condition monitoring is to track the evolution of some health
indicators that tell us about the energy and the shape of the spectrum. We propose to use,
as indicator, the root mean square of amplitude of the modulations that are induced by
the faulty gear in the spectrum. Therefore, such an indicator tends to increase when a
defect occurs. Because we are mainly interested in recovering the small sidebands rather
than zeroing the background noise, we use the SMG-block model and run the proposed
Gibbs sampler for 5000 iterations, where the first 3000 samples are discarded as a burn-
in period. The proposed indicators are then computed on the amplitudes of the peaks
that are associated with target modulations using the 2000 last samples generated by the
Gibbs algorithm. Note that we do not have access to the noisy-free signal, the measured
vibration signal may contain wide-band noise and frequency-sparse noise (interfering
peaks from others sources that we do not know). Thus, it is difficult to quantitatively
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define the reconstruction error. However, the proposed indicator reflects and quantifies
the reconstruction accuracy of sidebands. Rather than computing the indicators on point
estimates (since we do not have the noisy-free signal to compare with it), we compute it on
all samples and evaluate credible intervals. Figure 8 shows the evolution from day one to
12 of this indicator for different compression rates.

We can clearly see a progressive increase with the defect that is similar to the raw
signal, even for low compression rates, which indicates a good recovery of sidebands from
healthy case (small sidebands) to faulty cases (large sidebands), offering the possibility of
monitoring gearboxes through compressive sensing.

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12

Days

In
d
ic

at
o
r 

[m
/s

²]

CR= 0.91667

Observed

Recontructed

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Days

CR= 0.83333

In
d
ic

at
o
r 

[m
/s

²]

Observed

Recontructed

Figure 8. Cont.



Appl. Sci. 2021, 11, 2626 21 of 27

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Days

In
d
ic

at
o
r 

[m
/s

²]
CR= 0.75

Observed

Recontructed

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Days

CR= 0.66667

In
d
ic

at
o
r 

[m
/s

²]

Observed

Recontructed

Figure 8. Indicators computed on the raw signals (blue) and on obtained samples (boxplots). The red line shows the median.

4. Discussion and Conclusions

This paper concerns Bayesian CS of periodically modulated signals. This class of sig-
nals is in mechanical vibrations that are generated by rotating machines, and their analysis
carries useful information regarding the health state of the component. The particularity
of periodically modulated signals is that in addition to their sparsity in the Fourier basis,
their spectrum exhibits two forms of symmetry. First, their spectrum is quasi-symmetrical
around the carrier frequency. Second, the support of non-zero coefficients is almost iden-
tical around the different carrier harmonics. The main contribution of the paper is to
consider the particular spectral structure of these signals in the design of prior models.
More specifically, it proposes extensions of two families of hierarchical priors, namely con-
tinuous scale mixture of Gaussians and spike-and-slab model, to take the form of the target
signal spectrum into account. First, a block-sparse model is proposed by jointly estimating
coefficients being in similar or symmetrical positions relatively to the carrier harmonics.
This form of dependency encourages such coefficients to contribute in an identical manner
to the overall energy of the block to which they belong. Second, structured spike-and-slab
models are built by letting the binary variable dependent on the position in the spectrum.
This is ensured by introducing a Gaussian latent variable to decide for the prior probability
of being non-zero. In that respect, different strength beliefs about the symmetrical prop-
erties of the spectrum lead to different hierarchical models. In fact, a strong assumption
on the similarity of the support around the carrier harmonics leads us to set the same
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binary selection variable for all coefficients sharing symmetrical or same positions, while
a weak assumption only introduces dependency through the prior probability of being
non-zeros. This form of dependency promotes quasi-symmetrical and identical spectrum
support. The proposed methods have been evaluated on both simulated signals and real
gearbox vibration signal. It was shown that, for such signals, structured priors achieve
better results when compared to their univariate versions. In particular, the continuous
block-sparse model outperforms all of the tested priors for all the compression rates and
noise levels. Moreover, the discrete structured priors give more accurate results when
combined with the energy constraint. Overall, the consideration of the intrinsic structure
of the spectrum support is a very successful strategy and has shown its advantage for the
recovering of mechanical signals for diagnosis purposes. However, it is worth to note that
the considered models are only adapted to mechanical signals under the hypothesis that
they are sparse in the Fourier domain. This hypothesis can be, for example, altered if the
speed variation or the spectral leakage are high as pointed in Section 2.1.1. Furthermore,
some mechanical signals, such as bearings, may exhibit cyclostationarity in their second
order moments, rather than in the Fourier spectrum. This means that they are not perfectly
sparse in the Fourier domain and alternative representations should be considered. As a
further investigation, we can study the performance of such models in other applications,
where we also encounter modulated signals (e.g., telecommunication, electricity, optics).
The investigation of cases where the carrier frequency and the number of its harmonics are
unknown may be very attractive for other real applications as an extension of our work.
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Appendix A. Hierarchical Univariate Models

