
applied
sciences

Article

Deep Reinforcement Learning-Based Path Planning for
Multi-Arm Manipulators with Periodically Moving Obstacles

Evan Prianto 1 , Jae-Han Park 2 and Ji-Hun Bae 2 and Jung-Su Kim 1,*

����������
�������

Citation: Prianto, E.; Park, J.-H.; Bae,

J.-H.; Kim, J.-S. Deep Reinforcement

Learning-Based Path Planning for

Multi-Arm Manipulators with

Periodically Moving Obstacles. Appl.

Sci. 2021, 11, 2587. https://doi.org/

10.3390/app11062587

Academic Editor: Manuel Armada

Received: 28 January 2021

Accepted: 11 March 2021

Published: 14 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Center for Electrical and Information Technology, Department of Electrical and Information
Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
evanprianto@seoultech.ac.kr

2 Applied Robot R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea;
hans1024@kitech.re.kr (J.-H.P.); joseph@kitech.re.kr (J.-H.B.)

* Correspondence: jungsu@seoultech.ac.kr; Tel.: +82-2-970-6547

Abstract: In the workspace of robot manipulators in practice, it is common that there are both static
and periodic moving obstacles. Existing results in the literature have been focusing mainly on the
static obstacles. This paper is concerned with multi-arm manipulators with periodically moving
obstacles. Due to the high-dimensional property and the moving obstacles, existing results suffer
from finding the optimal path for given arbitrary starting and goal points. To solve the path planning
problem, this paper presents a SAC-based (Soft actor–critic) path planning algorithm for multi-arm
manipulators with periodically moving obstacles. In particular, the deep neural networks in the SAC
are designed such that they utilize the position information of the moving obstacles over the past
finite time horizon. In addition, the hindsight experience replay (HER) technique is employed to
use the training data efficiently. In order to show the performance of the proposed SAC-based path
planning, both simulation and experiment results using open manipulators are given.

Keywords: path planning; multi-arm manipulators; moving obstacles; reinforcement learning; soft
actor–critic (SAC); hindsight experience replay (HER); collision avoidance

1. Introduction

In the fourth industrial revolution, the operation of an autonomous multi-robot in a
complicated workspace has been an important challenge for modern smart factories [1].
It is important to replace the human workforce with robots, to collaborate with robots,
and to deploy robots in an efficient manner [2,3]. This paper presents a deep reinforcement
learning-based path planning algorithm to deal with periodically moving obstacles.

1.1. Background and Motivation

In the autonomous robot framework, there are three fundamental concepts such as
perception, planning, and control [4]. The perception aims to obtain information about
the environment using various sensors. The planning schedules a sequence of valid
configurations for the robot arms or wheels in order to perform a given task. When the
path achieving the goal is given, the controller adjusts actuators so that, for example,
the configurations of the robot manipulators follow the planned path as close as possible.

Although the robot manipulator operation is quite diverse in the workspace, most
operations can simply be interpreted as moving the robot from a starting point to a goal
point. Hence, it is utmost essential for the manipulator to move without collision with
any obstacles in the workspace. In practice, there are typically two kinds of obstacles:
static and periodically moving obstacles. In the case of static obstacles, their locations
do not change in the middle of the robot operation, and most existing path planning
methods focus on the static obstacles. For the robot operation with the static obstacles,
it is a common situation in practice that human experts design the path for the robot

Appl. Sci. 2021, 11, 2587. https://doi.org/10.3390/app11062587 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0656-3782
https://orcid.org/0000-0001-5837-3131
https://orcid.org/0000-0002-7859-3091
https://doi.org/10.3390/app11062587
https://doi.org/10.3390/app11062587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11062587
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11062587?type=check_update&version=3

Appl. Sci. 2021, 11, 2587 2 of 19

manipulators in order to perform a given task. Recent research effort is directed to make
this procedure in an automatic manner. In other words, the human experts’ path planning
is replaced with various automatic algorithms [5]. The other is the periodically moving
obstacle. For the purpose of dealing with the moving obstacles, this paper considers the
situation where every dynamic object in the workspace moves by plan. Consequentially,
it is assumed in this paper that there are no unexpected obstacles, and that all dynamic
obstacles are moving periodically. In the case of industrial robots in a real factory, this is the
case. Moreover, since one robot manipulator is viewed as an obstacle to the other robots,
and the entire operation on a factory is usually batch production, many obstacles can be
regarded as periodically moving obstacles if they are not static obstacles. Since existing
path planning algorithms deal with such a moving obstacle using any methods for static
obstacles, the results are conservative. In other words, to deal with the moving obstacles,
those algorithms view the whole area where the obstacle moves as one big artificial static
obstacle, which is inevitably conservative.

