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Abstract: State-of-the-art 3D object detection for autonomous driving is achieved by processing
lidar sensor data with deep-learning methods. However, the detection quality of the state of the
art is still far from enabling safe driving in all conditions. Additional sensor modalities need to be
used to increase the confidence and robustness of the overall detection result. Researchers have
recently explored radar data as an additional input source for universal 3D object detection. This
paper proposes artificial neural network architectures to segment sparse radar point cloud data.
Segmentation is an intermediate step towards radar object detection as a complementary concept to
lidar object detection. Conceptually, we adapt Kernel Point Convolution (KPConv) layers for radar
data. Additionally, we introduce a long short-term memory (LSTM) variant based on KPConv layers
to make use of the information content in the time dimension of radar data. This is motivated by
classical radar processing, where tracking of features over time is imperative to generate confident
object proposals. We benchmark several variants of the network on the public nuScenes data set
against a state-of-the-art pointnet-based approach. The performance of the networks is limited by the
quality of the publicly available data. The radar data and radar-label quality is of great importance to
the training and evaluation of machine learning models. Therefore, the advantages and disadvantages
of the available data set, regarding its radar data, are discussed in detail. The need for a radar-focused
data set for object detection is expressed. We assume that higher segmentation scores should be
achievable with better-quality data for all models compared, and differences between the models
should manifest more clearly. To facilitate research with additional radar data, the modular code for
this research will be made available to the public.

Keywords: perception; deep learning; radar segmentation; radar point cloud; object detection

1. Introduction

In everyday driving, humans perceive and react to a variety of scenarios and envi-
ronment conditions. For a self-driving car to deal with such diversified situations, an
extensive model of the environment is needed. For this, a variety of sensors are used to
gather information about different aspects of the scene, e.g., road layout, conditions, traffic
participants and traffic lights. Currently, object detection of traffic participants in 3D is most
accurately performed with lidar sensor data input [1,2]. Notwithstanding, even the most
accurate methods only achieve about 67% mAP (mean Average Precision) on the nuScenes
data set [2] and 83% mAP on the KITTI 3D data set [1]. To gain a better understanding
of the environment, object detection research is therefore pursuing two complementary
approaches: Improving the detection accuracy of lidar-based algorithms; or leveraging
additional sensor modalities and fusing the detection results.

This paper develops a segmentation model for radar point cloud data to complement
the lidar processing. In comparison to lidar sensors, radar sensors have several advantages
and disadvantages for performing object detection:
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¢ Radar signals are affected significantly less by rain or fog than lidar [3].

¢ Radar sensors measure the radial velocity of surrounding objects directly.

e  The spatial resolution of production radar sensors is lower than that of lidar [3].

¢ Current production radar sensors do not measure the elevation component of the
radar returns.

e  Several processing steps are necessary to obtain a radar point cloud from the raw
sensor signals. These processing steps are based on additional assumptions, e.g.,
prioritizing moving objects, which may not lead to the desired point cloud signal in
all environmental conditions.

Due to these characteristics, especially the lower resolution and the radar internal
processing focus on moving objects, general object detection based on radar data is a
challenging task. Figure 1 shows an example of a scene containing both radar and lidar
returns. Estimating the position and the class of the shown object just from the radar
returns seems more difficult than using the denser lidar data.
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Figure 1. A vehicle detected by both radar and lidar sensors. The radar point cloud density is lower
than the lidar point cloud density. Taken from nuScenes sample with the unique identifier token:
77£c24547ab34182a945eecb825b6576.

This paper compares the performance of different segmentation models on three
subsets of the nuScenes data set; first on a data set distinguishing between vehicles, bikes,
pedestrians and background detections; secondly on a data set only distinguishing vehicles
from the background; thirdly on a data set that distinguishes moving vehicles from the
background. The performance of the networks is limited by the input data quality. As data
availability is one of the biggest barriers to public automotive radar research, we study the
available nuScenes data set in detail and formulate requirements for an adequate radar
data set for machine learning applications.

The contribution of the paper is fourfold:

®  The paper adapts KPConv network architectures for radar point cloud data processing.

e The paper proposes modified LSTM network architectures to process irregular radar
point cloud input data. The advantages and disadvantages of different time modelling
and association techniques are discussed. However, an empirical study on public
radar data does not motivate a preferred network architecture.

e The paper analyzes publicly available radar data for autonomous driving. It concludes
that the data quality of the public data is not sufficient. Furthermore, it proposes
which key points to consider when composing a radar data set for autonomous driving
research.

¢  The code for this research is released to the public to make it adaptable to further
use cases.
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Section 2 discusses related work for lidar and radar point cloud processing. Section 3
describes the proposed models. The results are shown in Section 4 and discussed in
Section 5. Our conclusions from the work are presented in Section 6.

2. Related Work

As object detection and segmentation networks often use similar backbones, we
discuss both types of networks in this section. First, we give an overview of the state of the
art in lidar point cloud segmentation and object detection. This motivates our choice for
radar processing networks. Second, we present the state of the art in radar object detection
and radar point cloud segmentation.

