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Abstract: Given that existing fire risk models often ignore human and organizational errors (HOEs)
ultimately leading to underestimation of risks by as much as 80%, this study employs a technical-
human-organizational risk (T-H-O-Risk) methodology to address knowledge gaps in current state-
of-the-art probabilistic risk analysis (PRA) for high-rise residential buildings with the following
goals: (1) Develop an improved PRA methodology to address concerns that deterministic, fire
engineering approaches significantly underestimate safety levels that lead to inaccurate fire safety
levels. (2) Enhance existing fire safety verification methods by incorporating probabilistic risk
approach and HOEs for (i) a more inclusive view of risk, and (ii) to overcome the deterministic nature
of current verification methods. (3) Perform comprehensive sensitivity and uncertainty analyses to
address uncertainties in numerical estimates used in fault tree/event trees, Bayesian network and
system dynamics and their propagation in a probabilistic model. (4) Quantification of human and
organizational risks for high-rise residential buildings which contributes towards a policy agenda
in the direction of a sustainable, risk-based regulatory regime. This research contributes to the
development of the next-generation building codes and risk assessment methodologies.

Keywords: human and organizational risks; probabilistic risk assessment; high-rise residential
buildings; fire risk; human and organizational errors; time varying reliability; fire safety engineering

1. Introduction

Probabilistic modelling of fire safety risks in high-rise residential buildings typically
has included technical risks and errors, while ignoring the impacts of human and orga-
nizational risks resulting in significant underestimation of overall risks. It has been well
recognized that human and organizational factors (HOFs) are the leading causes of most
accidents, and literature in other related industries indicates that existing models that
ignore human and organizational errors (HOEs) underestimate risk, possibly by as much
as 80% [1–3]. From a practical viewpoint, it is essential to adopt technical, human, and
organizational risks for a realistic fire risk assessment of a building design [2]. Moreover,
during the operational phase of a building, the reliability of the fire equipment should not
be considered constant, and its aging over time must be addressed to derive more realistic
risk values [4]. Prior studies provide estimated effects of HOEs on risk in other industries
such as nuclear plants, aviation and offshore oil platforms, but existing literature does not
address or quantify the impact of HOEs on risks during fire events in high-rise buildings.

Recent fatalities in high-rise residential fires, e.g., Grenfell, London, have demonstrated
the urgent need to consider HOEs in probabilistic risk assessments (PRA) for high-rise
residential buildings [2,5]. However, this is yet to be reflected in the current state-of-the-
art PRA for high-rise buildings given that current models still consider only technical
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factors [6]. Meanwhile, various frameworks and models are available in other industries
such as nuclear plants, aviation or offshore platforms, e.g., Pence et al. [7], Mohaghegh and
Mosleh [8], Mohaghegh [9], Groth et al. [10], Lin et al. [11] and Wang et al. [12]. Recently,
Meacham et al. [13] have proposed a socio-technical system (STS) approach to characterize
and incorporate risk measures into building regulation by viewing building regulatory
systems (BRS) as complex STSs, where institutions, technology and people interact to
mitigate risk to a societally tolerable level. Meacham and Straalen assert the importance of
human and organizational risk to the development of new building codes [14]. In another
study [15], cultural factors, barriers and influences, training, communication, supervisor
role, employee participation and risk-taking behaviours were considered in fire safety
analysis in a mining industry. Similar to high rise buildings, safety analysis of wildfire
is equally challenging. In [16], risk assessment and risk elimination (like administrative
control) models are used in a dynamic environment of wildfires. However, to date, there
is a dearth of studies that incorporate technical, human and organizational risks in a
PRA specific to the building domain. Therefore, the aim of this study is to address this
methodological gap.

Deterministic and probabilistic analysis are two common methods to perform fire
risk assessment [17]. In a deterministic fire engineering approach, worst-case scenarios are
considered, and it is assumed that there will be no failure of fire safety systems such as
sprinklers or smoke detectors. This oversight results in a failure to account for the reliability
of such systems. In addition, uncertainties are not explicitly considered in deterministic
approaches. On the other hand, probabilistic fire safety engineering approaches consider
all possible scenarios, as well as their consequences and likelihood of occurrences [18].
Probabilistic approaches deploy tools like fault tree analysis (FTA) and event tree analysis
(ETA) to analyse the cause of a failure and its consequences if a failure occurs. Prescriptive
building codes may include provisions that result from immediate reactions after major
fire incidents, can be difficult to use with new technologies and do not adequately address
new building innovations. The limitations of prescriptive building codes instigated a
paradigm shift from prescriptive to performance-based design (PBD) methods where the
desired safety level in a building is ensured while enabling the use of newer technologies.
However, the proliferation of different PBD approaches necessitated a framework to bring
uniformity to PBD which is achieved using verification methods (VM). VM is a tool to
verify compliance with the performance requirements of building codes by taking a perfor-
mance solution through a detailed verification process to ensure it meets the acceptance
criteria [19]. These VMs are merely tests to be carried out after a performance solution has
been developed, without interfering with the PBD process itself [20]. The fire safety verifi-
cation method (FSVM) was introduced into the Australian National Construction Code
(NCC) in 2019, following the need to reduce the ‘reliance’ on prescriptive regulations [21].
Internationally, New Zealand already has VM within their building codes, Scotland and
Spain are considering them and Sweden has a similar scenario-based fire safety engineering
process document [22–24]. Both the FSVM [21] and the earlier New Zealand Verification
Method C/ VM2 [22] describe procedures for validation and verification of models. There
have been various recent studies on VM [20,25,26] and while the next iteration is expected
to incorporate a risk-based approach, current VMs are largely deterministic in nature.
However, the Australian Building Codes Board (ABCB) is keen to bring PRA into practice
within next few years albeit without considering HOEs.

The present Australian FSVM framework is deterministic in nature, does not consider
failure modes of components, and risk is estimated from worst credible case scenarios.
Often such scenarios are not practical, resulting in underestimation of risk. Furthermore,
the literature review suggests that it is necessary to consider the time varying reliability
of safety systems for more realistic view of risk. To address the methodological gap in
the lack of methods available to incorporate human and organizational risks specifically
for high-rise residential buildings, we developed the technical-human-organizational risk
(T-H-O-Risk) model that considers technical, human and organizational risks for a more
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inclusive estimate of overall fire risk [27–29]. While this approach enables an integrated
analysis of HOEs and their nonlinear interactions and feedbacks, it generally results in
a higher level of uncertainty, hence, detailed sensitivity and uncertainty analyses are
performed to assess the model robustness and reliability of model outputs. Sensitivity
analysis assesses which input parameters contribute the most towards the total uncertainty
in analysis outcomes, while uncertainty analysis assesses the uncertainty in model outputs
derived from using a range of values of a particular input parameter.

Uncertainty plays an important role in the T-H-O-Risk model which can arise from
incomplete modelling, assumptions and human errors. The main sources of uncertainty
are inadequate conceptual, mathematical or computational models [30]. Some parameters
in the event/fault trees, Bayesian networks (BN) and System dynamics (SD) variables
for estimation of probabilities can be uncertain due to lack of data or availability of infor-
mation. Data used to quantify fire scenarios include reliability and failure rates of safety
system components and HOE probabilities. They are usually represented by probability
density function or uncertainty bounds. Uncertainties can be significant in HOE vari-
ables and hence, are important for determining the reliability of T-H-O-Risk model. For
technical factors where statistical data is largely available, uncertainties may be small but
for HOE variables where limited data is available, uncertainties can be significant. The
event pathways in T-H-O-Risk methodology introduce uncertainties into probabilities and
consequence which can be either aleatory uncertainty or epistemic uncertainty. Aleatory
uncertainty is due to randomness in the process while epistemic uncertainty is a result
of lack of knowledge in the system. Reliability data and failure rates of safety compo-
nents are typically uncertain due to lack of information. In Pate-Cornell’s [31] uncertainty
framework, Level 5 uses the same kind of framework as Level 4 uncertainty but risk that is
typically expressed in point estimates are replaced with probability distributions instead
and confidence intervals are added to the results—this is investigated in this study. It
is important to determine the degree of uncertainty in the T-H-O-Risk methodology to
assess the efficacy and reliability of the model for effective fire safety measures in high-rise
residential buildings. It is to be noted that sensitivity and uncertainty analysis in this article
will be confined to HOEs only.

Due to the highly publicized high-rise fires in recent years such as the Grenfell Tower
fire in London and the Lacrosse Dockland Fire in Melbourne, fire risk is vitally important to
occupants and regulators. Much of the recent research in building fire risk is heavily focused
on reducing risk and developing risk-informed oversight by improving technical systems in
fire risk assessments. Risks in building fires include the systems, organizations and humans
and by excluding HOEs, risk is likely to be underestimated. Equipment maintenance
and operation, and procedural factors have a human component, as well as building
occupant behaviour during a fire event. Current methods do not include the possible
impact of explicit human and organizational errors on safety performance of equipment
and personnel. Stakeholders in Australia are progressively shifting towards quantifying
performance in the building codes by evaluating risk levels and their tolerability levels [21].

To address the knowledge gaps in current state-of-the-art PRA for high-rise buildings
identified in the literature review above, the main goals of this paper are as follows:

• Develop an improved PRA methodology to address concerns that deterministic,
fire engineering approaches significantly underestimate safety levels that lead to
inaccurate fire safety levels.

• Enhance existing verification methods by incorporating probabilistic risk approach
and HOEs for (i) a more inclusive view of risk, and (ii) to overcome the deterministic
nature of Australian verification method.

• Perform comprehensive sensitivity and uncertainty analyses to address uncertainties
in numerical estimates used in fault tree/event trees (FT/ET), BN and SD and their
propagation in T-H-O-Risk model.
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• Quantification of human and organizational risks for high-rise residential buildings
which contributes towards Australia’s agenda that is moving in the direction of a
sustainable, risk-based regulatory approach.

The paper proceeds as follows: Section 2 presents the methodology and materials
used; case studies are explained in detail in Section 3; analysis, sensitivity, uncertainty
studies are presented in Section 4 and finally, conclusions and implications are discussed
in Section 5.

2. Materials and Methods
2.1. Characteristic Overview

The Australian FSVM specifies twelve typical design scenarios for establishing if a
building solution satisfies the relevant performance requirements. The proposed solution is
then compared against a reference design which complies fully with the NCC Deemed-to-
Satisfy (DTS) requirements. As the performance requirements are not quantified, the DTS
building serves as a benchmark for acceptable safety level. The development of the FSVM
process takes place in two different documents; a performance-based design brief (PBDB),
which contains a description of all decisions of the stakeholders to perform the assessment,
and a report which illustrates the execution and results from the risk assessment. To assess
compliance with NCC, the required steps for completing the PBDB are shown in Figure 1
which enhances existing FSVM by incorporating T-H-O-Risk methodology.
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Note that the developed T-H-O-Risk model is incorporated in the last step of the
flowchart for comparison of technical, human and organizational risk levels of the perfor-
mance building and reference DTS building. The choice of reference building should be
based on an agreement with all the stakeholders and will have the following characteristics:

• Fully comply with the NCC DTS provisions;
• Comply with other relevant regulations;
• Have the same footprint, floor area and volume as the proposed building;
• Be of the same NCC classes as the proposed building;
• Have the same effective height;
• Have the same occupant load and occupant characteristics;
• Have the same fire load and design fire.

2.2. Methodology

The Australian FSVM provides a deterministic assessment of risk estimation in high-
rise buildings. It provides standard design scenarios covering different fire safety aspects
of a building. If the criteria fulfilled for these design scenarios are within certain thresholds,
the design of building is considered safe. The limitations of this approach are that only
technical factors are considered in the model and component reliability and failure rates
are not accounted for in the framework. The T-H-O-Risk model improves on the existing
FSVM by incorporating both technical and human errors into the simulations. Since HOEs
are accounted for in this model, the T-H-O-risk model provides more accurate and realistic
estimates of risk. The methodology develops a risk-based performance-based approach
to generate alternate solutions, amongst which lower risk designs can be selected which
enhances existing FSVM solutions while providing flexibility to fire safety engineers. In the
next sections, the incorporation of the T-H-O-Risk model into the Australian framework is
assessed.