In robot path planning research, the sampling-based algorithm is representative [6].
In order to compute the path connecting the initial and goal points, the sampling-based
algorithm samples the nodes from the collision-free space and connects those nodes.
Hence, the method relies on how to sample the nodes. In the case of multi-arm manipu-
lators, the problem dimension increases quadratically as the number of arms increases,
which makes it difficult for the planner to find an optimal path. Moreover, if the obsta-
cle moves, it is not easy to use the sampling-based algorithms. Existing path planning
algorithms, especially sample-based approaches, work well for a single robot manipulator.
However, if the target manipulator is a multi-arm manipulator with moving obstacles,
the path planning problem becomes difficult since the problem dimension is high and it is
not trivial to sample the configuration space.

Hence, the focus of this paper is placed on devising a deep reinforcement learning-
based path planning algorithm which can generate collision-free paths when the multi-arm
manipulator has both static and periodically moving obstacles.

1.2. Related Work

Fast marching method (FMM) [7], probabilistic road map (PRM) method [8], and rapid
exploring random trees (RRT) method [9–11] are representatives of sampling-based algo-
rithms. In PRM, the shortest path is computed from the graph made by the sampled points
using the Dijkstra algorithm [12,13]. Artificial potential field methods are also popularly
used to design the path planning algorithm which leads the robot manipulator from the
starting point to the goal point [14,15]. In the derivation, the gradient of the potential
function plays a key role in computing the direction of the optimal path [16]. Since it is
based on the gradient descent method, it can suffer from trapping in the local minimum,
which makes it difficult to be applied to high-dimensional problems [17]. In addition,
artificial intelligence like reinforcement learning is also widely used to design collision-
avoiding path planning [18]. In [19], Real-Time RRT* (RT-RRT*) is proposed to solve the
path planning problem with a dynamic obstacle in a two-dimensional environment.

This paper improves the result in [5,20] in such a way that the deep reinforcement
learning-based path planning for multi-arm manipulators with both static and periodi-
cally moving obstacles is proposed using the SAC algorithm with hindsight experience
replay (HER).

1.3. Proposed Method

This paper proposes a deep reinforcement learning-based path planning algorithm
for multi-arm manipulators with periodically moving obstacles. In particular, in order to
deal with the high-dimensional property of the multi-arm manipulators, the SAC-based
path planning algorithm is devised. Since the SAC-based algorithm uses an entropy term
in its objective function, it can find the optimal solution of the high-dimensional problem,
which makes the SAC-based algorithm outperform the existing results. Moreover, for the

Appl. Sci. 2021, 11, 2587 3 of 19

purpose of handling periodically moving obstacles in the path planning, the neural net-
works in the SAC are designed such that the position information of the obstacles over
the past finite time horizon is used as an input to the neural networks together with the
joint information of the robot. Note that the SAC employs five neural networks in order to
estimate the value function and optimal policy. Hence, it is crucial to design the neural net-
works appropriately depending on the given problem. After the proposed SAC-based path
planning is trained offline for various starting and goal points in the workspace, it can find
the optimal path for arbitrary starting and goal points online by computing the forward
path of the trained actor-network, which means that the proposed method is computa-
tionally cheap even for the high-dimensional problems. Both simulation and experiment
results using real robot manipulators show the efficiency of the proposed method.

2. Background Concept and Problem Modeling
2.1. Path Planning for Robot Manipulator and Configuration Space

In the path planning problem for a robot manipulator, the configuration is defined as
a position representation of the robot in the workspace. In other words, the configuration
space Q (also called joint space in a robot manipulator) is a set of all possible joint angles of
the robot manipulator [3,21,22]. To be specific, Q is defined as a subset of n-dimensional
vector space Rn, where n is the number of the joints of the robot manipulator. Because of
this reason, the position of the robot can be represented as point q̄ ∈ Rn that has n angle
values (q̄1, ..., q̄n), where each value indicates the joint angle of the robot. The set Q consists
of two subsets: the first subset is the collision-free space Qfree that is comprised of all
possible configurations, and in which the robot does not collide with any obstacles or itself.
The second subset is called the collision space Qcollide which is the complement of Qfree in
Q and the subset of Q. In Qcollide, the robot arm manipulator collides with obstacles or
itself [21,23]. The robot manipulator does not collide with any obstacles or itself if its joint
angles belong to Qfree. However, if there is a collision between the robot manipulator and
obstacles or itself, the values of the joint angles must be in Qcollide.