2.1. Lidar Point Cloud Segmentation

The task of point cloud segmentation describes the process of assigning a class label
to every point of the input point cloud. As the input point cloud is a sparse, irregular
3D tensor, classic convolution neural networks cannot be directly applied to this form of
input data. [4] therefore projects the data to a spherical image format to process it with 2D
convolutions. The network consists of an encoder—decoder structure, to be able to generate
a class label for every input pixel.

Similarly, [5] projects the point cloud data to a 2D frame. The paper augments the pre-
viously mentioned approach by taking into account a full 360° point cloud. Furthermore, it
performs additional filtering for projection errors and provides an efficient implementation
open source.

Qi [6] is the first to segment point cloud data without performing an intermediate
feature transformation. The paper introduces the pointnet network structure, which can
process an arbitrary number of input points by processing the points individually. How-
ever, their network does not consider neighboring points, as it is standard in convolutional
neural networks. Their continued work [7] enhances the implementation to create lo-
cal features from neighboring points while still operating on point cloud data directly.
The applied operations still only process one point at a time.

Thomas [8] transfers the convolution approach from grid-based data to 3D point
cloud data. The network processes a target point and its neighboring points by a defined
number of kernel points analogous to 2D image convolutions. In this manner, spatial
relationships can be learned directly from the input points by performing a so-called Kernel
Point Convolution (KPConv).

2.2. Lidar Object Detection

3D Object detection networks estimate the position of 3D bounding boxes and asso-
ciated classes in the 3D space. As they process the same input data as the segmentation
networks, they can make use of the same backbone structure. Similar to point cloud
segmentation, it is possible to project the point cloud data to a grid or voxel structure, or
directly process the points of the point cloud to perform object detection from lidar data.

Liang [9] builds upon a spherical projected point cloud representation to extract
features. In a second processing step, they project the input point cloud to a bird’s-eye
view (BEV) representation to estimate 3D bounding boxes.

Shi [10] presents the current state of the art in object detection according to the
KITTI 3D Car leader board. They use both a projection to voxels followed by point-wise
processing, to perform object detection.

VoxelNet [11] first generates point-wise features and then uses a max pooling operation
to project the point features to a voxel grid structure. The object predictions are then
generated by a convolutional detection head. Similarly, [12] combines pointnet and voxel-
based processing to generate the object proposals.

Recurrent long short-term memory (LSTM) cells [13] are used for video processing [14]
and object detection [15]. Lidar point cloud data, unlike video data, does not have a fixed
structure over consecutive timeframes. When we look at a specific lidar point at a given
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time, in the past time frame there might be no lidar return originating from the same
location. The association of consecutive point cloud frames is therefore less intuitive than
that of video data. [16] adapts LSTM cells for point cloud processing. They associate each
point from the current point cloud with the past point cloud by learning a relation over
the k-nearest neighbors and their relative distance to the current point. These association
functions are used as the gate functions in the LSTM cell to create their PointLSTM to
predict future point clouds from a time series.

2.3. Radar Point Cloud Processing

Radar signals can be represented in a similar data structure as lidar data. However, due
to the greater sparsity and the lack of available radar data for algorithm development, the
development in this area is less evolved. Many advances in the radar field are accomplished
by industry research with direct access to labeled radar data. Recently, lidar processing
techniques are transferred to the radar domain, taking into account the aforementioned
differences between the two types of data.

Schumann [17] uses a two-step approach to classify radar objects. A DBSCAN algo-
rithm [18] is used to cluster the radar detections. In a second step, features are generated for
these clusters and classified by a random forest or a simple LSTM cell. The LSTM network
outperformed the random forest approach. Difficulties with generating adequate training
data for the LSTM network are mentioned. Furthermore, the drawbacks of the two-step
approach and the manual corrections for the clustering algorithm are mentioned.

Another work [19] from the same group abstains from using a two-step clustering
approach. Instead, they accumulate radar data over several time steps in a grid map.
They create patches of 8 x 8 m, which are classified with a deep neural network approach.
They train one-vs-all classifiers in a static environment to simplify the use case for the
sparse radar data. The approach is evaluated on a proprietary data set.

Schumann [20] is the first to apply a pointnet-based approach to automotive radar
data for semantic segmentation. They argue that due to the lower point cloud density grid-
based discretization is not feasible for radar processing, as most grid cells would remain
empty. Their approach segments different moving object classes against a static background
class. It is important to note that moving objects cannot simply be distinguished from the
environment by taking into account the doppler-measured velocity of the radar. Effects of
an imperfect time synchronization, multi-path reflections and general noise induce non-
zero doppler measurements for static locations. Furthermore, they stress the importance of
taking into account the time domain for radar data processing.

A recent work by Schumann et al. [21] gives a comprehensive overview of a seg-
mentation approach for both static and dynamic objects. They apply a convolutional
encoder—decoder network on an extended grid map to classify static points. Moving points
are segmented with a pointnet-based approach. The network integrates a recurrent struc-
ture by associating point features of past time steps with current point features. The time
dependency is limited by the removal of old points from their memory point cloud to keep
it at a fixed size. The approach is evaluated on a proprietary data set.

Palffy [22] performs radar point segmentation by using both the low-level radar cube
and the processed radar point cloud data level. They evaluate their approach on the same
proprietary data as [17] and show that they can set a new benchmark score by taking into
account the additional data source.