2.3. FSVM

The FVSM requires several phases to be accomplished before conducting the risk
analysis, among which the most relevant are the definition of the proposed building
design and the corresponding DTS solution, the variations from the DTS solution and
the identification of the relevant performance requirements. The FSVM presents twelve
design scenarios that cover fire engineering design compliance on egress, active and
passive systems, fire spread and fire brigade intervention and safety systems redundancy.
Some or all of these design scenarios may be considered for the performance solutions,
depending on the scope of the assessment and the desired fire safety level. The performance
solution must be at least equivalent to that of the DTS solution. The description and
analytical process of the design scenarios applicable to the fire engineering design of the
case studies are presented in the following subsections. The fire engineering design is
comprised of quantitative assessments utilising current fire and evacuation modelling and
risk assessments tools.

2.4. T-H-O-Risk Framework

The PRA-based T-H-O-Risk methodology includes a set of sequentially linked tools
and techniques. These are used to estimate probabilities and consequences for several fire
scenarios and provide output in the form of both individual and societal risk. The process
is described concisely here while the complete methodology can be found in our earlier
papers [27–29]. Appendix A provides more details on the T-H-O-Risk methodology that
incorporates ETA, FTA, Bayesian networks, system dynamics, and fire and evacuation
modelling to determine available safe egress time (ASET) and required safe egress time
(RSET). Briefly, the model involves the following steps:

I. Calculation of the frequency of ignition: the calculation is based on [32]. The
resulting value is then multiplied by the probability of a fire located in a sole-
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occupancy unit (SOU), in other words an apartment fire, or in the corridor (corridor
fire).

II. Deployment of the accident scenarios and calculation of the associated probability
using ETA: starting from the initiating event, the possible scenarios are derived
by assuming a set of events that could or could not happen. The events are
related to the effectiveness of the safety countermeasures (detection, notification,
sprinkler, smoke management system) hat is linked to the type of fire (flaming
or smouldering). FTA, a top-down failure analysis tool, is used to estimate the
effectiveness of the safety measures.

III. Calculation of the consequences for each scenario using ASET/RSET analysis:
as described elsewhere, consequences are estimated by comparison of the ASET
and the RSET. The first parameter is obtained from the B-Risk fire modelling
simulation by determination of the time available before untenable conditions
occur; the second is obtained as the sum of the time to complete different evacuation
phases (detection, notification, pre-movement, and movement). Those times are
derived partly from analytical calculations (hydraulic model), and partly via B-Risk
simulation.

IV. Introduction of HOEs through a BN: a static evaluation of the effects of human and
organisational failures is performed through a BN. The ET structure of the model
is converted into the more flexible BN which allows the description of multiple
relationships between variables.

V. Calculation of the individual and societal risk for different contexts (level of organi-
zation): the impact on the risk of a good or bad safety organisation is investigated
using two different indicators. The first indicator is a single risk value, the Expected
Risk to Life (ERL), which expresses the risk in deaths/year*building; the second
risk indicator, the SR is represented using the Frequency—Consequences (F-N)
curves. F-N curves allow a comparison of the different solutions on Societal Risk
which reflects average risk, in terms of death that a whole group of occupants is
exposed to a fire scenario instead of looking at individual occupant. This second
indicator is helpful in the decision-making process, introducing the possibility of
adopting human-related countermeasures.

VI. Dynamic modelling of risk variations in the system using SD: to include future
changes of the various components of a complex system, the evolution along
its entire life cycle should be investigated. The analysis incorporating changes
over time is performed with SD: each parameter of the system is checked along a
period of ten years and hypotheses are made on the evolution of their values in
relationships with all other parameters. A ‘societal’ loop is created which enables
the modelling of HOEs in response to changes in the perception of the risk in the
system.

VII. Calculation of the time—risk curve for the entire lifecycle of the building.
VIII. Sensitivity and uncertainty analyses using a Monte Carlo approach. Uncertainties

in point estimates of ERL values are propagated through probability distributions
with Monte Carlo simulations while a family of F-N curves and confidence intervals
propagate epistemic uncertainty on SRs. Sensitivity and uncertainty analyses are
also performed on key variables in the SD model to assess model robustness and
to explore how uncertainty affects the assessment of different safety systems and
reliability of model outputs.

2.5. Sensitivity and Uncertainty Analysis

A sensitivity analysis is conducted to determine the most influential HOE variables
on the model outputs while uncertainty analysis is used to assess how much uncertainty is
associated with these influential variables. The purpose of these analyses is to determine
the HOE-related influence on risk. A Monte Carlo approach is adopted to perform the
analysis; a sampling is generated from the probability distributions and the output of the
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model is determined and represented in different graphs. The number of samples has
been fixed to 1000 samples for an acceptable level of confidence. The following steps are
performed for the sensitivity and uncertainty analyses.

First, the responsive parameters are identified. Second, for each of the responsive
human and organizational parameters, a univariate analysis is performed to assess the
sensitivity of the target variables to characterize which variables are more sensitive to the
organisational response. The quantification of the uncertainty allows for both comparative
and absolute risk analysis; when using the comparative approach, it ensures that the point
value of the individual risk of the performance solution is below that of the DTS solution
even if HOE-related errors are taken into account for both designs. It can be possible, in
theory, that the first of the two solutions is more prone to be influenced by human factors
than the second, or vice versa. For the performance solution to be approved, it is therefore
important to find the upper and lower limits for both the risk values and verify that the
upper bound value of the performance solution is below the lower bound solution of the
DTS solution. When risk evaluation is conducted in absolute terms, the oscillations of
the risk value should never trigger the reference value. The uncertainty analysis allows
a deeper understanding of the propagation of HOEs through a risk model for high-rise
buildings subject to fire.

In the sensitivity analysis, a simple mono-dimensional analysis is conducted based
on point values. The HOEs (deficient training, inefficient emergency plan, not comply
with instruction, no check rules, deficient maintenance, wrong risk assessment, not obey
standard, improper safety organisation) are attributed with a probability distribution built
based on a three-point estimation method. In a multivariate analysis, the sensitivity is
represented in a tornado graph showing the variables with major impacts on the final risk
value. When considering a single parameter, the relative amplitude of the variation of the
global risk value is compared to the relative amplitude of the variation of the parameter
value (sensitivity). Moreover, the model is used to determine the amplitude of the risk
variations in cumulative terms. This in fact can be beneficial for more detailed analysis of
the risk in relationship to the entire society.

Sensitivity analysis is further conducted on key variables in the SD model to assess
model robustness and to explore how uncertainty affects the assessment of different safety
systems and reliability of model outputs. Once the sensitive parameters for each HOE
variable have been identified in the previous steps, a Monte Carlo simulation is carried
out. The linkage of these variables to their parent nodes is the focus of this analysis. The
causal loop in the SD model consists of all the variable and their interactions with each
other including feedback loops and time delays. Stocks are accumulations in the system
used to represent variables that change with time and flows are entities that control these
stocks. The behaviour of the HOE variables depends on the parent variables connected to
them in the causal loop and delays are to be expected in the response to safety issues due
to feedback loops occurring over a period of time. Therefore, if the system is observed on
a wider time scale over ten years, oscillations in the final output are possible, generating
phases during which the risk could vary greatly with respect to the static value. To develop
a better understanding of those dynamic phenomena, parent nodes, are varied and the
corresponding variation in the value of the target variables (children nodes) is investigated.

The propagation of uncertainty is modelled using the Monte Carlo technique applied
to the ET to calculate uncertainty related to the probability of accidents (ordinate of the F-N
curve). The same approach is then used to model the uncertainty related to the number of
deaths, in the abscissa of the F-N curve. This allows an expansion of the single F-N curve
to a family of curves that can be considered representative of the effective SR. In this way,
the confidence of the model output can be increased.
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3. Case Studies

Four cases have been selected for this study. Three of the cases are taken from our
previous studies [27–29]. The fourth case is an ABCB FSVM Handbook reference case study.
The ABCB case will enable us to benchmark against the other three selected cases.

3.1. Objectives and Performance Requirements

The first proposed design (Case 1—ABCB) is a 20-storey residential occupancy build-
ing with twelve units per floor. The performance solution provides a single fire stair for
each floor while the DTS solution provides a double exit stair in compliance with the
requirements from NCC. Both designs are taken from the FSVM Handbook and are shown
in Figure 2. Table 1 summarizes the main characteristics and differences between the two
solutions. When examining the floor plan of a single floor, space saving by using a single
fire stair does not appear to be significant, however the space savings over twenty floors
can be quite significant. Additionally, construction cost savings from not constructing the
second stair compartment is also substantial.
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Table 1. Characteristics of Case #1- Australian Building Codes Board (ABCB) Deemed-to-Satisfy
(DTS) and Performance solutions.

Building Characteristics ABCB DTS ABCB Performance

Occupants per floor 36 36
Number of floors 20 20

Floorplate area (m2) 702 702
Number of units per floor 12 12

The comparison of the two designs shows that the performance requirement that is
not met by the proposed design is the DP6 (Paths of Travel to Exits) requirement. The
building is classified as a Class 2 building according to the NCC, Volume 1. Given the
height of more than 25 m, the DTS design shall have at least two exits from each storey. The
second element of non-compliance for the performance solution is the exit travel distance
(D1.4) [21]. The DTS condition requires that the ‘entrance doorway of any sole-occupancy
unit must be not more than 6 m from an exit or from a point from which travel in different
directions to two exits is available’. Moreover, the distance between alternative exits must
be not less than 9 m and not more than 45 m.

These DTS requirements are expected to be compensated by introducing other safety
measures that are not contemplated in the DTS solution. The method used to compare the
risk in the two buildings is the T-H-O-Risk method. The output from the application of
the method to the two solutions will generate two risk values that will be compared to
assess the level of safety of the performance solution. Using the FSVM, a selection of the
design scenarios can be made based on the performance requirement that is violated (using
Table 1.2 of the Handbook for FSVM [21] as a guide). Consequently, the design scenarios
that need to be modelled are as follows:



Appl. Sci. 2021, 11, 2590 9 of 52

• BE—Blocked Exit, a fire blocks the evacuation route; it is necessary to demonstrate
through ASET/RSET and ERL analysis that the level of safety is at least equivalent to
the DTS provisions.

• CS—Concealed Space, a fire starts in a concealed space that can spread and harm
several people in a room. The solution might include fire suppression or automatic
detection.

• SF—Smouldering Fire, a fire is smouldering close to a sleeping area. The solution may
provide a detection and alarm system.

• IS—Internal Surfaces, interior surfaces are exposed to a growing fire that potentially
endangers occupants.

• CF—Challenging Fire, the worst credible fire in an occupied space.
• RC—Robustness Check, failure of a critical part of the fire safety system will not result

in the design not meeting objectives of the NCC (modified ASET/RSET analysis to
demonstrate that the remaining floors or fire compartments are robust).

For each of the fire scenarios, a fire modelling simulation based on fast t-squared fire
(α = 0.0469) up to flashover will be performed to determine ASET based on tenability limits.
The same approach is used for the other three cases (Figures 3–5), with characteristics
shown in Table 2.
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Table 2. Characteristics of the building case studies.

Building Case #2 Case #3 Case #4

Characteristics Performance DTS Performance DTS Performance DTS

Occupants per floor 24 24 54 54 58 58
Number of floors 24 24 23 23 21 21

Floorplate area (m2) 484 484 1099 1099 1343 1343
Number of units/floor 6 6 15 15 20 20

In Case #2, as shown in Figure 3 the performance solution has only a single exit stair
similar to Case #1, while for Cases #3 and #4 (Figures 4 and 5, respectively); the performance
solutions deviate from the required 6 m dead end travel distance. As described in [29],
Case#2 is located in UK and Cases #3 and #4 are in Australia—all in a temperate climate.

3.2. Probability Analysis of Human and Organizational Errors

In addition to technical factors, a review and analysis of the literature is performed
to obtain probabilities and frequencies of the important HOEs. These probabilities and
frequencies are assigned to initiating events and basic events in the model to carry out a
quantitative analysis of the frequency of occurrence. The Fussel-Vesely method [33] is used
to determine the important HOEs as described in Appendix A.