In the sampling-based method, the discrete representation of Qfree is obtained by
random sampling in Qfree. The valid path is defined by a connected line between the
sampling points. Such sampled points and paths can establish a graph. Because of
this construction, the nodes in the graph describe possible configurations of the robot
manipulators. In addition, the collision-free paths between any two nodes are represented
by connected edges in the graph. For the notation of the path planning problem, let q̄t ∈
Q ∈ Rn mean the values of the joint angles of the manipulator at the tth iteration, and T
describe the maximum number of iterations in the algorithm. Thus, the algorithm needs
to find the path within T iterations for a given starting configuration q̄init ∈ Qfree and goal
configuration q̄goal ∈ Qfree .

Based on this concept, when q̄init ∈ Qfree and q̄goal ∈ Qfree are acquired, the algorithm
computes a valid continuous and shortest path linking q̄init and q̄goal. The path is defined as
a sequence of the state q̄t such that q̄0 = q̄init, · · · , q̄T1 = q̄goal where T1 ≤ T. In addition,
the sequence {q̄0, · · · , q̄T1} and the line segment connecting any two neighbors state q̄t and
q̄t+1 from {q̄0, · · · , q̄T1} have to belong to Qfree.

2.2. Collision Detection in Workspace Using the Oriented Bounding Box (OBB)

The definition of workspace W is a space where an actual robot operates. In many
cases including the robot manipulator, W space is in three-dimensional Euclidean space
R3. To confirm that q̄t ∈ Qfree, collision detection methods have to be applied in workspace
W [21,23]. To this end, the oriented bounding boxes (OBB) [24] is employed for collision
detection. In OBB, both the robot arm and obstacles are modeled as a box. Because the
modeling is implemented in OBB, the collision checking between 2 boxes only has 15 cases:
three faces of the first box, three faces of the second box, and nine edge combinations
between the first box and second box [25]. Based on two box checking, the higher level

Appl. Sci. 2021, 11, 2587 4 of 19

checking between one robot and one obstacle can be implemented as a repeated two OBB
checking [26].

2.3. Reinforcement Learning

As a standard solution to the MDP problem, the fundamental method in the rein-
forcement learning algorithm uses an optimization-based method to maximize the sum of
the reward signal by letting the agent interact with a stochastic environment and choose
the action over sequences of discrete-time steps [27]. The MDP is defined by the tuple
{S, A, P, r, γ}, where S denotes the set of the state, A the set of action, P the transition
probability, r(s, a) the reward function, and γ the discount factor [28]. The transition
probability P(s′|s, a) represents the probability of moving the current state s to the next
state s′ when action a ∈ A is applied. Regarding the agent, the distribution of action a
for the given state s from the environment is implied by the policy that is denoted by
π(a|s). At each time step t, the agent selects action at ∈ A based on the policy π : S→ A
and state st ∈ S, and applies it to the environment. After that, the environment returns
both the next state st+1 ∈ S and reward rt+1 ∈ R according to the transition probability
P : S× A→ P(S), where P(S) means that the probability of the next state and the reward
function r : S× A → R. By repeating this procedure, the learning process updates the
policy until it reaches the optimal policy, defined by π∗, which maximizes the expected
return Eπ [∑∞

k=0 γkrt+k+1]. In order to acquire the optimal policy, the optimal value function
(i.e., estimate of the maximum return) is approximated by value-based methods like deep
Q-network (DQN) as function approximation [29]. The other way to get the optimal policy
is using the policy gradient methods to compute the optimal policy directly from the agent
experience. Representative methods of the policy gradient are REINFORCE, actor–critic
method, deterministic policy gradient (DPG), deep DPG (DDPG), asynchronous advantage
actor–critic (A3C), trust region policy optimization (TRPO), maximum a posteriori policy
optimization (MPO), and distributed distributional DDPG (D4PG) [30–34]. In the reinforce-
ment learning, the training performance mostly depends on the set of samples of state st,
action at, reward rt+1, and next state st+1. In addition to the various reinforcement learning
algorithms, efforts are directed at devising techniques to utilize the samples (called episode)
effectively for better learning, for example replay memory [29] and HER [35]. In this paper,
for the purpose of tackling the path planning problem for the multi-arm manipulators with
periodically moving obstacles, a soft actor–critic (SAC)[36] algorithm is employed.