Danzer [23] also uses a pointnet approach. Their network first segments patches of
the environment for possible objects. Consecutively, the network processes the segmented
object points to regress the bounding box dimensions for object detection. As with the
other works, they evaluate their approach on a proprietary data set.

3. Methodology

Taking into account the related work above, we emphasize the importance of the
following points for the development of a semantic segmentation network for radar data:
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Data Availability: In contrast to lidar research, where a vast amount of labeled data is
publicly available, the access to radar data is more restricted. Accurately labeled data
is the basis for any successful supervised learning model, which means that reduced
data availability could be one reason for the smaller amount of research work in this
area. A more detailed view of radar data available to the public is given in Section 5.2.
Data Level: Due to the sensor principle of the radar, a variety of intermediate processing
stages occur before the raw receive signal is converted into object proposals.

The unprocessed low-level raw antenna signals theoretically contain the most informa-
tion; however, there are no methods of labeling data on this abstraction level for object
categories. Additionally, depending on the antenna characteristics and configuration,
the data would differ a lot for different radar types, which would require a specific
learning approach for different sensor hardware designs. Consequently, to the best of
our knowledge, no one-step learning approach exists for classifying objects directly
on the raw antenna signals.

One can perform object detection at the radar cube level or on any of its 2D pro-
jections, e.g., range-azimuth plot. However, data labeling of this 3D representa-
tion (2D location + velocity) would still be a tedious task. [22] performs the la-
beling by extracting data from the cube at manually labeled point target locations.
However, in this way the label quality can only approximate the ground-truth, as
the point target might not include all raw signals that originate from an object.
Furthermore, the point targets only represent a compression of the radar signal,
which means that the point signal cannot be re-projected precisely on the cube-level
signal. To our knowledge, no full 3D cube-level radar data set has been released to the
public. However, due to the high informativeness and the similarity to image data,
which is heavily processed with learning-based techniques, the cube-level data is an
interesting use case for future deep-learning research on radar data.

Point level data is the most explored data level for deep learning on radar data.
It represents a compromise between data informativeness and data amount. Due to
the similarity to lidar point cloud data, algorithms can be transferred from the lidar
domain to the radar domain. This work operates on point level radar data. We bench-
mark our models on the public nuScenes data set [2], which includes labeled point
cloud radar data.

Data Sparsity: For lidar data processing, both grid and point-based approaches, are
used in the state of the art. Similar to [20], we argue that for radar data, a point-based
approach is more feasible than the intermediate grid representation as most of the
grid cells would remain empty. For fusion approaches of radar data with denser
data such as images or lidar both grid-based and point-based approaches [24-26],
might be suitable. This work presents a point-based approach. To the best of
our knowledge, we are the first to adapt the KPConv architecture for radar point
cloud data.

Time Dependency: Due to the low spatial resolution of radar sensors, the time domain
plays an important role in radar processing. Current production radar systems track
point level detections over several timeframes before recognizing a track as an object.
This decreases the number of false positive object detections due to clutter. These false
positives would otherwise be harmful to driver assistant systems such as adaptive
cruise control (ACC) or emergency brake assist. In the literature, approaches that use
the time domain in learning models such as simple LSTM cells or memory point clouds
have proven successful for radar data processing. This paper integrates KPConv layers
into an LSTM cell, which we call KPConv-based LSTM (KPLSTM). In this way, we
can encode the time dependency for points individually. Additionally, we combine
KPConv encoding with LSTM and ConvLSTM cells [27] in the latent space to integrate
the time domain in the model on a global feature level.

Moving Object Recognition: In addition to the time dependency, production applications
only react to moving objects, as the amount of clutter among the static points causes
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additional challenges for the processing. It is desired to bring radar processing to a
level of maturity to detect static objects just as with the lidar sensor. However, the
research above shows that the focus is still mainly on the moving object case. Even in
the simplified moving objects scenario, the detections are only reliable enough for
simplified use cases, such as vehicle following in the ACC case. In this work, we
evaluate our network for both static and dynamic cases and show the disadvantages
of the radar for the complex static scenarios.

®  One-vs-all Classification: Due to the difficulties in creating reliant object detections from
radar data, one compensation strategy is the simplification of the scenarios. In the
literature, one-vs-all classification are an efficient way to simplify the training use
case, while keeping a relevant task in focus. This paper shows the results for different
training configurations and their impact on the segmentation performance.

Radar Data Availability is discussed in Section 5.2, The Data Level is given as only point
level data is available. Data Sparsity and Time Dependency are major considerations for
the design of the KPConv-LSTM networks presented, which are discussed in Section 3.1.
The evaluation of focusing on Moving Object Recognition and One-vs-All Classification is
shown in Section 4.

3.1. Model

The proposed radar models are inspired by lidar processing and general LSTM net-
works from literature. The models are implemented in a modular fashion so that different
architectures, e.g., for the encoder or decoder part of the network, can be replaced and
combined for greater model flexibility. For additional details and analysis, we refer to the
master thesis of Fent [28] as the main contribution to the implementation. In the following,
we recapitulate the ideas of the KPConv layer and describe our LSTM extensions, including
a KPConv-based LSTM (KPLSTM) cell. The proposed models can process radar input
points clouds of varying size. The KPLSTM cell associates point clouds of varying sizes
over consecutive time steps. In contrast to existing LSTM cells, we incorporate the time
dimension as early as in the encoding part of the network.