3.3. Event and Fault Tree

The ETA uses a logical technique to examine the failure and success of technical risks
emanating from an event. The initial and subsequent events are assigned probabilities and
possible outcomes contributing to computations of expected number of consequences. Typ-
ical fire safety sub-systems used in high rise buildings are fire detection systems, emergency
notification systems, fire suppression systems, interior fire barriers, floor compartmenta-
tion (vertical barriers) and building egress systems. The ET incorporates all fire safety
sub-systems expected to be present within the high-rise residential buildings as they relate
to occupant evacuation as well as the relevant FSVM design scenarios that are applicable
to the case studies as follows: (i) CS—Concealed Space (ii) CF—Challenging Fire (iii) BE—
Blocked Exit and (iv) Robustness Checks where RC1 is failure of detection, RC2 is failure
of sprinklers and RC3 is failure of building alarm. Events are assumed to be independent
of each other. The fire safety sub-systems in high-rise buildings are often provided with
redundancies to avoid a single point failure. An efficient fire safety system will increase
ASET and reduce RSET. The ET helps in identifying the critical sub-system path of fire
safety that leads to better mitigation measures.

A typical ET is shown in Figure 6. After the fire is initiated, the first branch is whether
fire is in a concealed space or SOU/corridor with a probability of 0.2 and 0.8, respectively.
In the next event, this fire can develop into a challenging fire (>5 MW) or a smouldering
fire with a probability of 0.45 and 0.55, respectively. Further in the next event, failure of fire
detection occurs with a probability of 0.1. Next in the chain comes the sprinkler system
with a failure probability of 0.10. A building alarm failure occurs with a probability of 0.1.
The probability of the next event, which is blocking of an exit, has a failure probability of
0.2. The failure probabilities assumed are slightly conservative compared to the literature
(Appendix B, Table A4) and so will likely result in slightly higher, yet acceptable ERL values.
In the worst credible case, the fire ignition occurs in a concealed space, developed into a
full CF, the sprinkler system fails (robustness check) and the emergency exit is blocked
(BE). In the best case scenario, the fire does not occur in a concealed space, but in the living
room of the SOU, does not develop into a full CF, there is no failure in sprinkler or alarm
or detection and the emergency exit is not blocked.
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The frequency and number of fatalities are also shown in Figure 6. The two most
critical events resulting into maximum number of deaths are CF and sprinkler failure. That
is, if fire develops into a CF and sprinkler fails, it leads to maximum fatalities. A fire will
not be controlled if the fire sprinkler system is not functioning properly. When the sprinkler
system is activated, fire growth is controlled or extinguished. If the sprinkler system fails,
the fire continues to grow until untenable conditions occur. The negative effects of a fire
spreading throughout the building are directly related to the failure of each sub-system.
Systems performing as intended will elongate the ASET giving occupants more time to
reach safety. The number of consequences is dependent on the reliability of the detection,
suppression, notification, containment, robustness and egress sub-system systems. (The
failure probabilities for sub-systems assumed in this study are provided in Appendix B,
Table A4)

The first node of the ET is the ignition frequency; using the Barrois model [32] equa-
tion as:

P1(A) = c1Ar + c2As (1)

where P1(A) is the ignition frequency of a building with floor area A/year, c1, c2, s and r
constants based on [32] (refer Appendix A).

3.4. Bayesian Network

As the FT/ET can only handle technical factors primarily in Boolean form, HOEs are
introduced into the model through BNs. The FT/ET used to determine the probabilities for
each possible outcome of the fire event is mapped into a BN for the incorporation of HOEs.
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The inclusion of the FT/ET in the BN is shown in Figure A2 and described in
Appendix A.

3.5. System Dynamics

System dynamics modelling is used to obtain time-varying probabilities which allows
for the representation of feedback loops and delays and to allow for the estimation of risk
variations over time of the system. The SD model is shown in Figure A5 and described in
Appendix A.

3.6. Consequence Analysis & Design Scenarios

To estimate the consequences, different characteristics of the various fires are analyzed.
This includes exits blocked by a fire, fire in concealed spaces, smouldering fires, challenging
fires and a robustness check. These characteristics are described in further detail below.

The FSVM associates each performance requirement that has been individuated with
the hazard identification process to a certain number of design scenarios to be tested (see
Table 1.2 of FSVM Handbook [21]). In the specific case, the performance requirement is
the DP6 (Paths of Travel to Exits), which requires only 4 design scenarios to be modeled
(BE, CS, CF, RC). The SF scenario in our model is assumed to produce no casualties and
has been not modelled. The RC scenario is required to be one where a safety measure
(e.g., detection, sprinkler, alarm) is not working as expected; in the T-H-O-Risk model the
RC event is included in the analysis of the DTS and performance solution. The details of
the numerical experiments are shown in Table 3 and the simulations yield the results as
presented in Table 4.

Table 3. Table of experiments for FSVM design scenarios.

Design Scenario Numerical Experiment # Solution Fire Spread

Fire blocks evacuation route BE1 Performance Yes
BE2 Performance No
BE3 DTS Yes
BE4 DTS No

Fire starts in concealed space CS1 Performance Yes
CS2 Performance No
CS3 DTS Yes
CS4 DTS No

Robustness Check RC1 Performance Yes
RC2 Performance No
RC3 DTS Yes
RC4 DTS No

Challenging fire CF1 Performance Yes
CF2 Performance No
CF3 DTS Yes
CF4 DTS No

Fire in a normally unoccupied room threatens
occupants of other rooms UT Not required

Smouldering fire SF Not required
Internal surfaces IS Not required

Structural stability and other properties SS Not required
Horizontal fire spread HS Not required

Vertical fire spread involving cladding or
arrangement of openings in walls VS Not required

Fire brigade intervention FI Not required
Unexpected catastrophic failure UF Not required
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Table 4. Results from B-Risk simulation for case #1 Blocked Exit fire.

Tenability Criteria Sole Occupant Unit Corridor Stairway

Upper Layer temperature n n 150 s
Lower layer temperature n n 90 s

Visibility 240 s 150 s 59 s
FED thermal n n 135 s

FED asphyxiant n n 1011 s

3.7. Fire Safety Verification Methods—Applicable Design Scenarios
3.7.1. Exit Blocked by a Fire

The fire in a blocked exit scenario is assumed to occur in the stairway where a low fire
load is expected. Hence, it can be estimated that a fire has a peak heat release rate (HRR)
of 2500 kW. The DTS building shows an individual risk indicator largely greater than the
performance solution, hence for this scenario the performance design is verified.

3.7.2. Concealed Space

In this design scenario, the fire starts in a concealed space between two rooms. This fire
can be electrical in origin and develop behind a curtain or within a wall with a slow-growth
fire (α = 0.0117 kW/s2). It is assumed that the initial fire is in the bedroom and the fire
develops to engulf the mattresses (data from fire test from mattresses re-reported in SFPE
Handbook [8] to be around 2 MW).

3.7.3. Smouldering Fire

The assumption in the model is that the smouldering fire is readily cured by occupants
and extinguished. Hence, no simulation is determined for this scenario.

3.7.4. Internal Surfaces

The design scenario of a fire igniting internal surfaces of a compartment can become
risky for occupants. The fire is then determined to be a fast-growing fire (time to growth
is 150 s, so α = 0.0469 kW/s2). This scenario affects fire growth and fuel load in a fire
compartment and is addressed in the consequence modelling.

3.7.5. Challenging Fire

The worst-case fire is a fire that develops into a flashover and involves all combustible
materials in a dwelling. The fire could be modelled as a fast-growth fire (NFPA 72 [34],
150 s) with a peak of 10 MW. The fire burns at 10 MW HRR until the end of the simulation.

3.7.6. Robustness Check

This scenario tests the robustness of the design by assuming that a key component
of the fire safety system fails. The required outcome is that if a single fire safety system
fails, the robustness of the building will prevent disproportionate spread of fire (e.g., by
showing that ASET/RSET for the remaining fire compartments is satisfied).

3.8. PRA—ASET/RSET Analysis

To determine the associated risk, is necessary to calculate the expected consequences,
expressed in casualties. The determination of the casualties is the result of an ASET/RSET
analysis and is based on a computer simulation of the fire scenarios. To reduce the burden
of the simulation work, the number of simulated scenarios can be reduced by making some
assumptions:

• A smouldering fire yields no casualties as the fire is limited in size and generally its
extinction is performed by occupants before the fire develops into flashover.
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• When suppression systems work as expected, the fire is controlled, and there are no
victims.

• When the egress protection system is working as expected, untenable conditions
do not arise in the corridor, hence the ASET is infinite and there are no victims (all
scenarios identified with an odd number).

The scenario where fire spreads is modelled with the following assumptions:

• The fire starts in the corridor/stairs; exit doors are not closed due to door blockade or
due to failure of the self-closing mechanism. Smoke leakage through SOU doors.

• The fire starts in SOU; SOU doors remain open after the people have left the apartment
(the self-closing mechanism is not working). Exit doors remain open due to door
blockade or due to the failure of the self-closing mechanism.

With these assumptions, there are 8 scenarios for each fire location, resulting in a total
of 16 scenarios for each design. The fire modelling simulations are performed using the
B-Risk [35] fire modelling software as used in previous studies [27–29] and requires two
different scenarios for each location, one with the fire spreading into common parts and
the second with fire restricted to the area of fire origin. The application of FSVM implies
that the selection of fire scenarios is based on the performance requirements that have been
selected in the hazard identification phase (see Chapter 8 from the FSVM Handbook [21]).

The simulation output consists of a set of ASET values, each associated with a different
scenario. The B-Risk software calculates in each time step the enclosure conditions in terms
of five different tenability parameters: upper layer temperature below 200 ◦C, lower
layer temperature below 60 ◦C, FED for asphyxiant gases below 0.3, FED for thermal
effects below 0.3, and visibility above 10 m. The first value that triggers the above value
determines the ASET, except for visibility, which is excluded in the room of fire origin and
in the corridor. In these spaces, it is assumed that the occupants have familiarity with the
exit route, so the visibility is not relevant. With stairs, visibility is an impeding factor as
the occupants are assumed to be unfamiliar with the environment. B-Risk estimates the
detection time by simulating the response time of smoke detectors or heat detectors. In
one such simulation, detection time was computed as 187 s and 107 s for SOU and corridor
compartments, respectively.

4. Analysis
4.1. Verification Method Incorporating T-H-O-Risk to Compare ERL and HOEs

The application of the methodology shows that the level of risk of the performance
solution is lower than that of the DTS solution, as required by FSVM for the relevant fire
scenarios. Table 5 presents the ERL results of the design scenarios for the DTS solution, the
performance solution and the performance solution with HOEs.

Table 5. ERL results of design scenarios for Case #1 to #4 (DTS, Performance, HOE (human and
organizational errors)).

Design Case #1 Case #2 Case #3 Case #4

DTS 3.21 × 10−5 4.02 × 10−5 2.64 × 10−5 3.98 × 10−5

Performance 3.03 × 10−5 3.91 × 10−5 2.18 × 10−5 2.98 × 10−5

Performance HOE 4.36 × 10−5 4.55 × 10−5 3.14 × 10−5 4.27 × 10−5

Figure 7 shows the ERL of the various scenarios in which consequences occur. Results
of the T-H-O-Risk analysis indicate that the influence of HOEs is significant for all cases.
A fire initiating in a SOU (P33) has a significantly higher ERL, i.e., 7.8 times higher than
the fire initiating in a concealed space (P1). P33 has the highest risk as the flaming fire
occurs in the bedroom of the SOU where all safety systems fail. Moreover, when all the fire
safety strategies including fire detection, alarm, sprinkler, and emergency doors fail, the
probability of failure is increased substantially. However, if at least one of the fire safety
systems is successful, the probability of failure is considerably reduced. Scenarios P2 &



Appl. Sci. 2021, 11, 2590 15 of 52

P3 and P34 & P35 indicate that a blocked exit results in a higher ERL than building alarm
failure.
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It is evident from the figure that there are severe consequences in all scenarios where
a challenging fire occurs while sprinklers also fail. When the sprinkler system fails, the role
of the emergency exit door becomes very important. On the contrary, when the sprinkler
system is activated, the emergency doors will be less important, and no fatalities are
anticipated, hence showing that the sprinklers are critical to helping occupants to evacuate
safely. The alarm system is another important safety measure. As shown in Figure 7, the
probability of failure is significantly increased if the alarm system fails. When the four case
studies are compared with each other, the results in Figure 7 indicate that the ERL values
in Case #3 for different scenarios that consider HOEs are the lowest while for Cases #1
and #4, the values fall into a similar range. Case #3 has a double-loaded straight corridor
configuration with full-height window openings at either end which results in elongated
ASET conditions. Case #2 has a higher ERL on account of the sole stairway for performance
and HOE solutions and low tenability due to the small corridor area filling up with smoke
rapidly. More results for the four cases indicating similar patterns are discussed later in
Section 4.2.2.