3. Soft Actor–Critic Based Path Planning for Periodically Moving Obstacles

In this section, in order to design a SAC-based path planning, the MDP for the
problem is defined, and the proposed deep learning network used in the SAC is presented.
Although the considered MDP is quite similar to that in [20], since both deal with multi-arm
manipulators, the MDP is explained here in a self-contained manner.

3.1. Path Planning for the Multi-Arm Manipulator and Augmented Configuration Space

The multi-arm manipulator under consideration consists of m identical robot-arm
manipulators that have n number of joints. Let qi

t ∈ Rn determine the joint angles of the
ith robot-arm at the tth iteration in the proposed SAC-based method, and qi

t,j ∈ R denotes

the jth component of qi
t ∈ Rn, i.e., the value of the jth joint angle of the ith robot-arm.

In the path planning algorithm for the multi-arm manipulator, if the configuration
space is defined for each robot, it is difficult to define Qfree and Qcollide during the robot
operation since Qfree for each arm is affected by the other arms, i.e., one robot serves as an
obstacle to the others in the workspace. Taking this into account, it is convenient to define
one big configuration space by augmenting the configuration space of each manipulator.
This corresponds to regarding the multi-arm manipulator as one virtual manipulator.

Appl. Sci. 2021, 11, 2587 5 of 19

The dimension of the augmented configuration space is nm. Hence, the state of the virtual
manipulator is represented by

qt =

q1

t
q2

t
...

qm
t

 ∈ Rnm, qi
t =

qi

t,1
qi

t,2
...

qi
t,n

 ∈ Rn, i ∈ {1, 2, · · · , m}. (1)

Therefore, the resulting augmented configuration space is described by Qa := Qa
free

⋃
Qa

collide

where

Qa
free = Qfree × · · · ×Qfree︸ ︷︷ ︸

m times

⊂ Rnm and Qa
collide = Qcollide × · · · ×Qcollide︸ ︷︷ ︸

m times

⊂ Rnm,

Qa
free defines the collision-free space for qt and Qa

collide denotes the corresponding col-
lision space. Finally, the path planning problem of the multi-arm manipulator can be
redefined as the path planning for the (virtual) single-arm manipulator with a given
starting point q0 ∈ Qa

free and goal point qgoal ∈ Qa
free being

q0 =

q1

init

q2
init

...
qm

init

, qgoal =

q1

goal

q2
goal

...
qm

goal

,

where qi
init and qi

goal denote the starting and goal point of the ith robot-arm.

3.2. Multi-Arm Manipulator Markov Decision Process Considering Periodically Moving Obstacle

In order to apply deep reinforcement learning to the path planning algorithm for the
multi-arm manipulator considering a periodically moving obstacle, a multi-arm manipu-
lator MDP (MAMMDPmo), i.e., the tuple {S, A, P, r, γ}, needs to be defined. For a better
understanding, the diagram of MAMMDPmo is depicted in Figure 1.

Figure 1. Multi-arm manipulator MDP considering periodically moving obstacle (MAMMDPmo).

Appl. Sci. 2021, 11, 2587 6 of 19

In principle, MAMMDPmo is similar to MAMMDP in [20]. The only difference is that
the state in MAMMDPmo is defined such that the information on the moving obstacle is
related to the state. For this purpose, it has to be determined which information on the
obstacle is used in defining MAMMDPmo. In this paper, the location of the obstacle in the
workspace for the past nd sampling times is used where nd > 0 denotes the window size.
Namely, the following information on the obstacle is used:

Dt =

dt

dt−1
...

dt−(nd−1)

 ∈ R3·nd , dt =

 xd
t

yd
t

zd
t

 ∈ R3, (2)

where dt represents the location of the obstacle in the workspace at the sampling time
t. This nd can be viewed as the number of the features obtained from the obstacle. In
addition to this time window, it is also assumed that Dt is available only when the obstacle
belongs to a predefined region such as a neighborhood of the multi-arm manipulator. When
the manipulator does not belong to the region, Dt is not available to the MAMMDPmo.
With this in mind, the current state st ∈ Rnm is defined as st = (qt‖Dt). In other words,
the state contains the information of not only the current configuration of the multi-arm
manipulator but also Dt (i.e., obstacle location over the past nd sampling times).