3.2. KPConv with LSTM Cells in Latent Space

The KPConv layer is inspired by the KPConv model introduced by [8]. The idea
behind the Kernel Point Convolutions is to model the spatial relationships in a point cloud
directly. Sliding a standard convolutional kernel over an unordered space is not feasible.
The KPConv layer applies convolutional weights at Kernel Point locations with a distance
factor to neighboring points of the input point cloud. The number of kernel points K is
fixed, while the number of neighboring points Ny and the respective association function
hj; varies with the number of points in the local neighborhood. The considered neighbor
points lie within a specified radius r from the center point of the convolution. The output
feature dimension d,; for every center point is determined by the number of KPConv filters
applied. Here, the KPConv layer follows the same principle as grid-based convolutions.
Figure 2 shows a graphical representation for the processing of a center point x.

Due to the sparsity of the radar data, the maximum radius for neighbor points that
affect the feature output of the current center point in the first KPConv layer is set to 8 m.
In the original KPConv implementation [8] for lidar data, this radius is set to a maximum
of 0.15m for outdoor scenarios. The larger radius empirically provided the best results on
our data set. From a theoretical perspective, the greater sparsity of the radar data motivates
a greater radius of influence to include sufficient information of the surroundings. In this
radius, all radar reflections of a passenger vehicle could influence all other reflections from
the same object. For larger objects, such as trucks and buses, this is not always the case.
Nonetheless, an even greater radius did not result in better detection scores, as at the same
time more clutter information could be associated in the neighborhood. Figure 1 shows
that radar points do not necessarily originate from the visible edges of an object.
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Figure 2. Processing of the center point x with d,,; kernel point filters. Based on [8].

Figure 3 shows the high-level model structure of a KPConv model with a ConvLSTM
center layer (KPConv-CLSTM). The inputs to the network are the n input radar points
consisting of the last three radar time steps with five feature dimensions feat: Location x,
y, z; radial velocity components vy, vy; and the radar signal strength, called radar cross
section RCS. Following the original implementation, each KPConv ResNet Block consists of
an MLP layer, a KPConv layer and another MLP layer. The skip link branch consists of an
MLP layer to adapt the feature dimension before adding it to the processed KPConv branch.
The number of points is compressed with a farthest point sampling method. Once the input
point cloud has been encoded, convolutional LSTM cells [27] are applied to the features in
the latent space representing the entire input point cloud. The decoding or upsampling
of the point cloud is performed by a combination of three-nearest neighbors upsampling
and MLP layers for feature generation. When features have been obtained for every input
point, three MLP layers serve as a classification head. The upsampling and classification
head is inspired by [20]. A class-weighted focal loss function [29] is used for training to
handle class imbalances, e.g., in the Moving Vehicle Data Set used below over 97% of the
points belong to the background class.

KPConv-CLSTM
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Figure 3. High-level structure of our KPConv model with ConvLSTM cells in the latent space.
The blue color shows layers that consider time dependencies.

Due to the modularity of the model, we can replace the ConvLSTM layer in the latent
space with a standard LSTM cell or omit the time dependency altogether for our evaluation
in Section 4. Additional details of the implementation can be found directly in the provided
configurations in the repository released with this publication.

3.3. KPLSTM

From an architecture point of view, the KPConv-CLSTM comes with the drawback
that the time dependency is only applied on the global feature of the point cloud in the
latent space. A direct application of the LSTM cells to the input points would not be feasible
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due to the irregular structure and size of the input point cloud over several time steps.
Schumann [21] associates points of the current radar point cloud with neighboring points
from a memory point cloud by using the grouping method of PointNet++, using only the
current point cloud as center points. Similar to [16], we propose a new variant of the LSTM
cell in such a way that it can process and associate point cloud data directly. Instead of
pointnet-based processing, we use KPConv kernel gates for the KPLSTM cell. To align the
dimension of the past and present point clouds, we explore different sampling strategies
from nearest neighbor sampling to learnable sampling via the KPConv weights. For the
use case of the paper, the nearest neighbor sampling proved most reliant. Figure 4 shows a
comparison of a standard LSTM cell and the KPLSTM cell.

LSTM Cell

Heq |
TA
Xt
KPLSTM Cell
Ce-1 /|—| Cet ~\ N\ \ Ct
1Swn] ° * >
4 v
° tanh
X'; F; I; C,
(ke (kP
He_q 0, Hy
>+ KP, >
X

Figure 4. Comparison of standard LSTM cell and KPLSTM cell.