4.2. Sensitivity and Uncertainty Analyses of HOE Variables and ERL

In this section, a sensitivity analysis is carried out for the main HOE variables to rank
them from the most influencing to the least from a risk perspective. The most influencing
variables are then associated with a probability distribution and quantification of uncertain-
ties related to design variables are examined. T-H-O-Risk is used as a verification method
to compare HOEs in the various design scenarios. This is followed by F-N curve assess-
ment where uncertainties in SR due to HOEs are propagated as confidence-level-based
SR followed by risk over time analysis in the SD model. Lastly, the T-H-O-Risk model is
validated against the risk data obtained from the literature for high-rise building fires.

4.2.1. Sensitivity Analysis of HOE Variables and ERL

Different weights are used for different performance shaping factors (PSFs) in the
analysis. The most influencing HOE variables are identified from the analysis. For each test
case, ERL values and variations are estimated using the Monte Carlo approach. It is to be
noted that the ERL values are necessarily point estimates, where the probabilities of events
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occurring do not take uncertainty into account. The uncertainty inherent in point estimates
of HOEs can be considered by estimating a range or distribution in which the probabilities
lie (various distributions are described in Appendix B, Table A5). Steijn et al. [36] have
developed a method for the inclusion of uncertainty by adopting probability distributions
in place of point values. This can be performed by transforming the point estimates into
probability distributions. The number of parameters in the model is large, thus there is
a need to focus on a narrow set of significant HOE variables. Consequently, a sensitivity
analysis is conducted to determine the most influential HOE variables on the outcome. To
analyze the uncertainty associated with the HOE variables, the beta distribution is assumed
because this distribution allows for updating with new HOE data by combining prior with
posterior probability; as the number of observations increase, the distribution will become
narrower as there is less uncertainty in probability of errors [36]. Beta distributions are
useful to express failure probability density functions (PDFs), described by the following
equation:

f (x) =
(x− p)(α−1)(q− x)(β−1)

B(α, β)(q− p)(α+β+1)
(2)

where α and β indicate the number of successes and failures, respectively. The conversion
from point estimation to α and β values that are required to plot a beta distribution is
possible using the three-point estimation method. These three points are the lowest realistic
(min), the modal (mod), and the maximum (max); the normal value for each HOE is
estimated by expert judgment. PSFs are then used to determine modal, the worst-case
and the best-case probability of failure through multipliers that weigh the impact of each
factor. The best-case estimation was based on a scenario with realistic HOEs while in the
worst-case scenario, the HOEs were assumed to have deteriorated to a point that would
still realistically allow an organization to remain functional. For simplicity, the nominal
modal level for each HOE-variable is considered, as represented in Table 6:

Table 6. Performance shaping factors (PSFs) and range for associated multipliers.

PSF Modal Level Modal Multiplier Best Case Multiplier Worst Case
Multiplier

Available time Nominal 1 1 1
Stress and stressors Nominal 1 1 2

Complexity Nominal 1 1 1
Experience and training Nominal 1 0.1 1

Procedures Nominal 1 0.5 1
Ergonomics Nominal 1 1 1

Fitness for duty Nominal 1 1 1
Work processes Nominal 1 0.8 2

Multipliers 1 0.04 4
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Once the probability distribution of each HOE-variable is defined, the propagation of
uncertainty is calculated. A beta distribution for each of the HOE variables in the BN is
assumed, such as deficient maintenance as shown in Figure 8 where y-axis represents the
probability and x-axis represents the ERL values. The beta distribution for the deficient
maintenance variable uses the three points as follows: minimum value = 0.0032, modal
value = 0.08, maximum value = 0.32. A similar analysis is performed for the other three
cases. The results of the sensitivity analyses are summarized in the Tornado Plots presented
in Figure 9.
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The results indicate that the most influencing HOE factors are ‘not comply with
instructions’, ‘deficient training’, and ‘inefficient emergency plan’. The mean value of the
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ERL is highest for Case #4 when considering the HOE ‘not comply with the instruction’.
The same trend is also observed for Case #4 for the other two critical HOE factors, ‘deficient
training’ and ‘inefficient emergency plan’. The main HOE variables impacting the final
ERL are dependent on the design type. In those scenarios/designs where there are minimal
active safety measures (DTS solutions), the impact of ‘not comply with instruction’ or
‘inefficient emergency plan’ are more significant. This is clearly because when no active fire
safety measures are in place, the global safety of the building relies less on the activity of
an operator that would periodically check on the safety systems than on the organisational
efficiency required to determine the presence of ignition sources, combustible materials or
working conditions of the fire doors. The other significant HOE factors considered in the
analysis are ‘no check rules’, ‘improper safety organization’, ‘wrong risk assessment’, ‘no
check rules’ and ‘not obey standard’.

4.2.2. Uncertainty Analysis of HOE and ERL

The purpose of the uncertainty analysis of the ERL is to determine the HOE-related in-
fluence on risk variations in the model. While the sensitivity analysis previously conducted
assesses the ranking of the contributions of the HOE inputs to the total ERL outcomes, an
uncertainty analysis assesses the uncertainty in the model risk outputs that arise from the
variations in HOE inputs. One of the procedural requirements in a PRA is the quantifica-
tion of the uncertainties associated with the model variables. In particular, the probability
values of human and organizational failures are affected by high levels of errors in estima-
tions. There is limited literature data supporting their inclusion in a PRA, both in terms of
absolute value and in terms of distribution through the probabilistic model. It is therefore
of the utmost importance to estimate the distribution and range of those errors and their
impact on the global level of risk.

The sensitivity results show that the most influencing HOE factors are ‘not comply
with instruction’, ‘deficient training’ and ‘inefficient emergency plan’. The three main
variables determine important variations in the ERL of the system, up to 30% of the
reference value. The minimum variations associated with the HOEs are in the order of
3–5%. The study indicates that HOEs have an important impact on the global risk level and
cannot be neglected. Moreover, the more complex the system, the greater their influence.
The complexity of the system is essentially due to the number of fire safety measures
adopted, each of them subjected to varying maintenance regimes. The uncertainty analysis
was performed based on the three most influencing HOEs identified in the sensitivity
analysis in each case study. Using Case #4 as an example, when the most significant HOE
factor of ‘not comply with instruction’ is simulated with 100 Monte Carlo simulations, the
results are shown in Figure 10a where the y-axis represents probability values and x-axis
represents the ERL values. It can be noted that the minimum probable ERL value with
HOEs for Case #4 is 4.07 × 10−5 deaths/year while the maximum ERL value is 4.38 ×
10−5 deaths/year. The mean value is 4.21 × 10−5 deaths/year and the standard deviation
is 7.57 × 10−7. The 5% and 95% confidence interval range for uncertainty is between 4.09
× 10−5 and 4.34 × 10−5.

When limited information is available on the likely distributions of the key variables,
the triangular distribution can be used to reflect the most likely, lowest, and highest
outcomes. When using a triangular distribution for the variable ‘not comply with the
instruction’, the 5% and 95% uncertainty ranges between 4.06 × 10−5 and 4.32 × 10−5 as
shown in Figure 10b. This indicates that a beta or triangular distribution does not alter the
uncertainty range significantly while the beta distribution produces a smoother curve.



Appl. Sci. 2021, 11, 2590 20 of 52Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 53 
 

  

(a) (b) 

Figure 10. Case #4: Uncertainty analysis for ‘not complying with instructions’. (a) ERL uncertainty analysis for Case #4 
with beta distribution. (b) ERL uncertainty analysis for Case #4 with triangular distribution. 

When considering the three main HOE variables and assuming a beta probability 
distribution, the result is shown in Figure 11a. The y-axis represents the probability and 
x-axis represents the ERL values. It can be noted that the outcomes of the simulations are 
concentrated on the right side of the histogram. The standard deviation is small at 5.40 × 
10−7 with 5% and 95% uncertainty ranges from 4.15 × 10−5 to 4.30 × 10−5. The cumulative 
probability distribution of the single-run curve (S-curve) for Case #4 is presented in Figure 
11b where the mean ERL is 4.25 × 10−5. 

Figure 11c shows the probability density plot and Figure 11d shows the cumulative 
probability distribution of the three HOE input variables that have a major impact on the 
final ERL for Case #4. The cumulative probability plot in Figure 11d indicates that the 
distribution of the probability for ‘not comply with the instruction’ is centred on higher 
values than the other two HOE variables; its mean is 0.46 compared to 0.25 for ‘deficient 
training’ and 0.11 for ‘inefficient emergency plan’. Moreover, it is evident that the HOE 
variable ‘not comply with the instruction’ has larger variations than the other two because 
the difference between the 95% and the 5%-percentiles is 0.49 in absolute terms (and 1.07 
relative to the mean). (Refer to Appendix C for detailed calculations.) 

  
(a) (b) 
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with beta distribution. (b) ERL uncertainty analysis for Case #4 with triangular distribution.

When considering the three main HOE variables and assuming a beta probability
distribution, the result is shown in Figure 11a. The y-axis represents the probability and
x-axis represents the ERL values. It can be noted that the outcomes of the simulations
are concentrated on the right side of the histogram. The standard deviation is small
at 5.40 × 10−7 with 5% and 95% uncertainty ranges from 4.15 × 10−5 to 4.30 × 10−5.
The cumulative probability distribution of the single-run curve (S-curve) for Case #4 is
presented in Figure 11b where the mean ERL is 4.25 × 10−5.

Figure 11c shows the probability density plot and Figure 11d shows the cumulative
probability distribution of the three HOE input variables that have a major impact on the
final ERL for Case #4. The cumulative probability plot in Figure 11d indicates that the
distribution of the probability for ‘not comply with the instruction’ is centred on higher
values than the other two HOE variables; its mean is 0.46 compared to 0.25 for ‘deficient
training’ and 0.11 for ‘inefficient emergency plan’. Moreover, it is evident that the HOE
variable ‘not comply with the instruction’ has larger variations than the other two because
the difference between the 95% and the 5%-percentiles is 0.49 in absolute terms (and 1.07
relative to the mean). (Refer to Appendix C for detailed calculations).

To evaluate the uncertainty of the model due to the three variables, these values can be
compared with the output of the model from the Monte Carlo simulation. In Figure 11d, the
graph indicates that the difference between the 95% and the 5% value is 2.9 × 10−7. (Refer
to Appendix C for detailed calculations). As expected, the HOE variable ‘not comply with
instructions’ has the greatest influence on the outcome with a sensitivity of 5% followed by
‘deficient training’ at 4% and ‘inefficient emergency plan’ at 3%.
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The Monte Carlo simulation runs for the ERL uncertainties for Case #1 to #4—DTS,
performance and HOE solutions are plotted in the cumulative probability plots in Figure 12.
It is observed that ERL for the performance solution with HOEs is higher as compared to
the performance solution and DTS-based ERL values. Further, the performance solution
(without HOEs) gives lower ERL as compared to the DTS solution. The results for different
cases are summarized below:

• For Case#1 ERL values for the performance solution with HOEs for 5% and 95%
bounds are 4.21× 10−5 and 4.58× 10−5, respectively. ERL values for the DTS solution
for 5% and 95% bounds are 3.10 × 10−5 and 3.37 × 10−5, respectively. Similarly, ERL
values for the performance solution for 5% and 95% bounds are 2.94 × 10−5 and 3.18
× 10−5, respectively. From the average value, the ERL for the performance solution
with HOEs is higher by 35% compared to the DTS solution and by about 44% as
compared to performance solution.