The action is calculated by at = f (et, st), where et follows the Gaussian distribution
N (0, σt) with σt being the variance, and f (·, ·) generates a stochastic action using noise
et and state st. As a matter of fact, function f (·) serves as a sampler. Thus, the action is
sampled from a probability distribution and variation of the configuration. Then, the next
configuration is calculated as the sum of the current configuration and the action such as
q̂t+1 = qt + αat + εe, where tuning parameter α is defined as the geometric mean of the
maximum variations of each joint and εe is an environmental noise, where εe ∼ N (0, σe).
When q̂t+1 ∈ Qa

collide happens, the next configuration becomes the previous configuration
meaning that it stays at the current configuration. The following summarizes how the
configuration is updated:

qt+1 =

{
q̂t+1, if q̂t+1 ∈ Qa

free,
qt, if q̂t+1 /∈ Qa

free.

Using this, the next state is denoted as st+1 = (qt+1‖Dt+1), where Dt+1 is the updated
information of the obstacle position. Applying the action and obtaining the state and
reward are repeated until the next configuration reaches the goal point qgoal. Owing to
the practical limitation like numerical errors, instead of qt+1 = qgoal, the relaxed condition
‖qt+1 − qgoal‖ ≤ η · α is employed for the termination in an implementation where ‖ · ‖
defines the norm of a vector and tuning parameter η satisfies 0 < η < 1.

If the next configuration is not the goal point, the corresponding reward is −1. How-
ever, when the agent meets the terminal condition, the corresponding reward becomes 0.
If the agent cannot reach the goal until the maximum number of iteration, the total reward
is given by−T. On the other case, if the iteration ends at a certain iteration T1 < T, the total
reward amounts to −(T1 − 1). This reward function r(st, at) is summarized as follows:

rt+1 =

0, if |qt+1 − qgoal| ≤ η · α
−1, if qt+1 ∈ Qa

collide

−1, if qt+1 ∈ Qa
free

(3)

In view of the goal of reinforcement learning, the objective of the proposed algorithm
is to find the optimal policy that maximizes the total reward. If the iteration can finish
before reaching T, the sum of reward is more than −T such as −(T1 − 1) > −T. By trying
to maximize the total reward in training process, the agent finds the shortest path.

Appl. Sci. 2021, 11, 2587 7 of 19

In the next subsection, it is presented how to update the policy in the middle of
training using deep neural networks.

3.3. Soft Actor–Critic (SAC) Based Path Planning Considering Periodically Moving Obstacles

Since our MAMMDPmo has a continuous action value, there are several reinforcement
learning methods for continuous action MDP such as those in [32,36,37]. Soft actor–critic
(SAC), especially, is the best known for its performance for the MDP with the continuous
action and high-dimensional state. SAC is based on maximum entropy reinforcement
learning that maximizes not only the expected sum of rewards but also the entropy of the
policy of action [36,38].

When the policy π is updated by maximizing only the total reward, the center of the
distribution of the policy is formed around a specific action. However, by maximizing
policy entropy together with the reward, the SAC method can make the distribution spread
more and encourage the agent to explore a wider range of the actions. The soft state-value
function and soft Q-value function are defined as follows:

V(st) = Eat∼π [Q(st, at)− β log π(at|st)], (4)

Q(st, at) = r(st, at) + γEst+1∼p[V(st+1)], (5)

where β denotes the temperature parameter of the entropy function. The soft state value
function V(st) defined in (4) is the expected sum of the entropy augmented reward for the
given current state st. In addition, the soft Q-value function or soft action-value function
Q(st, at) are defined in (5) and is the expected sum of augmented reward for a given pair
of state st and action at.

Figure 2. Architecture of the proposed SAC-based with the HER path planning algorithm.

For the purpose of estimating the soft value and Q-value functions, and finding the
optimal policy, the SAC-based algorithm consists of five neural networks: two for the
soft value function, two for the soft Q-functions, and one for the policy. The proposed
SAC-based path planning utilizes the structure described in Figure 2. The structure is
quite similar to that in [20] except for the information of the moving obstacle. As the
proposed path planning has to take the periodically moving obstacle into account, it has
to be decided properly how to use the obstacle information Dt for the path planning.
Since information Dt has to be considered when the policy is trained at a given state in
order for the manipulator to enable to avoid the obstacle, information Dt is also used as
the input to the network for the policy. In addition, since the policy network is affected by
the value functions, as a result, all the neural networks for the proposed SAC-based path
planning have to have information Dt as an input.