The inputs to the LSTM cells are the old cell state C;_1, the old hidden state H;_;
and the current point cloud X;. The output of the cells are the current cell state C; and
the current hidden state H;. For the input data, the old hidden state and current point
cloud are concatenated. This structure is the same as in the standard LSTM cell. Instead of
fully connected layers, KPConv operations KP, are used to model the input gate I;, output
gate O, forget gate F; and internal cell state C;. The subscript x denotes the respective
weights. The KPy layers perform feature generation and point cloud association of the old
and current coordinates at the same time. Additionally, the old cell state C;_; needs to be
mapped to the new point coordinates. As we do not want to apply the features of the new
point cloud but only propagate the old features to new coordinates, we take the current
point coordinates without the point features X} and use them as the center points for the
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nearest neighbor sampling Sy to obtain the intermediate cell state C;_;. The remaining
structure is analogous to the standard LSTM cell. The symbol o denotes the element-wise
product. We remove old features from the cell state via the forget gate and add new ones
via the input gate. The equations describing the KPLSTM cell are as follows:

Cio1 = Snn(Xi, Ci1), W
Iy = o(KP;(Xt, Hi—1)), @

Ft = o(KP¢(Xt, Hi 1)), ©)
O = o(KPy(Xy, Hy 1)), ®
Ct = tanh(KP:(X;, Hy_1)), ©)
Ci=FoC 1+1oG, ©
H; = Oy o tanh (C;) @

Figure 5 shows the overall KPLSTM network architecture. The encoding is performed
in two consecutive blocks. Each block comprises a KPConv layer to downsample the point
cloud, a KPLSTM cell and another KPConv layer for feature generation. The upsampling
is done in the same manner as in the KPConv-CLSTM. It is worth mentioning that the time
dependency is already introduced in the network encoding layers, making an intermediate
global feature LSTM model obsolete. With this, we capture local structure over time instead
of only being able to keep track of the features globally.

KPLSTM
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Figure 5. High-level structure of the KPLSTM model. The time dependency is already considered in
the encoding stage as indicated by the blue color-coding.

3.4. Data Processing

The nuScenes data is labeled using lidar data. Radar detections are not time syn-
chronized with the labels. Due to the time delay, bounding box labels do not always
coincide with the radar detections. Further errors can be introduced through slight angular
miscalibrations of the radar sensors, which has a particular impact on far-range detections.
The transformation from the radar and lidar frame to the car coordinate system can be
another source of spatial offset between ground-truth (GT) bounding boxes and radar data.
To account for spatio-temporal calibration errors, nuScenes added the so-called wih-factor
to increase the bounding box size. For small bounding boxes, e.g., pedestrians, increasing
the bounding box size by 50% might be a reasonable factor, whereas this would include too
much environment information in the case of vehicles or buses. Similarly, the wih-factor
scales the tolerance for the length and width of vehicles differently, as usually the length of
a vehicle is larger than its width. We propose an absolute wlh-tolerance in meters that is
equally suited for all object categories. Figure 6 shows the misalignment of bounding boxes
and the effect of the wih-factor vs the wih-tolerance. Although choosing a higher wih-factor
could also include respective points in the bounding box in Figure 6b, this would; however,
increase the tolerance in longitudinal direction too much.
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Due to the sparsity of radar data, we process three consecutive time steps as a single
point cloud. As these past time steps are not available for the first sample of each scene of
the public data set, we omit the first sample, both for training and evaluation.
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Figure 6. Compensating the misalignment of the manually labeled ground-truth bounding box with
a wih-tolerance creates a more precise ground-truth for the network training. (a) The truck of interest
in camera view. (b) BEV: The wih-factor = 1.3 includes only 5 points in the compensated GT bounding
box. (¢) BEV: The wih-tolerance = 1.2 includes all 14 points in the compensated GT bounding box.
NuScenes sample token: a3c6db2751a54c8590c4d8241e01ac8c.

3.5. Training

We train the segmentation networks on the official training split of the public nuScenes
data set. We test the performance of the models on the official validation split as nuScenes
does not provide segmentation ground-truth for their test set. We do not perform hyperpa-
rameter optimization on the validation split. During the training process, we batch several
scenes for one training step. We keep the order of the samples inside each scene, to be able
to learn the time dependency of the radar data.

4. Evaluation

The model performance is measured with the macro-averaged Fl-score as in the
works of [20-22]. However, none of the related work benchmarked their implementations
on a public radar data set. To compare our approach to the literature, we implement a
PointNet++ approach in the style of [20]. We use our implementation of the PointNet++
approach as the state-of-the-art baseline as there are no radar pointnet implementations
publicly available.

4.1. Traffic Data Set

First, the models are trained on a data set distinguishing between the classes: vehicle,
cycle, pedestrian and background. The classes consist of moving and static objects alike.
Figure 7 shows the confusion matrices for three different class weight configurations.
The Veh Weights configuration shows a strong bias towards the vehicle class, whereas almost
no points are classified as pedestrians or bikes. For the Lower Veh Weights configuration
the class weight on the vehicle class is halved. We see a better fit for the background class
in this way. Additional equilibration between the class weights lead to the result of the
Distributed Weights confusion matrix. All classes are associated while the overall quality
stays low. The radar data is too sparse to reliably distinguish between four classes.
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Figure 7. Segmentation confusion matrices for different class weight configurations of the data set
classes.

4.2. All Vehicle Data Set

In the following, we therefore limit the segmentation task, distinguishing between
vehicles and background in the All Vehicle Data Set. The left column of Table 1 shows
the resulting F1-score for different model configurations on this data set. The different
network architectures are trained with the same hyper parameters to enable comparability.
Due to the low data density in the underlying data set, a fitting parameter set needs to
be established first to generate reasonable results for any configuration. Due to the high
class imbalance, a vanilla network does not produce a reasonable learning result as all
classes would just be segmented as background. However, after a fitting configuration
is found it becomes evident that the different models reach more or less the same result.
While experimenting with different learning strategies, we found that there is no clear
ranking between the models, but that the performance levels out in the range of the
Fl-scores shown in Table 1. It seems that the radar data basis does not include enough
discriminative features to separate the classes further. The low data density and quality
limits the performance for the proposed models.