Hierarchical prior models proposed for Bayesian CS in the literature can be categorized
into two families. First, continuous models propose a relaxation of the zeroness requirement
of sparse signals by using a density with sharp peak at zero to promote values close to
zero and heavy tails to allow few large peaks. These models have comparable shrinking
behavior as `p norm for p > 0. The most popular hierarchical model used in this first
family is the scale mixtures of Gaussian distributions. Such a model writes as a Gaussian
density with random variance following some mixing distribution. The hierarchical model
of Fourier coefficients under such prior writes as

xk|λk, ∼ CN (0, λk) (A1)

λk ∼ Pm (A2)

where CN (CN is used since the Fourier coefficients are complex; u ∼ CN (0, a) means
that the real and the imaginary parts of u follow the Gaussian distribution of zero mean
and variance a.) is the complex normal distribution and λk > 0 is the mixing parameter
following some mixing distribution Pm. A wide large family of heavy tailed multivariate
scale mixtures of Gaussians used for sparse recovery can be found with appropriate choices
of Pm. Commonly used ones are the discrete mixture [59], the exponential mixing that
implies a Laplacian prior for xk [60], the inverse Gamma mixing resulting in a Student
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prior for xk [47] while the Horseshoe and the Horsehoe+ priors were derived using half
Cauchy mixing distributions for the standard deviations [61,62]. The second family are
discrete spike-and-slab priors. The latter enforce explicitly some values of the signal to
be exactly zero via the spike component while non-zero coefficients are modeled with a
continuous model such as an Uniform distribution or a Gaussian distribution with a large
variance [54,63]. Under the two-component spike-and-slab, the prior hierarchical model
for each Fourier coefficient reads

xk|zk, λk ∼ (1− zk)δ0 + zkCN (0, λk) (A3)

zk|βk ∼ B(βk) (A4)

where δ0 is the point mass distribution at 0 and zk is a binary variable following Bernoulli
distribution with probability βk 6 0 (i.e., p(zk = 1) = βk). The binary spike and slab model
has been extensively used for Bayesian variable selection [59,63,64], factors regression [65]
and compressive sensing [54,55,57]. The spike component which is the mass distribution
concentrated at zero, shrinks small values towards zero, while the slab component is a
Gaussian density allowing plausible values for non-zero components controlled by the
variance λk. The selection variable zk is an indicator of the sparsity level in the spectrum.
The variable βk controls the prior probability of a non-zero element xk; a large value of βk
tends to produce a nonzero value with a large probability whereas a small value of βk tends
to generate a zero value. Although the binary spike-and-slab offers a good representation
for strongly-sparse signals (many coefficients of the signal are exactly zero), they may suffer
from several computational difficulties compared to continuous models [64].

Appendix B. Sampling Algorithm

Given the observed model (2) and the considered hierarchical prior models either
in (5)–(7) or (8), it is clear that the presence of heteregenous correlation coming from the
likelihood (namely from HΦ−1) together with the anisotropic structure of the prior scale
matrix Σ depending on unknown parameters, bring some difficulty in the sampling of
x and the selection variable z in the spike-and-slab models. Therefore, it is desirable
to separate these two sources of correlation in order to facilitate sampling. Since the
likelihood is Gaussian, we propose in this paper to use the data augmentation Gibbs
sampler proposed in [58] in order to dissociate the likelihood and the prior covariance
matrices. More specifically, an auxiliary variable is added to the model so that

u|x, ø ∼ N
(

ΓΦ−1x, τΓ
)

(A5)

where µ > 0 such that Γ = 1
µ Id−H>H is positive definite.

In the augmented space, the joint distribution of (x, Θ, τ, y, u) writes

p(x, τ, Θ, u, y)

= p(y|x, τ)p(u|x, τ)p(x, Θ|τ)p(τ)

= exp
(
− 1

2τµ

(
‖x‖2 − 2µx†Φ(H>y + u)) + µ‖y‖2

+ µu>Γ−1u
) )

p(x, Θ)τ−
N+M

2 −1 (A6)

In the following, we give the expressions of the resulting conditional densities for the
different variables of the problem.
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Appendix B.1. Conditional Distribution of x

In the augmented space, likelihood correlations induced by H and Φ are no more
linked directly to x but only through u and y. Hence, the conditional density of x says
p(x|τ, Θ, u, y) will have the same separability form as the prior density p(x|τ, Θ) that is

p(x|τ, Θ, u, y) = p(xĀ|τ, y)
Q

∏
q=−Q

B

∏
b=1

p(xq,b|τ, Θ, u, y) (A7)

where xĀ is the vector of non active coefficients (p(xĀ|τ, y) ≡ δ0.). Then, samples of xq,b,
q ∈ {−Q, . . . , Q}, b ∈ {1, . . . , B} can be drawn in independent manner. More specifically,
the conditional distribution of the carrier coefficients x0,b reduces to complex distribution
of mean m0,b and variance s0,b given by

m0,b = s0P0,bΦ(H>y + u) (A8)

s0,b =
µτγ0vb

µτ + γ0vb
(A9)