• For Case#2 ERL values for the performance solution with HOEs for 5% and 95%
bounds are 4.40× 10−5 and 4.63× 10−5, respectively. ERL values for the DTS solution
for 5% and 95% bounds are 3.91 × 10−5 and 4.10 × 10−5, respectively. Similarly, ERL
values for the performance solution for 5% and 95% bounds are 3.78 × 10−5 and 3.97
× 10−5, respectively. From the average value, the ERL for the performance solution
with HOEs is higher by 13% as compared to the DTS solution and by about 16% as
compared to performance solution.
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• For Case#3 ERL values for the performance solution with HOEs for 5% and 95%
bounds are 3.01× 10−5 and 3.15× 10−5, respectively. ERL values for the DTS solution
for 5% and 95% bounds are 2.58 × 10−5 and 2.72 × 10−5, respectively. Similarly, ERL
values for the performance solution for 5% and 95% bounds are 2.10 × 10−5 and 2.22
× 10−5, respectively. From the average value, the ERL for the performance solution
with HOEs is higher by 16% as compared to the DTS solution and by about 41% as
compared to performance solution.

• For Case#4 ERL values for the performance solution with HOEs for 5% and 95%
bounds are 4.15× 10−5 and 4.30× 10−5, respectively. ERL values for the DTS solution
for 5% and 95% bounds are 3.83 × 10−5 and 4.02 × 10−5, respectively. Similarly, ERL
values for the performance solution for 5% and 95% bounds are 2.92 × 10−5 and 3.03
× 10−5, respectively. From the average value, the ERL for the performance solution
with HOEs is higher by 7% as compared to the DTS solution and by about 42% as
compared to the performance solution.
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The results also indicate that uncertainties associated with the ERL point estimates are
small. At the same time, the low standard deviations as shown in Table 7 signifies that the
data points are closely distributed around the mean values.
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Table 7. Uncertainty analysis of ERL for Case #1 to #4.

Design Sampling Case #1 Case #2 Case #3 Case #4

DTS Mean 3.25 × 10−5 4.02 × 10−5 2.66 × 10−5 3.97 × 10−5

5%CI 3.10 × 10−5 3.91 × 10−5 2.58 × 10−5 3.83 × 10−5

95%CI 3.37 × 10−5 4.11 × 10−5 2.72 × 10−5 4.02 × 10−5

Standard deviation 7.66 × 10−7 5.87 × 10−7 4.37 × 10−7 5.43 × 10−7

Performance Mean 3.05 × 10−5 3.89 × 10−5 2.17 × 10−5 2.98 × 10−5

5%CI 2.94 × 10−5 3.78 × 10−5 2.10 × 10−5 2.92 × 10−5

95%CI 3.18 × 10−5 3.97 × 10−5 2.22 × 10−5 3.03 × 10−5

Standard deviation 7.78 × 10−7 5.27 × 10−7 3.56 × 10−7 3.79 × 10−7

HOE Mean 4.39 × 10−5 4.56 × 10−5 3.09 × 10−5 4.25 × 10−5

5%CI 4.21 × 10−5 4.40 × 10−5 3.01 × 10−5 4.15 × 10−5

95%CI 4.58 × 10−5 4.63 × 10−5 3.15 × 10−5 4.30 × 10−5

Standard deviation 1.14 × 10−6 6.90 × 10−7 4.18 × 10−7 5.40 × 10−7

Figures 13–15 show the ERL cumulative distribution plots for the DTS, performance
and performance solution with HOEs to facilitate a direct comparison of the ERL for the
case studies. The ERL uncertainty values are summarized in Table 7. Here again, ERL
values are compared for DTS and performance solutions along with HOEs for four cases.
The ERL is highest for the performance solution with HOEs followed by the DTS solution
and then the performance solution. The ERL value is highest for Case #4 which has the
largest floor area.
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Detailed results are summarized below:

• For the DTS solution, the ERL value is highest for Case #2 followed by Case #4, #1 and
#3 in descending order.

• For the performance solutions, the ERL value is highest for Case #2 followed by Case
#1, #4 and #3 in descending order.

• When HOEs are considered, the ERL value is highest for Case #2 followed by Case #1,
#4 and #3 in descending order.

• The average across different cases shows that the performance solution gives the
lowest ERL with an average value of 3.02 × 10−5 whereas for DTS solution it is 3.48 ×
10−5.

When HOEs are considered in the analysis, the ERL increases to 4.07 × 10−5, con-
sidering it is average value across different cases. Thus, across different cases, HOEs can
increase the ERL value by as much as 42% compared to the performance solution. Further,
the performance solution gives a lower value of ERL by much as 33% as compared to DTS
solution.

4.3. Societal Risk Assessment and Uncertainty Analysis

To assess the risk tolerability of various design solutions, F-N curves are constructed
to enable comparison of SR for each case study. Figure 16 shows the F-N curves with and
without HOEs for Case #1 to #4. ABCB tolerability curves are represented graphically by
red dotted and blue dot-dash diagonal lines and are similar to British Standards Institution
Published Documents (BSI) PD−7974−7:2019 [37] tolerability limits which are represented
by red and yellow diagonal lines. However, the rate of change in allowable frequency
is much faster (steeper slope) than BSI. The ABCB slope of −1.5 indicates a higher risk
aversion than BSI’s neutral risk aversion slope of −1 [37]. The area between the tolerability
curves defines the region where a design is considered to be safe, or as low as reasonably
practicable (ALARP). The upper and lower bound uncertainties in SR are presented as 95%
and 5% Confidence Intervals are represented by black dash-dot and grey dash-dot lines,
respectively. The uncertainty analysis generates an area plot for a certain level of confidence
in the F-N curve with upper (95%) and lower (5%) bounds of Societal Risk instead of only
one mean F-N curve. The methodology to generate these uncertainty bounds is based on
Sun et al. [38] described in Appendix D.
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The inclusion of HOEs in the analysis results in variations to SR values as shown in
the F-N plots in Figure 17 for Case #1 to #4. The following observations can be made from
Figure 16. For all cases where HOEs are considered, SRs are higher than the corresponding
case with no HOEs. All cases are below the upper tolerability bounds indicating acceptable
SRs, however, when HOEs are considered, Case #2 marginally exceeds BSI tolerance but
meets ABCB acceptable limits. Case #4 exceeds both BSI and ABCB tolerability limits.
When confidence-interval uncertainty bounds are considered, Case #2 marginally meets
ABCB upper tolerability limits while Case #4 clearly exceeds the tolerability limits. To lower
the curve such that it falls in the ALARP region, either additional fire safety measures can
be installed, or systems reliability can be improved. Among the four cases, Case #4 results
in maximum SR. This is followed by Case #2, Case #1 and Case #3 in decreasing order. For
case #3 and #4, the F-N curves are shifted to the right resulting in higher consequences even
though frequencies are within similar range as the other two cases. The CI-95% uncertainty
bounds indicate that Case #2 & #4 exceed the BSI upper tolerance limit but only Case #4
exceeds the ABCB upper tolerance limit. Thus, when uncertainty ranges are considered,
tolerability thresholds can be exceeded in some cases (Case #2 & #4) when mean values
do not.
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4.4. System Dynamics Risk Modelling, Sensitivity and Uncertainty Analysis

The assessment of risk in the SD model allows for an integrated analysis of HOE
factors and their nonlinear interactions and feedback loops. The SD model also accounts
for the delays and more realistic analysis of risk variation over time. When maintenance
of a safety system is not performed for prolonged periods, risk will trend upwards over
time and there can be a duration in which risk exceeds a critical or safe value. The SD
model identifies the point in which the maintenance regime of safety systems needs to be
conducted. System dynamics describe the level of uncertainty of diverse situations. This
technique is specifically useful when variables are interlinked, and data is indistinct. In this
model, some variables vary with time and simultaneously interact with other variables.
Thus, the state of a variable is both time dependent and state dependent with respect to
other variables. The time slice in a SD model is a snapshot of the BN at different instances
of time (Figure 17).

The conditional probability table (CPT) is the transition matrix that represents the
time slice and provides insights into the transformation of the different nodes across the
model and describe the causal relationships within the nodes. The mathematical model
describing the state and time dependency is given by:

P(X, Y) =
T

∏
t=0

P(xt|xt−1)
T

∏
t=0

P(yt|xt)P(x0) (3)

where:

X, xt, xt−1 are state variables; Y, yt, yt−1 are observable variables;
P(xt|xt−1) gives time dependencies between states;
P(yt|xt) gives state dependencies between the variables;
P(x0) is initial state distribution.

In the SD model, the flow variables are time-varying terms. For example, the rate of
change (RoC) of the number of checks (NoC)) for perceived safety (ps) is given by:

RoC(t) = 5
d
dt
(ps) (4)

On the other hand, stock variables, refer to the integrated value of the flow variables.
Thus, a stock variable refers to the accumulated value of the flow variable in a given time
frame. For the above example, a stock variable NoC is given by:

NoC = 12 +
∫

RoC(t)dt (5)

In the present analysis, random perturbations on input parameters are performed and
risk is computed at each of the time instants. The nodes of the SD are mapped from the
corresponding nodes in the BN model. The mapped SD model is represented in Figure A5
in Appendix A. A sample schematic showing reliability change due to time and state
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change is shown in Figure 18. The SD model, thus, brings out the effects of deficient
training and inefficient emergency plan from the analysis.
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The results from the SD simulation are reported in Figure 19 which compare the DTS
to the performance solutions for each design scenario for Case #1 (ABCB).
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Figure 19. SD result- DTS vs. Performance solution. Risk profile over 10-year period (Case #1).

During the 10-year life span considered, the performance solution shows a lower level
of risk than the DTS solution. It can also be noted that there is no variation in risk for the
DTS solution over 10 years; this is because the DTS solution has no active fire protection
measures (detection or suppression system), hence no HOEs can significantly alter the
level of risk. However, outside the active protection system, it is always possible that
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HOEs reduce the reliability of passive protection systems (for example, obstructions of
the exits and refurbishment activities) but they are not modelled in the T-H-O-Risk model.
In the risk-over-time curve related to the performance solutions, the level of risk reduces
after a seven year-long period of stability, because the building maintenance team has
developed a thorough knowledge of the reliability of safety systems. At the same time, the
perception of risk is reduced because little or no accidents have occurred during the initial
lull period and a lax attitude towards maintenance procedures takes over. Consequently,
the operator reliability falls and reduces the effectiveness of the sprinkler system. When the
building management realises that the level of organization is not as effective as planned,
countermeasures are activated, which in turn improves risk indicators although uncertainty
is highest around year seven. Risk again increases with time in the final years of the 10-year
period due to the relaxation of measures, as expected.

All the curves exhibit similar behaviour, experiencing a reduction in risk level after
seven years and a subsequent increase due to relaxation of the rules (Figure 20). It can be
noted that the different curves shift vertically according to the various global risk value as
shown in Figure 21.
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for Case #1 to #4.

It is observed that the sensitivity of the curves to the HOE parameter results in no
variations in the scale of the dynamic curve, so the rankings of the four designs are not
affected by that parameter.

Sensitivity analysis was further conducted on key variables in the SD model to assess
model robustness and to explore how uncertainty influences the analysis of different safety
systems and reliability of model outputs. The first step is an investigation of the parameters
with the most influence on the HOE variables (target). Most of the model parameters have
little influence on the outcome, so that they do not produce noticeable variations in the
target variable. The impact of a parameter can be assessed in relationship to every target
variable; only if the sensitivity is above a determined value (25%) would the parameter need
further analysis. For each HOE variable there are parent nodes that have low influence,
such as ‘Probability of valve closed’, which has a sensitivity of 0.1% related to the target
value ‘adopt unsuitable equipment’. There is negligible impact of an open valve on the
final result, as it provides very small variations.