Table 1. Segmentation macro-averaged F1-scores on the nuScenes validation data set.

Network All Vehicle Data Set Moving Vehicle Data Set
PointNet++ 59.91% 75.83%
KPConv 59.88% 74.68%
KPConv-LSTM 59.69% 75.81%
KPConv-CLSTM 60.05% 75.42%
KPLSTM 57.89% 75.34%
KPconv w/o vel 52.36% 52.15%

4.3. Moving Vehicle Data Set

Additionally, we evaluate the models for segmenting moving vehicles against the
background in the Moving Vehicle Data Set. The moving vehicle class compromises all
bounding boxes with the nuScenes attribute vehicle.moving. This includes cars, trucks and
buses. Table 1 shows the results for this data in the right column.

The results show that moving vehicles can be distinguished from the background
more successfully than static vehicles, due to the overall higher Fl-score achieved. At the
same time, the performance levels out at higher overall scores for this type of input data.

4.4. Velocity Input Feature Study

As the velocity component is a strong feature used in classical radar processing, we
evaluate its relevance to the result of our segmentation model. We retrain our KPConv
model with a reduced input feature space without velocity information. The results are
shown in the last row of Table 1. Without the velocity information, the F1-scores are
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significantly lower for both data sets. Especially for segmenting moving vehicles, the
velocity dimension seems to be a discriminative feature. Without using the strong velocity
feature, the segmentation quality of moving and static vehicles reaches a similar score.

Figure 8 shows a qualitative comparison of the segmentation result of a moving
bus with and without the velocity feature dimensions. The radar returns from within the
bounding box are segmented correctly in Figure 8a. The radar return in the top of the figure,
which also comprises a non-zero relative velocity, is correctly segmented as background.
Figure 8b shows that the segmentation failed when not using velocity features. Points in
the lower left part of the figure are segmented as a moving vehicle. Geometrically, these
points show a great similarity to the points of the moving vehicle or even the wall along
the road. The RCS feature is not discriminative enough to compensate for this fact.

/ ° ° °

o Ve

[ ]
Q@ ©go0c0e®0 0cc0d % XX X J

e Ve

(@)
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Figure 8. Classification of a moving vehicle. Ground-truth bounding boxes and radar classifica-

tions are color-coded. Blue: moving vehicle. Black: rest. The segmentation in (a) is more precise
than the segmentation in (b) due to the inclusion of velocity features. NuScenes sample token:
9a7dc9c8adcedae68ca26ad5b5{93366.

5. Discussion

A definite conclusion of the model performance cannot be inferred from these results
above. The data quality constrains the model performance, meaning that the potential of
the KPConv models, as proven for lidar data, could not be shown for the underlying radar
data. However, the main reason for this does not seem to lie in the model itself but rather
in the data. In recent publications of radar deep-learning processing, the data source is only
mentioned briefly. However, many important considerations, when dealing with radar
data and especially the particularities of the nuScenes data set, are not discussed in the
literature. We believe there is a need to shift the focus from solely the model architectures
to the data itself to develop functioning radar deep-learning applications in public research.
Therefore, in the following discussion, we not only carefully assess our model, but add
a focus on the data side and discuss barriers for the widespread application of machine
learning techniques for radar data.

5.1. Model Critique

Due to the low information content in the underlying radar data, model training
requires a careful calibration. Although higher segmentation scores could not be achieved,
slight variations in learning rate could result in models barely outperforming a guessing
model. The low radar density is partly the result of the radar processing itself. In the
range-velocity dimension of the radar cube, moving objects are more differentiable from the
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static background than static vehicles. Consequently, many labeled static vehicle bounding
boxes do not include any or only a few radar points. This is one reason the moving vehicle
segmentation performed better than the static case.

The presented LSTM models, in comparison to [21], do not forget old points once an
intermediate memory point cloud is full. The data is added or forgotten by the memory
point cloud according to the LSTM structure. We assume this to be an advantage of the
presented architecture. However, due to the different underlying data source, a direct
comparison of the models is not possible here.

We experimented with different functions to associate consecutive radar point clouds
in the KPLSTM cell. In general, we would expect learning methods to provide the most
accurate data association capability on noisy radar data. However, nearest neighbor
sampling outperformed learning-based methods on the presented data set. We assume
that the learning of an appropriate association function is not feasible due to the corruption
of the radar data in the data set. A detailed study of different learning methods for data
association is postponed until an appropriate data is available.

Radar data comes with a class imbalance towards the background class. Most radar
reflections originate from non-traffic participants, which makes a high accuracy score
possible through the classification of all points as background. The class-weighted focal
loss function helps mitigate this problem, by assigning strongly misclassified examples of
the minority classes with a higher weight during backpropagation.

At this stage, it is difficult to pinpoint whether the model or the data has the greatest
effect on drawbacks of the model performance. To further study the discriminative content
in the data set, we overfit the KPConv model to two select scenes from the nuScenes data
set. When training a model to segment static and moving vehicles alike, a perfect score is
not achieved within 10,000 epochs of training with the same scene. Figure 9a shows the
resulting confusion matrix for a All Vehicle configuration. Figure 10 shows an extract from
this scene. The radar returns of the vehicles have a high similarity to points returned from
the background, making even overfitting to the data a challenging task.