The posterior densities of sidebands coefficients xq,b are given by

xq,b|τ, Θ, u, y ∼ (1− zq,b)δ0 + zq,bCN (mq,b, sq,b) (A10)

where

mq,b = sq,bPq,bΦ(H>y + u) (A11)

sq,b =
µτγ|q|vb

µτ + γ|q|vb
(A12)

Appendix B.2. Conditional Distribution of τ

It can be noted from (A6) that the introduction of the auxiliary variable u induces
some difficulty in the conditional distribution of τ due to the presence of the term u>Γ−1u
needing the inversion of Γ. We propose to partially marginalize the joint distribution
(A6) with respect to u in the sampling step of τ. This is equivalent to sample τ from
its conditional distribution given y, x and Θ. The latter reduces to an Inverse Gamma
distribution that is

τ|Θ, x, y ∼ IG
(

M
2

,
‖HΦ−1x− y‖2

2

)
(A13)

Appendix B.3. Conditional Distributions of Prior Parameters and Hyperparameters of the
Spike Component

To avoid reducibility of the chain, the binary variable zq,b should be sampled from the
conditional distribution marginalized with respect to coefficient xq,b. In the new augmented
space, this can be easily achieved since coefficients xq,b are uncorrelated given the auxiliary
variables and so are the selection variables zq,b. The resulting conditional distribution for
each selection variable is a Bernoulli distribution i.e.,

zq,b|x/xq,b
, τ, Θ/zq,b

∼ B

(
1

1 + pq,b

)
(A14)

where pq,b is given by

pq,b =
φ
(

g|q|
)

sq,b exp
(

1
2τ2 sq,b‖Pq,bΦ(H>y + u)‖2

)
(

1− φ
(

g|q|
))

γ|q|vb

(A15)
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The latent variable g does not depend on u conditionally to x and y, then its conditional
distribution does not change after introduction of u in the model. One possible way to
sample from the resulting conditional distribution of g is to use the data augmentation
trick of probit model [66].

Appendix B.4. Conditional Distributions of Prior Parameters and Hyperparameters of the
Slab Component

Slab variables in Θ do not depend on u conditionally to x and y, their conditional
distributions do not change after introduction of u in the model. The considered extended
hierarchy of the half Cauchy models makes the sampling steps from the conditional
distribution of each the mixing variables straightforward. This leads to:

∀b ∈ {1, . . . , B}, vb|x, Θ/vb
∼ IG

(
αb +

Q

∑
q=1

(
zq,b + z−q,b

)
+ 1, βb +

Q

∑
q=0

‖xq,b‖2

2γq

)
(A16)

γ0|x, τ, Θ/γ0 ∼ IG
(

1
2
+ B,

1
η0

+
B

∑
b=1

|x0,b|2

2vbτ

)
(A17)

∀q ∈ {1, . . . , Q}, γq|x, τ, Θ/γq ∼ IG
(

1
2
+

B

∑
b=1

(
zq,b + z−q,b

)
,

1
ηq

+
B

∑
b=1

‖xq,b‖2

2vbτ

)
(A18)

∀q ∈ {0, . . . , Q}, ηq|Θ/ηq ∼ IG(1,
1
φq

+
1

γq
) (A19)

∀q ∈ {0, . . . , Q}, φq|Θ/φq ∼ IG(1,
1
ξq

+
1
ηq

) (A20)

∀q ∈ {0, . . . , Q}, ξq|Θ/ξq ∼ IG(1, 1 +
1
φq

) (A21)

Appendix B.5. Resulting Gibbs Sampler

The proposed auxiliary variable Gibbs sampler iterates between the sampling step
of the unknown main variables x, Θ, τ and the auxiliary variables u. However, since
we replace the sampling step of τ by sampling from its marginalized distribution with
respect to u and this of z with its marginalized distribution with respect to x, we actually
consider the partially collapsed version of the Gibbs sampler so that the target stationnary
distrubtion is preserved [67]. Each one of the conditional distributions belongs either
to the Normal, Bernoulli or Inverse Gamma families which make all sampling steps
exact. The sampling step of u from (A5) can be easily done since HH> = IM (non-
regular sampling matrix) [58]. For more general sensing matrices, for example when
H is a Gaussian sampling matrix, one can still sample efficiently the auxiliary variable
following [68]. Note the auxiliary variable trick improves the computational complexity
of one iteration of the Gibbs sampler but may induce high correlation between successive
samples. One way to improve the mixing properties of the considered Gibbs sampler is to
use additional data augmentation strategies [69] (see [70] for an example).
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