Appl. Sci. 2021, 11, 2587 8 of 19

Figure 3. The deep neural network for the state value function

Figure 3 illustrates how the deep neural network (DNN) estimates the state value
function. The DNNs N1 and N2 are parameterized by ψ and ψ̄. The network parameterized
by ψ̄ is the target network which makes the training stable and enhances the learning
performance of DNNs N3 and N4 for estimating the Q-value function. The inputs to DNN
N1 are the configuration qt, goal state qgoal, and Dt. In order to train DNN N1, the following
objective function and its gradient are used:

JV(ψ) = Est [
1
2
(Vψ(st)−Eat [min

k=1,2
Qθk (st, at)− β log πφ(at|st)])

2], (6)

where the minimum of the soft Q-function is determined between Qθ1 and Qθ2 , which are
the output of the DNN N3 and N4. It is reported that the use of such a minimum makes it
possible to avoid overestimation of Q-value [37]. The parameterized policy πφ comes from
DNN N5. To find the optimal parameter ψ of DNN N1, the network N1 for the soft state
value is trained by minimizing JV(ψ) using ∇JV . After updating the parameter ψ using
the gradient descent, the target parameter ψ̄ is updated according to ψ̄← τψ + (1− τ)ψ̄ at
each training step where τ ∈ [0, 1].

Figure 4. The deep neural network for the action value function

In order to estimate the action value function, two DNNs are again used as depicted
in Figure 4. The input to N3 and N4 are the same as those of N1 and N2. The network
parameters θ1 and θ2 are trained by minimizing the following objective function:

JQ(θk=1,2) = Est ,at [
1
2
(Qθk=1,2

(st, at)− (r(st, at) + Vψ̄(st+1)))
2], (7)

where Vψ̄ comes from DNN N2, and the double Q-value method is applied as it is sug-
gested in [36,37,39]. The minimum Q-function is also used in the DNN for the objective
function (8).

Figure 5. The deep neural network for the policy.

Appl. Sci. 2021, 11, 2587 9 of 19

Figure 5 describes the input and output of DNN N5. Similar to the other DNNs,
the network parameter φ is trained by minimizing the objective function in the following:

Jπ(φ) = Est [log πφ(at|st)− min
k=1,2

Qθk (st, at)], (8)

where Qθk is provided by N3 and N4. In fact, this function is a kind of the Kullback–Leibler
(KL) divergence between the policy and Q-value [36]. The output of DNN N5 is fφ(et; st),
and the action is sampled from fφ(et; st) such that at = fφ(et; st).

Since the SAC is a type of the off-policy actor–critic method [36,40], the training gathers
transition tuples (st, at, st+1, r(st, at)) in every action step and stores them in experience
replay memory D [29]. At the start of the training, a collection of these tuples is sampled
from the reply memory and used to calculate the expectation in the objective functions.
In addition to the SAC, Hindsight Experience Replay (HER) is used to enhance the sample
efficiency [20,35]. In summary, the proposed SAC-based path planning algorithm is
presented in the form of the pseudo-code in Algorithm 1.

Appl. Sci. 2021, 11, 2587 10 of 19

Algorithm 1 Proposed SAC-based path planning algorithm for multi-arm manipulators.

1: Define MAMMDP and the current state st = (qt‖Dt) and the initial and goal point qinit and qgoal

2: Initialize network parameters ψ, θ1,2, φ

3: Initialize the parameter values of the target network ψ̄← ψ

4: Initialize global replay memory D
5: for e = 1 to M do

6: Initialize local buffer L . Memory for an episode

7: for t = 0 to T − 1 do

8: Randomly choose obstacle position Dt and the goal and initial positions qgoal, qinit ∈ Qa
free

9: at = fφ(εt, st||qgoal), st = (qt‖Dt), εt ∼ N (0, σt)

10: q̂t+1 = qt + α · at + εe, εe ∼ N (0, σe)

11: if q̂t+1 ∈ Qa
free then . Get next state and reward

12: qt+1 ← q̂t+1

13: rt+1 = −1

14: else if q̂t+1 ∈ Qa
collide then

15: qt+1 ← qt

16: rt+1 = −1

17: else if |qt+1 − qgoal| ≤ η · α then

18: rt+1 = 0

19: Terminate due to goal arrival

20: end if

21: Store the transition (st||qgoal, at, rt+1, st+1||qgoal) in D,L . Parameters update