After identifying the sensitive parameters for the HOE variables, a Monte Carlo
simulation (1000 runs) was performed (see Appendix E for description of procedures on SD
sensitivity analysis). The Vensim tool for Monte Carlo simulation provides the 50th, 75th,
95th and 100th percentile confidence interval bounds of the simulations and according
to [39], these intervals can be approximated as the corresponding confidence bounds for
uncertainty. The fire ignition probability variable is associated with a uniform probability
distribution, with upper and lower values 0.4 and 0.3 for apartment fire (0.384-point value)
and 0.02 and 0.01 for corridor fire (0.0198-point value). This distribution was chosen to
characterize uncertainty in non-calibrated uncertain parameters varied in the Monte Carlo
simulations. Figure 22 represents the variation of the ‘fire yes detection yes node’ (FYDY
node) with fire ignition frequency. The FYDY node expresses the frequency of fire ignition
and subsequent fire detection. As expected, the relationship between the two variables
is linear and the SD curve is shifted upward when fire ignition probability increases and
downward when fire ignition decreases. Moreover, this relationship remains constant
with time.
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Another important variable, ‘reliability’, is not affected by the fire ignition frequency
(see Figure 23). Given the fact that after a fire event all safety systems are properly checked,
it can be safely assumed that their efficacy is not determined by the number of previous
activations. The same observations can be made for the loop variable ‘accident rate’ as
shown in Figure 24. In Figure 25, the ERL varies linearly with the fire ignition frequency.
Sensitivity is not affected here by dynamic behaviours.
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To determine sensitivity of the model to HOE variables, the parameter ‘Probability of
valve left closed’ was analysed. A triangular probability is associated with the variable,
with values comprised from 0.01 to 0.015 (min = 0, max = 0.5, start = 0.01, peak = 0.01, stop
= 0.015). The resulting curve for the reliability parameter is shown in Figure 26. It can be
argued that the reference curve (in red) is smoothened by variations in the HOE variable.
The fall in reliability is always below the static values at year five for the ‘Probability of left
valve closed’ ranging from 0.01 to 0.015.
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Similar observations can be made from the ‘detection’ node as shown in Figure 27.
From the results it can be observed that the impact of the fire ignition frequency is greater
than all other variables and the correlation is not linear as different variations occur at
different time steps.
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4.5. Assessment of Robustness of SD Model Outputs

The outputs of the SD model are tested for robustness by screening the variables to
identify and select the most sensitive parameters for each target variable in the model.
Monte Carlo simulations were performed (one for each target variable) to establish the
confidence intervals (CI) for outputs responding to sensitive variables. The variation
coefficient VCi,t of the target variables was calculated for ten years based on the following
equation:

VCi,t =

(
OM95i,t – Om95i,t

Om
i

)
× 100 (6)

where VCi,t is relative variation of target variable I with respect to the mean using 95% CI;
OM95i,t and Om95i,t are max. & min. values of the ith target variable at time t, using the
95% CI; and Oi

m is mean value of target variable i. There are 3 categories of response: low
where VCi is less than 50%, moderate where variation coefficient is between 50–100% and
high where variation coefficient is higher than 100%

First, for each of the three responsive parameters (i.e., perception, number of accident
and probability valve closed) a univariate analysis is performed to assess the sensitivity of
the following target variables: deficient training, inefficient emergency plan, not comply
with instruction, no check rules, deficient maintenance, wrong risk assessment, not obey
standard and improper safety organization. A uniform distribution was applied. In this
way, it is possible to characterize which variables are more sensitive to organizational
response.

The analysis shows that the influence of the parameter ‘Perception’ is high for ‘Ineffi-
cient timely control’ and ‘Not comply with instructions’ target variables, with values above
the 100% sensitivity. ‘Improper safety organisation’, ‘Inefficient emergency plan’, ‘No check
rules’ and ‘Not obey standards’ presents a sensitivity between 50% and 100%, Finally,
‘adopt unsuitable equipment’ is insensitive to the variation of the ‘Perception’ parameter,
with a sensitivity value of about 1%. The ‘Max number of accidents’ parameter has little
influence on the HOE variables, with values in the range between 0.1% and 23%. Finally,
the variable ‘Probability Valve Closed’ has the lowest impact, in the range from 0.1 to 11. In
general, it can be observed that the variable ‘Perception’ is by far the most impacting factor
and the target variables of ‘Inefficient timely control’ and ‘Not comply with instruction’ are
much more sensitive to variation of the reference parameters than the other variables.

As multivariate analysis is used to assess the robustness of the model and to define
the ranges of variations of the target variable. Results are reported in Table 8 and sensitivity
of some variables are shown in Figure 28. See Appendix F Table A6 for list of parameters:

Table 8. Results of Monte Carlo Sensitivity analysis of responsive parameters.

Target Model
Variables

Responsive
Parameters

Sensitivity Results 95% Confidence
Interval

Adopt unsuitable equipment: Perception, Max number of accidents,
Probability Valve Closed 0.92 ± 0.004 (dimensionless)

Improper safety organisation Perception, Max number of accidents,
Probability Valve Closed 1.29 ± 0.233 (dimensionless)

Inefficient timely control Perception, Max number of accidents,
Probability Valve Closed 0.25 ± 0.212 (dimensionless)

Inefficient emergency plan Perception, Max number of accidents,
Probability Valve Closed 1.24 ± 0.226 (dimensionless)

No check rules Perception, Max number of accidents,
Probability Valve Closed 0.29 ± 0.211 (dimensionless)

Not comply with instructions Perception, Max number of accidents,
Probability Valve Closed 0.30 ± 0.219 (dimensionless)

Not obey standards Perception, Max number of accidents,
Probability Valve Closed 1.29 ± 0.236 (dimensionless)
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Results from this analysis indicate that all targets show similar ranges of variations
around their own average value, except ‘Adopt unsuitable equipment’ which has a very
low variability of 0.04. The results of the MC simulations show that all the target variables
exhibit either a low or moderate response to changes in the responsive parameters. This
indicates a high degree of robustness in the SD model and hence, the model outcomes can
be accepted with confidence.

5. Conclusions

Summary: The current study demonstrates how T-H-O-Risk methodology enhances
current FSVMs by incorporating HOEs in a PRA for a more inclusive view of risk in
high-rise residential buildings. The limitations of existing deterministic methods and
how they are overcome using the T-H-O-risk methodology is elaborated in this paper.
While the T-H-O-risk approach enables an integrated analysis of HOE factors and their
nonlinear interactions and feedbacks, it generally results in a higher level of uncertainty,
hence, detailed sensitivity and uncertainty analyses were performed to assess the model
robustness and reliability of model outputs.

Influence of HOEs: The study identifies the most important HOE variables and the
extent they contribute to the fire risk in high-rise buildings. Uncertainties in point estimate
of ERL values are propagated through appropriate probability distributions with Monte
Carlo simulations while a family of F-N curves propagate epistemic uncertainty in societal
risks of the case studies. Four case studies were used for the study including the reference
case from the ABCB FSVM Handbook. For each case, a performance solution, a perfor-
mance solution incorporating HOEs and a DTS solution were compared using risk values
that assess the level of safety. The analysis finds that the level of risk as measured by the
ERL of the performance solution is lower than the DTS solution however when HOEs are
considered, their influence is significant for all cases.

Sensitivity and uncertainty analyses—A sensitivity analysis using a Monte Carlo ap-
proach found that the most influential HOE variables were ‘not complying with instruc-
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tions’, ‘deficient training’ and ‘inefficient emergency plan’. An uncertainty analysis of the
ERL indicates that the most influencing HOE factors determine important variations in
the ERL value of the system by up to 30% of the reference value. The minimum amount of
variation associated with these HOEs is approximately 3–5% indicating that HOEs impact
global risk levels; the F-N curves for all cases and scenarios with HOEs shift upwards
indicating risk is underestimated when HOEs are ignored. Indeed, as system complexity
increases, so does the influence of HOEs on risk primarily due to increasing numbers of
fire safety measures and maintenance regimes. Sensitivity and uncertainty analyses in
SD risk modelling indicate that risk thresholds oscillate or spike at year seven over the
10-year cycle. Risk variation over time analysis indicates that maintenance of an active
safety system is required within five to seven years due to the degrading influence of HOEs
on the reliability of the system.

Advantages of T-H-O-Risk—The research demonstrates how fire safety verification
methods can be improved with the incorporation of human and organizational risks
in PRA, where uncertainties in point estimates of individual risk are propagated with
probability distributions while uncertainties in societal risks and risk variations over time
due to human and organizational risks are propagated with confidence-interval-based
societal risk curves. It is important to determine the significance of uncertainty in the PRA
process, to produce effective fire safety measures for high-rise residential buildings.

State-of-the-art PRA—Although there are instances of using HOEs for modelling in
other applications and industries, this is the first state-of-the-art methodology where HOEs
have been incorporated in the fire risk analysis for high-rise buildings in a comprehensive
manner, where technical systems such as sprinklers and smoke detection systems are
integrated with HOEs. When HOEs are ignored in a PRA, overall risk levels are likely to
be underestimated given that some DTS or performance-based designs that were initially
assessed as within an ALARP region may fail the tolerability limit when HOEs are included.
Hence, HOE variables will need to be considered when performing a Cost–benefit Analysis.
The risk is not only quantified with the T-H-O-Risk approach, but the methodology also
pinpoints various parameters that need to be controlled to minimize risk. Existing methods
do not provide any empirical relations in predicting risks for different HOE parameters,
making the T-H-O-Risk methodology even more significant.

Contribution—The T-H-O-Risk model contributes to the existing knowledge base
related to risk modelling and the incorporation of HOEs in those models. This effort fills
an existing gap in the literature and in existing fire risk models that fail to include and
quantify the impact of HOEs. By incorporating BN and SD techniques, the enhanced
model addresses HOEs dynamically in an innovative and integrated quantitative risk
framework. This integrated modelling approach allows for a broader understanding of
technical, human, and organizational risks in high-rise buildings, including a means to
estimate the range of impacts that result from including these risks in the model that is
lacking in current state-of-the-art models.

Policy implications—As far as policy implications are concerned, the ability to estimate
the risk impacts: (a) significantly benefits stakeholders in Australia, including the ABCB,
and their efforts to better quantify risk and tolerability levels as quantifying at this level
means that health and safety can be clearly represented in terms of individual and societal
risk and allows for flexibility in achieving these goals. (b) by incorporating individual and
societal risk, fire authorities and building regulations can be proactive in their approach
to events with multiple fatalities. Evaluating the frequency of events and the number of
fatalities supports a quantitative (c) risk assessment (QRA) and ultimately drives risk as a
basis for fire safety; (d) contributes to the development of next-generation building codes
and risk assessment methodologies by demonstrating how fire safety verification methods
can be improved with the incorporation of HOEs in PRA.
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Appendix A. T-H-O-Risk Methodology

The salient features of the T-H-O-Risk methodology are as follows:

• In the current study, the variation of the risk over time is considered along with
technical, human, and organizational risks.

• Hazards and potential risk factors are identified in the first step which can cause
damage to buildings or harm to humans.

• With the help of identified factors, risk computation is done in the next step using
frequency and consequence analyses [27–29,40].

The overall risk for a system is given as the product of the frequency of occurrence of
an accident scenario and its consequence. Risk models are based on the definition of risk
as follows [40]:

R =
n

∑
i=1

Pi Ci (A1)

o Frequency analysis: conventional event and fault tree techniques are used to compute
risk. In addition to technical errors, HOEs are included in the risk analysis using the
BN. BNs are based on the Bayesian statistical decision theory [41] according to which
uncertainties originate from real-world situations along with subjective analyses are
intended to help aimed engineers in the decision-making process. Some common
HOEs are listed later.

o Consequence analysis: ASET/RSET method is employed to check whether building
design is safe or not. In both approaches, if the risk is found to be higher than the
acceptable level, risk control is done in the analysis framework. The steps are iterated
until the risk is acceptable.

For analysis, Microsoft Excel is used for the ET and FT calculations, Netica from
Norsys is employed for BN, and Vensim from Ventana Systems is employed for SD. A
detailed description of the calculations is encompassed as Supplemental Data, see later.

Appendix A.1. Step 1—Hazard Identification

Hazard identification is generally done during the design and implementation phase
of a new process or installing new machinery. Hazards can also be identified during an
inspection or after incidents or when a near miss has occurred. The main cause of fire
hazard in buildings could be due to short circuit, electrical appliances, cigarette butts,
flammable liquids, or cooking appliances. While identifying hazards, three elements that
must be considered are:

• Ignition source;
• Fuel (such as waste products and textiles);
• Oxygen.

Furthermore, the structural aspects such as ducts, open roof spaces, and escape routes
are also considered.

Appendix A.2. Step 2—Event Tree

An event tree (ET) is built to perform an overall system analysis (in two steps as
follows) through a logical modeling technique for both success and failure through a single
initiating event.
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• The probabilities are defined for each successive event through fault tree analysis and
some typical events.

• Based on the logical structure of the events, the overall risk is then estimated for the
building design related to fire safety. The overall risk is presented as ERL.