Overfitting All Overfitting Wlh Factor Overfitting Wlh Offset
) 5 )
4 4 X
- 3 - ® - 3
8 om g o g o
© o o
() Q ()
> < > < > <
= = =
= 3 3
= =
Backgr All Veh Backgr Mov Veh Backgr Mov Veh
Predicted label Predicted label Predicted label
(a) (b) (0)

Figure 9. Overfitting confusion matrices. (a) Perfect overfitting is not achieved for the All Vehicle
configuration scene on the left. (b) The Moving Vehicle data scene is not perfectly segmented when
a wih-factor is used. (c) Training with the same scene as in (b) results in a perfect score when an
adequate wih-tolerance is used.

For moving vehicle segmentation, we were able to achieve a perfect segmentation for
a scene of a vehicle following scenario. Figure 9b,c shows the confusion matrices for this
scene with two different compensations methods for the spatial misalignment. Please note
that it was only possible to achieve a perfect score when a wlh-tolerance was applied in
Figure 9c. When a wih-factor was used in Figure 9b, not all points from the moving object
class were correctly associated with the ground-truth bounding box. The model learned to
segment these points to the moving vehicle class due to its similarity to points inside the
ground-truth box; however, they count negatively towards the metric score.
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Figure 10. Even in the overfitting scenario, misclassifications are present when static objects are
segmented. NuScenes sample token: 205c¢60f1248343a09bf4c6b6c05d8525.

Labeling bounding boxes from radar data directly is a challenging task itself due to
the data sparsity. Nonetheless, if we want to create machine learning models for radar
data for a real-world application, it would be beneficial to adapt the lidar bounding boxes
to the radar data during the labeling and have sets of ground-truth labels for the sensor
modalities independently. Thus far, the wih-tolerance has helped mitigate the problem, but
this cannot be the solution when highly precise results are necessary in production.

For the overall performance, further studies with selected data would be necessary to
investigate the source of errors in the segmentation result. Due to the overall data quality
of the nuScenes radar data, however, it is debatable whether the creation of a high-quality
subset of the data set is worth the effort or even achievable. The next section discusses this
in detail and motivates our choice to refrain from further optimization due to the quality of
the training data.

5.2. Data

This section discusses the particularities of radar data and the nuScenes data set.
Data sparsity is a general difficulty when dealing with radar data. Though [21] shows
favorable results on a private data set, it becomes clear that even with high-quality-high-
resolution input data, the challenge of general semantic segmentation on automotive radar
data is far from solved.

In 2019, a review [30] stated that they expect more radar data sets to be released in
the future. However, at the start of 2021, only nuScenes [2], Astyx HiRes2019 [31] and
DENSE [32] data sets provide point level radar data with 3D bounding box annotations.
The HiRes2019 data consists of only 546 frames, which makes training of a learning model
on this data impractical. The DENSE data set uses an outdated radar model with even
greater sparsity than the nuScenes data set while providing fewer labels. The nuScenes
data set consists of 40,000 annotated frames of a production radar. It is the only data
set that contains the consecutive samples needed for training time-dependent models.
In conclusion, this is the only reasonable public data set for deep-learning applications of
radar data.

Despite its unique position, nuScenes has some major drawbacks regarding its radar
data. Scheiner [33] compared the performance of their models on high-resolution and
production radar data. They state that the nuScenes radar density is far worse than that
of their production radar. A comparison of the specifications of the radars of [2,33] and
shows that they use a comparable or even the same radar model as nuScenes. The huge
differences in data density between the two data sets cannot be explained by the radar
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hardware alone. We calculated that over 40% of the annotated vehicles are not covered
by any radar detection when considering three radar sweeps for a nuScenes sample. For
vehicles labeled as moving, the same holds true for over 24% of the labeled bounding boxes.
Consequently, bounding boxes of objects detected by the radar sensor, include fewer point
returns than expected from this sensor type. In the following, we look at some factors that
decrease the suitability of the nuScenes data set for the development of radar algorithms
and conclude with the aspects that a radar data set should consider.

The nuScenes data set includes information about the number of radar points per an-
notation. However, this number does not distinguish between its five different radar
modules. The labels include information about whether or not a vehicle is moving.
Although this information is correct for many cases, by manually examining random
samples of the data set, we encountered a significant number of annotations where moving
objects were labeled as static objects and vice versa. This not only negatively impacts the
training, but also impacts the evaluation scores of moving object detection, which is the
main application of radar data. Figure 11 shows the ground-truth classes from a scene of
a bus moving towards the sensor vehicle. Even though the bus is approaching at a high
speed and is close to the sensor vehicle, it is wrongly labeled as a non-moving vehicle.

Figure 11. A bus approaching the sensor vehicle in BEV projection. The black color
of the ground-truth points and bounding box indicates a static vehicle, despite the bus
clearly approaching as indicated by its measured relative velocity. NuScenes sample token:
87a927d7e61345d32a098eb66908bddcb.