22: Sample mini-batch of m transitions (sl ||qgoal, al , rl+1, sl+1||qgoal) from D
23: JV(ψ) = Esl [

1
2 (Vψ(sl ||qgoal)−Eal [mink=1,2 Qθk (sl ||qgoal, al)− β log πφ(al | sl ||qgoal)])

2]

24: JQ(θk=1,2) = Esl ,al [
1
2 (Qθk=1,2

(sl ||qgoal, al)− (rl+1 + Vψ̄(sl+1||qgoal)))
2]

25: Jπ(φ) = Esl ,al [β log πφ(al |sl ||qgoal)−mink=1,2 Qθk (sl ||qgoal, al)]

26: Each network parameter ψ, θ1,2, φ is updated by gradient descent

27: using ∇ψ JV(ψ),∇θ1 JQ(θ1),∇θ2 JQ(θ2),∇φ Jπ(φ)

28: Update state value target ψ̄← τψ + (1− τ)ψ̄

29: end for

30: if qT 6= qgoal then . HER

31: Set additional goal q′goal ∈ {q1, q2, · · · , qT}
32: for t = 0 to T − 1 do

33: Sample a transition (st||qgoal, at, rt, st+1||qgoal) from L
34: if |qt+1 − q′goal| ≤ η · α then

35: r′t+1 = 0

36: else r′t+1 = −1

37: end if

38: Store the transition (st||q′goal, at, r′t+1, st+1||q′goal) in D
39: end for

40: end if

41: end for

Appl. Sci. 2021, 11, 2587 11 of 19

4. Case Study: Two 3DOF Manipulators with a Periodically Moving Obstacle on a Line

This section presents how to implement the proposed SAC-based path training for the
multi-arm manipulator with a periodically moving obstacle, and shows the result using
not only simulation but also experiment.

4.1. Simulation

For the implementation of the proposed SAC-based path planning algorithm, two 3DOF
open-manipulators are used. The detailed information about the manipulator can be seen
at http://en.robotis.com/model/page.php?co_id=prd_openmanipulator (accessed on 14
March 2021). The entire workspace is 70 cm × 120cm × 100 cm. For the moving obstacle,
a hexagon is assumed to move along a line segment back and forth periodically in the
workspace, the length of the line segment is 40 cm, and the average speed of the moving
obstacle is 9 cm/sec. In the simulation, it is always possible for the agent to know the location
information of the obstacle. For the training, nd is set to 5 meaning that the location of the
obstacle over the past five sampling times are given to the networks. Moreover, a square
prism is located in the workspace as a static obstacle. The two manipulators are located such
that the intersection of the workspace of both is not empty. The parameters of the robot
manipulators and environment are summarized in Table 1.

Table 1. Parameters of the 3DOF manipulator and environment.

Name Value Notation Unit

The number of manipulator joints 3 n pc. (Piece)
The number of manipulators 2 m pc. (Piece)

Joint maximum (140, −45, 150, 140, −45, 150) ◦ (Degree)
Joint minimum (−140, −180, 45, −140, −180, 45) ◦ (Degree)

Dimension of Qa
free 6 n ·m Dimension

The number of dynamic obstacle 1 pc. (Piece)
The number of features 5 nd Feature

The dynamic obstacle axis y

The hyper-parameters of the SAC-based path planning are presented in Table 2.

Table 2. Tuning parameters for the designed SAC with HER.

Name Value Notation Unit

Policy network size 12× 800× 500× 400× 400× 300× 6 φ Node
Soft Q network size 18× 800× 500× 400× 400× 300× 1 θ1,2 Node

Soft value network size 12× 800× 500× 400× 400× 300× 1 ψ, ψ̄ Node
Learning rate 0.0001

Replay memory size 106 D Buffer
Episode maximum step 100 T Step

Soft value target copy rate 0.005 τ
Mini batch size 512 m Batch

Environment noise deviation 0.002 εe
Action step size 0.3813 α
Goal boundary 0.2 η
Discount factor 0.98 γ