Thus, the goal of the event tree is to compute the probability of a negative outcome
that can cause harm, starting from an initiating event. Some key advantages of the event
tree analysis are:

• It can identify critical events that result in higher risk;
• It can determine cause and effect relationship;
• It can be automated.

The following events can be found typically in the ET (refer to Figures A1 and A2):

(1) Initiating event;
(2) Location of fire, e.g., apartment or corridor, concealed space or in a room;
(3) Challenging fire or smouldering fire
(4) Detection failure;
(5) Alarm failure;
(6) Sprinklers failure;
(7) Egress protection where an emergency exit is blocked.

The first row in Figure A1 shows the failure probability for each event that results
in probabilities for each of the pathways. The ET begins with an initiating event that
can cause failure (represented by ‘FAIL’) cases. In the present example, relevant design
scenarios are sequenced. Figure A2 shows a typical event tree encompassing apartment
and corridor fire and sub-systems: Fire in a CS—Concealed space or other room, Fire type-
CF- Challenging fire or not, e.g., flaming or smouldering fire, Robustness Check includes
failure probabilities for RC1: Detection failure RC2: Sprinkler failure RC3: Alarm failure,
Egress protection failure BE—Blocked exit.
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Figure A1. Example of a typical Event tree incorporating fire scenarios.
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Figure A2. Typical Event Tree for apartment and corridor fire.
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Reliable ignition frequency is a prerequisite for the overall risk estimation. The ignition
frequency depends on the floor area of a particular building category. The annual ignition
frequency is estimated based on the following generalized Barrois model [32]

P1(A) = c1 Ar + c2 As (A2)

where P1(A) is the ignition frequency of a building with floor area A during one year and
c1, c2, s, and r are constants that are derived empirically, computed through fire statistics
available from different countries.

Appendix A.3. Step 3a—Identification of Human and Organizational Errors

One of the main strengths of this method is that it introduces HOEs in addition to the
conventional analysis methods. The Fussel-Vesely method is employed in this study to
measure the significance of the basic events [33]. The approach can be defined as the ratio
of the occurrence probability of the union of the minimum cut sets containing event X to
the occurrence probability of the top event. To better understand the method, the following
equation is used to consider a basic event:

p(e S) =
p (eS)
p (S)

(A3)

where e is the event where a model element of the hybrid approach is set to a specific
probability of a risk state S. For example, a risk state may represent a hardware component
failure appearing as a basic event in an event/fault tree analysis, or as a specific state of a
Bayesian Network (BN) variable such as maintenance procedures quality set to low rather
than a higher value.

The HOE basic events that significantly contribute to the fire accidents’ occurrence
have been identified and listed in Table A1. Their occurrence probabilities are estimated
based on statistical data obtained from the literature [14,42–48] as shown in the following
table.

Table A1. Probability of relevant HOE basic events acquired from the literature.

Basic Events Probability (106 h)

Poor safety supervision 4.60 × 10−4

Deficient training 1.89 × 10−3

Not following procedures 1.70 × 10−4

Deficient risk assessment 1.80 × 10−4

Deficient knowledge 1.89 × 10−3

Inexperience 1.10 × 10−3

Insufficient technical handover 6.30 × 10−3

Insufficient safety check 2.50 × 10−2

Inadequate periodic inspection 2.50 × 10−2

Invalid daily record 5.60 × 10−3

Inadequate emergency plan 5.00 × 10−4

Failure to read monitoring data correctly 2.50 × 10−3

Design error of operator 2.20 × 10−3

Failure to follow technical requirements 1.92 × 10−4

Not following technical requirements 1.92 × 10−4

Appendix A.4. Step 3b—Bayesian Network

When unknown elements are given, Bayesian networks are generally used as the
decision-making criteria [49] because they help incorporate the following:

• Multi-state variables;
• Dependent failures;
• Expert opinions that cannot be performed using standard FTA.
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BNs allow for the combination of previous probability assignments with the newly
available statistical data. In this study, Bayes’ theorem is applied to derive a scenario
probability that depends on uncertain factors. The key features of the method are:

• For the incorporation of HOEs, ET is mapped into a BN.
• In the first instance, the BN inserts observations in the nodes that are observable and

then utilizes the rules of probabilistic calculations forward and backward from the
nodes that are observable to the target node via an intermediate node, if exists.

• The extended BN model incorporating HOEs, determines a more precise estimate
for the probability of occurrence of the top event if a specific configuration of critical
HOEs is given.

• The critical parameters are revised based on prior probability, posterior probability,
and mutual information (i.e., entropy reduction) computed for each given HOEs.

• The BN scheme is essential when the system state depends on more than one event.
Since ETs are only capable of representing single input in a node, multiple inputs are
ensured by adopting a Bayesian approach [50]. This is the case when human errors
are considered.

By writing a conditional probability table, an ET can transform into a BN that provides
the probability of an outcome given the probability of its causative events using the method
suggested by Unnikrishnan et al. [51]. Netica which is a BN tool from Norsys was used for
the BN modeling due to its ability to:

• To incorporate case files;
• To provide sensitivity analysis;
• To operate in batch mode.

Netica computes standard belief updating which solves the network by finding the
marginal posterior probability for each node. The Netica BN scripts are given as sup-
plementary material. In Figure A3, the aforementioned scenarios are depicted in the BN
structure. It should be noted that in Figure A3, the symbol 0+ indicates values that are
very small and negligible. The exact calculation of those values is computed by Netica and
exported to an Excel spreadsheet.

Notations for the BN structure below:

• FY: fire ignition.
• FN: no fire ignition.
• DY: detection ON.
• DN: detection OFF.
• SuY: Suppression ON.
• SuN: Suppression OFF.
• SpY: fire and smoke spreads outside AOF
• SpN: fire and smoke does not spread outside AOF.
• NY: alarm/notification ON.
• NN: alarm/notification OFF.
• EY: egress protection ON.
• EN: egress protection OFF.
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Appendix A.5. Step 4—System Dynamics

System Dynamics modeling is used to obtain time-varying probabilities which allow
for the illustration of feedback loops and delays. Both [52,53] showed that fire accidents are
dynamic processes that are complex and SD can be used to analyse them. BN is the starting
point where each node of the BN is mapped into an SD model node. The SD perturbation
equation with a random term is as follows:

P( f ire yes) = 0.055 + Random Uni f orm
(
−de f aultChange

4
,

de f aultChange
4

)
× 0.055 (A4)

As an example, for scenario 16, the SD behavior is shown in Figure A4. This scenario
describes the failure of alarm/notification system due to deficient maintenance.
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The equation that governs the loop for the flow is as follows:

P(de f icient training yes) = Random Uni f orm
(
−de f aultChange

4
,

de f aultChange
4

)
P(de f icient training yes) (A5)

Using the Boolean logic, the CPT presented in Table A2 is transformed into an equation.
Consider the CPT for the BN node, i.e., ‘inefficient timely control’ which consists of three
parent nodes as follows:

• ‘Deficient training’;
• ‘Inefficient emergency plan’;
• ‘Not comply with the instruction’.

In the SD model, it is characterized by the variables—‘inefficient timely control yes’
and ‘inefficient timely control no’ and can be converted into the equation below:

P(ine f f timely control no)
= (1− P(de f iceint training yes))(1− P(not comply w instr yes))
(1− P(ine f f emerg plan yes))

(A6)

Table A2. CPT for the BN node ‘inefficient timely control’.

Deficient Training Inefficient Emergency Plan Not comply with the
Instruction Inefficient Timely Control

yes yes yes yes
yes yes no yes
yes no yes yes
yes no no yes
no yes yes yes
no yes no yes
no no yes yes
no no no no

The probability of each state displayed in the left-most column is the product of the
probabilities of the terms to the right in the same row. If in the left column, more instances
of the same state are found, then the probability is presented as the sum of the probabilities
of all instances. The alternative state ‘inefficient timely control yes’ is given by the following
equation:

P(ine f f tim contr yes) = 1− P(de f icent training no) (A7)

The node has the following four parent nodes:

• Fire;
• Inefficient timely control;
• Deficient check;
• Equipment aging.

The influence of these nodes is quantified through the CPT displayed in Table A3. The
node consists of three possible states as follows:
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• FY DY (fire yes, detection yes);
• FY DN (fire yes, detection no);
• FN (fire no).

The influence of the parent variables is stated through the listed values in the columns
on the left of the CPT. The same reasoning is applied to all other nodes in the BN.

Table A3. CPT for the four parent nodes, i.e., fire, inefficient timely control, deficient check, and equipment aging.

Fire Inefficient
Timely Control

Deficient
Check

Equipment
Aging FYDY FYDN FN

yes yes yes yes 70 30 0
yes yes yes no 70 30 0
yes yes no yes 70 30 0
yes yes no no 70 30 0
yes no yes yes 80 20 0
yes no yes no 80 20 0
yes no no yes 80 20 0
yes no no no 90 10 0
no yes yes yes 0 0 100
no yes yes no 0 0 100
no yes no yes 0 0 100
no yes no no 0 0 100
no no yes yes 0 0 100
no no yes no 0 0 100
no no no yes 0 0 100
no no no no 0 0 100

The final ERL variable encompasses the risk value for the specific design solution
computed as the sum of the ERLs of every single outcome. The consequence of each
sub-scenario (determined via ASET/RSET analysis) is multiplied by the associated path
node probability. A consequence is the number of fatalities estimated based on ASET/RSET
analysis.

The mapped SD model is demonstrated in Figure A5. An extended model has been
developed to include human and organisational factors and is primarily based on the
concept of reliability associated with maintenance practices (Figure A6). This dynamic
model is based on the BN and its HOE variables are as follows:

• Deficient training;
• Inefficient emergency plan;
• Not comply with the instruction;
• No check rules;
• Deficient maintenance;
• Incorrect risk assessment;
• Not following standards;
• Improper safety organization.
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All variables in the cycle are dynamic and their interaction shows an oscillating
pattern for the reliability parameter. The dynamic behaviour is simulated by stock and
flow variables using Equations (A8) and (A9):

NoC = 12 +
∫

RoC(t)dt (A8)

RoC(t) = 5
d
dt
(ps) (A9)

Appendix A.6. Step 5—Probabilities

Step 5 is to estimate the probabilities of each variable. This is done after the structure of
the model is fully defined including both static and dynamic modes. These were obtained
either from the literature or thorough fault tree analysis. Some of the key features of this
step are as follows:

o Different estimates for ignition frequency could be obtained through literature. Igni-
tion frequency is considered one of the most influencing parameters.

o For the reliability of detection and sprinkler, the estimates are similar to the literature,
as discussed above in Step 2.

o For HOEs, a review and assessment of selected incident data and maintenance
databases were performed to obtain average probabilities/ frequencies of HOEs
in industry, which are assigned to initiate events and basic events in the model to
further carry out a quantitative analysis of the occurrence frequency.

Appendix A.7. Step 6—Available Safe Egress Time (ASET)

The ASET is determined based on the criteria referred to as tenability limits and
derived from the physiological effects of fire on humans. Using B-Risk [35], a fire modelling
software capable of characterizing a fire scenario and its consequences, it was made possible
to establish the time to reach those limits using the following criteria:

• Temperature;
• Visibility;
• Fractional effective doses.
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Appendix A.8. Step 7—Required Safe Egress Time (RSET)

The RSET is the time required for a person to reach a safe place in the event of a fire.
The present method assumes a mixed computational approach, based on the equation as
follows:

RSET = Td + Tp + Tm (A10)

where:

Td is detection time;
Tp is pre-movement time;
Tm is movement time.

Detection time is computed from B-Risk simulations, which generates the time to
activate a smoke/heat detector in the AOF origin. Evacuation times were computed using
the hydraulics methods outlined in SFPE Handbook [8] and Pathfinder software for egress
modelling from Thunderhead Engineering.

Appendix A.9. Step 8—ASET-RSET Analysis

The analysis of ASET and RSET is performed to confirm that in the actual scenario,
occupants have enough time to safely escape the building. Adverse consequences are
assumed if ASET is lower than RSET. Those calculations for each ET scenario complete the
consequence analysis for the building solution.

Appendix A.10. Step 9—Risk Evaluation

The risk calculation is performed using the following equation:

R =
n

∑
i=1

Pi Ci (A11)

where Pi is the probability of each scenario and Ci are the consequences for the same
scenario.