The radar data is limited to 125 detections per sweep by the sensor interface.
Additional detection filters are applied in the standard configuration of the data set API of
nuScenes. The hardware limitation to 125 detections is enforced by cutting off detection
signals at an RCS value of less than —5dB m?2. The works of Yamada and Yasugi [34,35]
measure the expected RCS value of a pedestrian at a distance of less than 10 m to be less
than —8 dB m? for 76 GHz and 79 GHz radar sensors, respectively. The chosen cut-off value
thereby likely filters out many pedestrian detections that cannot be used for training even
when the additional filter settings in the data set API are deactivated. By visualizing the
data set, we found that not only pedestrian detections are affected by this, but also passen-
ger vehicle are often not detected in the data set. Figure 12 shows a vehicle in line-of-sight
direction from the radar sensor. However, no radar points are present inside or near the
ground-truth bounding box.
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Figure 12. Vehicle in line-of-sight direction from the radar sensor. Despite its exposed position, it is
not detected with the sensor settings used. (a) The vehicle in camera view in front of the sensor vehicle.
(b) BEV: Zoom onto the GT bounding box in blue and the radar data in the surroundings. No radar
return originates from the vehicle. NuScenes sample token: bbba31d91e334f4abf6d1f96bf699980.

While introducing the wih-tolerance, we mentioned that the ground-truth labels are
not always accurate regarding the radar returns. Radar reflections seem to originate from
outside the ground-truth bounding boxes. The wih-tolerance can mitigate this problem
but not completely erase it. No matter the choice of a bounding box tolerance, there
will always be returns that lie outside of it and will either “confuse” the learning algo-
rithm or count negatively towards the segmentation score, while seeming to be classified
correctly intuitively.

The biggest artificial barrier for successful training that we encountered is the absence
of labels for objects that are clearly visible in radar view. Figure 13 shows several moving
vehicles from a BEV perspective. Although the radar points on the right are correctly
labeled as moving vehicles, the vehicles further to the left in the scene, on both sides of
the road, are not labeled. Their presence can be estimated from the point clusters with
non-zero velocity. The nuScenes labels are created from lidar view. The resulting number
of samples with missing labels for radar data limits the data set quality.

Figure 13. Moving vehicles ground-truth color-coded in blue. Ground-truth bounding boxes are not
labeled for four vehicles in the sensor field of view, though they are clearly distinguishable by their
relative velocity. NuScenes sample token: e2c7c91b4ea2462090d866539ff6b9eb.

The nuScenes data set is a potent data set for measuring the quality of lidar and
camera detection algorithms. The effects mentioned decrease the data quality for the
training of radar algorithms significantly. Nonetheless, it is an important contribution
to the radar community as it remains the only usable 3D-labeled source of radar point
cloud data available to the public. Although it can serve as a comparison benchmark for
radar detection algorithms, it cannot measure the absolute performance to be expected



Appl. Sci. 2021, 11, 2599

17 of 19

when the algorithms are applied to a real-world use case with a comparable radar module.
Slight corrections, such as using the wlh-tolerance or filtering for samples with high data
density, can be performed to increase the data quality. The creation of a production quality
data set, however, would require manual filtering of the instances and possibly even
relabeling to create a generally applicable sub data set. This kind of complete revision of
the labels seems unreasonable, considering the low raw radar data quality in the data set.

We therefore see a great demand for the release of a data set tailored for radar object
detection. This would make it easier to compare different radar processing approaches.
The absolute model performance that is measured on private data sets can hardly serve
as a metric for comparison due to the huge impact of the underlying data set on the
segmentation result. In an ideal data set, the dimensions, the classes and movement
properties of the objects are a focus of the scene selection and have been critically revised.
A high-resolution radar should be used and its calibration evaluated before data recording.
Filtering of radar points, when required by the sensor interface, should be performed,
e.g., along the longitudinal and lateral distance dimension to include all nearby objects
of interest in the data. As a uniform data density is preferred for model training, sensors
around the vehicle should possess little field of view overlap. If sensor overlap is preferred
for important directions, e.g., in front of the vehicle, these areas should be separated from
remaining areas during training and inference to preserve the homogeneity of the data.
lidar data can be used to help the labeling process, though the final labels should be set
regarding the radar data.

6. Conclusions and Outlook

This paper develops and benchmarks KPConv-based segmentation networks on radar
data. Due to the sparsity of radar data, we motivate the use of direct point processing
and one-vs-all segmentation strategies. Furthermore, we model the time dependency
during point feature encoding within a KPLSTM cell and in the global feature space with
standard LSTM cells. Despite their theoretical motivation, the models could not outperform
a pointnet-based network on the underlying data set. Advantages and disadvantages of
models are discussed. An in-depth analysis of the data set shows that the public data
source itself is a major performance barrier for the models. Absolute performance metrics
cannot be measured on currently available public radar data sets. The slower progress
of development for radar processing in comparison to lidar data processing can partly
be attributed to the lack of publicly available data. Building a high-quality data set of
automotive radar data is therefore a major steppingstone in accelerating the progress of
radar processing development. We expect the proposed models to show their increased
potential when high-quality radar data is available. For that, we make the code for the
proposed network architectures and the interface to the nuScenes data set available to the
public at: https:/ /github.com/TUMFTM/RadarSeg (accessed on 6 March 2021).
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