The resultant ERL (from ET) for each building solution that does not consider HOEs
is compared with the solution (from BN) with HOEs to determine the HOE impacts on the
overall risk.

Appendix A.11. Step 10—Risk Reduction

The global ERL has been estimated by static or dynamic analysis. In the static analysis,
the resulting value is compared with generally accepted industry criteria or with a DTS
solution following the BCA in all scenarios with and without HOEs. If the ERL exceeds
those criteria, the building design is modified and undergoes a new iteration.

Appendix B

Table A4. Failure probabilities of technical risks implemented in Event Tree analysis.

Safety System Failure Critical Component Low Expected High Reference

Challenging Fire 0.25 0.35 0.45 Hall [54]

Emergency Exit is Blocked Human error 0.15 0.20 0.25 Magnusson et al.
[55]

Fire in Concealed Space Non-combustible
partition ceiling/wall 0.15 0.20 0.25 N.A.

Sprinkler system Main valve shut off,
Human errors 0.02 0.05 0.15 Moinuddin &

Thomas [43]
Smoke detection Poor maintenance 0.05 0.10 0.15 Bukowski [56]
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Table A4. Cont.

Safety System Failure Critical Component Low Expected High Reference

Alarm system Shut-off after
maintenance 0.05 0.10 0.15 PD7974−7 [6]

Manual detection Human errors 0.30 0.48 0.60 Holborn et al. [57]
Smoke Control/Mechanical

ventilation Fire damper failure 0.20 0.30 0.50 Zhao [58]

Smoke barrier Door seal failure 0.05 0.20 0.50 PD7974−7 [6]

Fire department response Human and
organizational errors 0.02 0.05 0.30 USFA [59]

Management strategy Human errors 0.05 0.15 0.30 Sabapathy et al.
[40]

Table A5. Types of distributions.

Distribution Graph Probability Density Function Properties Framework

Uniform
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Appendix C. Sensitivity Calculations of HOE Variables

The calculation procedure of sensitivity for the three main HOE variables are described
below.

Note:



Appl. Sci. 2021, 11, 2590 47 of 52

D = difference in absolute terms between values at 95%and at 5% cumulative probability
dr = difference in relative terms between values at 95%and at 5% cumulative probability
Challenging fire scenario
‘not comply with the instruction’

D95−5 = 0.70− 0.21 = 0.49 in absolute terms

d95−5 =
0.49
0.46

= 1.07 relative to the mean value

‘deficient training’

D95−5 = 0.41− 0.10 = 0.31 in absolute terms

d95−5 =
0.31
0.25

= 1.24 relative to the mean value

‘inefficient emergency plan’

D95−5 = 0.21− 0.03 = 0.18 in absolute terms

d95−5 =
0.18
0.11

= 1.64 relative to the mean value

‘ERL’

D95−5 = 5.88 ∗ 10−6 − 5.59 ∗ 10−6 = 2.90 ∗ 10−7 in absolute terms

d95−5 =
2.90 ∗ 10−7

5.77 ∗ 10−6 = 0.05 relative to the mean value

Sensitivity

S(not_comply_with_instr) =
0.05
1.07

= 0.05

S(de f icient_training) =
0.05
1.24

= 0.04

S(ine f f ective_emergency_plan) =
0.05
1.64

= 0.03

As expected, the HOE variable ‘not complying with the instructions’ has the greatest
influence on the outcome with a sensitivity of 5% followed by ‘deficient training at 4% and
‘inefficient emergency plan’ at 3%

Robustness Check scenario
‘operator fails’

D95−5 = 0.037839− 0.0257955 = 0.012 in absolute terms

d95−5 =
0.012

0.03157
= 0.38 in relationships to the average value

ERL

D95−5 = 7.11 ∗ 10−4 − 6.36 ∗ 10−4 = 0.75× 10−4 in absolute terms

d95−5 =
0.75× 10−4

6.68× 10−4 = 0.1123

in relationship to the average value
Sensitivity

S(operator_ f ails) =
0.1123
0.38

= 0.29
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Appendix D. Uncertainty—Confidence-Level Based Societal Risk in F-N Curves

Societal risks for the case studies are presented as F-N curves and constructed using
the following equation:

F = k× N−a (A12)

where F is the cumulative frequency of N or more fatalities, k is a constant, N is the number
of fatalities, a is the aversion factor.

Sun et al. [38] propose a confidence-level-based SR characterize the uncertainty of SR
in two dimensions by defining the confidence bounds of the SR given by the F-N diagram.
In this method, it is assumed that the events’ occurrence in the ET model of PRA follows
Poisson distribution. Based on this assumption, the confidence interval of the number of
times an event occurs can be determined by:

ϕU =
X2

1−ω/2(2n+2)
2

ϕL =
X2

ω/2(2n)
2

(A13)

where ϕU and ϕL are the upper and lower boundaries of the CI for the mean value of a Pois-
son distribution, respectively; n is the number of times an event occurs in an interval (e.g.,
number of fatalities; ω is defined as the significance level of the statistics. X2

1−ω/2(2n + 2)
is the (1−ω/2)th quantile of the chi-squared distribution with (2n + 2) degrees of free-
dom; X2

ω/2(2n) is the (w/2)th quantile of the chi-squared distribution with (2n) degrees
of freedom; and X2

1−ω/2(2n + 2) and X2
ω/2(2n) can be found in the table of chi-squared

distribution. Then, the mean value of event frequencies and the corresponding confidence
interval can be determined by:

θ = n. 1
S

θU = ϕU . 1
S

θL = ϕL. 1
S

(A14)

where θ is defined as the mean value of event frequencies; θU and θL are the upper and
lower boundaries of the confidence interval of θ, respectively; and S is the product of the
number of experiments and an interval of time.

The reliability of the F-N curve evaluation is examined by the confidence-level-based
SR uncertainty in two dimensions in the F-N diagram. Specifically, a-cuts of F(N) and N
are taken as the CI to quantify the SR uncertainty according to the possibility theory by:

∏(A) = max
c∈A
{π(c)}

N(A) = 1−∏
(

A
) (A15)

where N(A) is the necessary measure from the possibilistic distribution π(c) of C, for set A.

Appendix E. Sensitivity Analysis for System Dynamics

Sensitivity analysis for the SD model is then performed for the dynamic response of
the system over 10 years. Sensitivity analysis is used to determine how the model behaves
and responds to a change in a parameter. Each simulation with changed parameters and
slope of the nonlinear relationship was compared with the base run simulation to determine
whether the parameters and nonlinear relationships exhibited sensitive behavior. If the
model behavior only changes numerically with the values of parameters, it indicates that
the underlying behavior is not sensitive to changes in parameters. In fact, most of the
input parameters will not have a great influence on the model behavior, except for critical
variables in the model. The sensitivity of a parameter is given by the equation below:

S(t)
∣∣∣∣ (Y(t + 1)−Y(t))/Y(t)
(X(t + 1)− X(t))/X(t)

(A16)
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where S is the sensitivity function, Y is the output behavior variable, X is the model
parameter and t is time.

The Monte Carlo simulation is suitable when models are capable of generating interac-
tions between factors or have non-linear outputs. The sensitivity analysis tests are carried
out in Vensim software V7.4.5 from Ventana Systems. A Latin Hypercube search was used
as a mechanism to ensure that the full reasonable range of each parameter was studied
using 1000 simulations. The Latin Hypercube is designed to reduce the required number of
simulations required to obtain adequate information about the distribution. The sensitivity
runs provide a comparative graph of final results, which cause the simulation results to be
displayed as confidence bounds ranging from 0 to 100 percent. Confidence bounds [39] are
used to represent the sensitivity of the variable. The analysis is computed at each point in
time by ordering and sampling all the 1000 Monte Carlo simulation runs. The color area
in the sensitivity graph indicates whether the specified variable may affect the simulation
results to a great extent. For the confidence bounds color in the output graph, yellow
represents 50%, green represents 75%, blue represents 95% and grey represents 100%.

Appendix F

Table A6. List of parameters in System Dynamics model.

Parameters Model Value (Units) Definition/Equation Range of Variation
(Multi)

adopt unsuitable
equipment dimensionless 1 − (improper safety organisation yes) × (1 − dump1

× not obey standards) 0.0028–0.0048

fire probability dimensionless ignition frequency + RANDOM UNIFORM(−default
Change/4, default Change/4, 1) × ignition frequency 0.0023–0.0038

inefficient emergency
control plan dimensionless

1 − (1 − deficient training yes) × (1 − dump2 × not
comp w instr yes) × (1 − control2 × inefficient

emergency plan yes)
0.0053–0088

not obey standards dimensionless 1.05 − Level of organisation/4 0.16–0.28

wrong risk
assessment dimensionless 1.3 − Level of organisation/4 0.48–0.58

deficient check dimensionless 1 − deficient check no 0.23–0.45

deficient
maintenance dimensionless

deficient maintenance = RANDOM UNIFORM(−
default Change, default Change, 1) × deficient

maintenance yes
0.06–0.10

deficient training dimensionless 1 − Level of organization 0.0645–0.1075

electrical failure dimensionless 1 − (1 − component faulty connection) × (1 − no
battery) 0.0375–0.0625

equipment aging dimensionless 1 − (deficient maintenance yes a)*(1 − wrong risk
assessment) 0.2325–0.3875

improper safety
organisation dimensionless 1.3 − control4 × Level of organisation/4 0.075–0.125

inefficient timely
control dimensionless

1 − (deficient training yes) × (1 − dump2 × not comp
w instr yes) × (1 − control3 × inefficient emergency

plan)
0.315–0.525

inefficient
emergency plan dimensionless 1.25 − Level of organisation*dump5/4 0.092–0.154
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Table A6. Cont.

Parameters Model Value (Units) Definition/Equation Range of Variation
(Multi)

Level of organisation dimensionless rate of change 1 to 4

n◦ of accidents dimensionless INTEG(accident rate) 15–25

no check rules dimensionless 1.3 − Level of organisation*dump6/4 0.1065–0.1775

not comply with
instructions dimensionless 0.3 + deficient training 0.3045–0.5075

Number of checks number per year INTEG(rate of change) 23.25–38.75

perceived safety dimensionless gap in no of accidents × perception 2.175–3.625

ProbCheckFailure dimensionless 0.4 × deficient training + 0.1 0.0825–0.1375

ProbValveClosed dimensionless ProbValveClosed = 0.01 + RAMP(0.05,1,20) 0.0075–0125

reliability days/year 1 − (((ProbCheckFailure × 19) + 1)/20) +
ProbValveClosed a + (1/N◦ of checks) 9 to 15

smoke alarm failure dimensionless 1 − (1 − panel failure) × 1 − zone isolated) 0.675–0.925

notification failure dimensionless 1 − (1 − bell failure) × (1 − bulb failure) 0.75–0.95

panel failure dimensionless 1 − (1 − electronic failure)*(1 − notification failure) 0.011175–0.018625

sprinkler failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.85–0.95

sprinkler head
failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.00225–0.0375

water supply failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.099–0.165

downfeed failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.019725–0.032875

pressure valve
failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.00093–0.00155

outlet valve failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.000465–0.000775

isolation closed dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0174–0.029

water valve closed dimensionless Probability of Failure on Demand (PFD) [43,48] 0.001425–0.002375

pressure valve closed dimensionless Probability of Failure on Demand (PFD) [43,48] 0.000472–000788

tank failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.08175–0.13625

pump failure dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0423–0.0705

return valve closed dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0009–0.0015

operator fails dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0009–0.0015

flow probability dimensionless Probability of Failure on Demand (PFD) [43,48] 0.70–0.90

valve left closed dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0009–0015

alarm valve dimensionless Probability of Failure on Demand (PFD) [43,48] 0.00141–00235

ordinary stop valve dimensionless Probability of Failure on Demand (PFD) [43,48] 0.000465–000775

non-return valve dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0008925–001488

alarm bell dimensionless Probability of Failure on Demand (PFD) [43,48] 0.02175–0.03625

storage tank dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0054225–0.009038

mains power dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0002745–0.000458

pressure switch dimensionless Probability of Failure on Demand (PFD) [43,48] 0.0059175–0.009863

diesel pump dimensionless Probability of Failure on Demand (PFD) [43,48] 0.069–0.115
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