Entropy temperature parameter 0.2 β

Figure 6 show the workspace under consideration. In Figure 6a, obstacle 1 moves
back and forth along the line segment defined by Dob = {(x, y, z)|x = 150 mm,−25 mm ≤
y ≤ 375 mm, and z = 300 mm}. The obstacle 2 depicts the static obstacle. It is assumed
that the manipulator 1 can detect the obstacle only when it is in {x = 150 mm, 0 mm ≤

http://en.robotis.com/model/page.php?co_id=prd_openmanipulator

Appl. Sci. 2021, 11, 2587 12 of 19

y ≤ 175 mm, and z = 300 mm}, and the manipulator 2 can do only when it is in {x =
150 mm, 175 mm ≤ y ≤ 350 mm, and z = 300 mm}. Namely, the manipulators can detect
the moving obstacle only when it is in a predefined area. In this simulation, the location
of the moving obstacle is directly extracted as the input of the network. Due to that,
the network can detect the obstacle location based on the input value of the network.
Figure 6b describes how the PRM deals with the moving obstacle. As seen in Figure 6b,
the PRM views entire Dob as a static obstacle to deal with the moving obstacle.

(a) Dynamic workspace (b) PRM workspace
Figure 6. The Matlab workspace.

In the learning process, the five neural networks in the proposed SAC-based path
planning are trained by 70,000 episodes using GPU Nvidia GeForce RTX 2080Ti and CPU
Intel i7-9700F (https://www.nvidia.com, https://www.intel.com (accessed on 14 March
2021). For the training, it took 36 h and the proposed algorithm was implemented using
Tensorflow 2.1. In each episode, the agent explores and learns the environment based on
the previous experience that was stored in the memory. To visualize the success of the
agent, the success ratio from every 10 episodes is calculated and recorded. Figure 7 depicts
the success ratio from 70,000 episodes. In Figure 7, the green chart describes the actual
success ratio. However, for better visualization, the moving average of the success ratio is
calculated and shown as the dark green line. At the end of the training, the success ratio
reaches 81.76 %.

Figure 7. Success ratio of the proposed method for two open manipulators with moving obstacles.

https://www.nvidia.com
https://www.intel.com

Appl. Sci. 2021, 11, 2587 13 of 19

Not only the success ratio but also the reward value is monitored during the training.
Because the agent receives −1 for the reward at every step if the next configuration is
not the goal, the total reward value can be interpreted as the required total time step for
the agent to complete the task. The total reward of every episode is shown in Figure 8.
The light blue line tells the total reward in each episode and the dark blue line describes
the moving average of the total reward. From the repeated learning, similar convergent
results on the success ratio and total reward are obtained. In view of Figures 7 and 8, it can
be concluded that the agent is well trained, which means the agent can find the optimal
path for arbitrary starting and goal configurations.

Figure 8. Reward of the proposed SAC-based path planning for two open manipulators with moving obstacles.

In view of the learning results, the success rate of the training is not satisfactory if nd
is set to a value less than 5. On the other hand, when it is higher than 5, the success rates of
most learning reach a similar level to that with nd = 5. This is why nd is set to 5. To support
this, Figure 9 presents the learning performance depending on various values of nd.

Figure 9. Comparison of the training performance between different numbers of features.

Appl. Sci. 2021, 11, 2587 14 of 19

When the training is over, the actor-network is used to generate the optimal path for
an arbitrary starting and goal configurations. Figure 10 shows an example of initial and
goal configurations.

Figure 10. Initial and goal positions in the workspace.

Figure 11 shows how the trained actor generates the path by interacting MAMMDPmo
and measuring the location of the moving obstacle.

Figure 11. Path generation using the trained actor DNN.

To be specific, (qgoal, q0, D0) is given to the trained actor–network in the beginning
and the actor–network calculates the variations of each joint denoted by fφ(st||qgoal) in
Figure 11. Then, each joint changes its angle by the variations and the resulting new
configuration q1 is generated. This is one iteration. In the second iteration, (qgoal, q1, D1) is
injected into the trained actor–network with the updated obstacle information D1, and the
goal configuration is reached by repeating the same procedure.

One testing result is shown in Figure 12. In Figure 12, the areas in dark green denote
Qcollide. In this result, it is important to note that the path generated by the proposed
SCA-based planning can penetrate Dob without collision if necessary. On the other hand,
the paths by other methods go around Dob. This shows that the proposed method generates
indeed an efficient path when there is a moving obstacle. For comparison, the paths
computed by PRM and TD3 are also presented. Hence, there are three generated paths
in Figure 12. The red lines are the resulted paths by the PRM method (10,000 sampled

Appl. Sci. 2021, 11, 2587 15 of 19

points graph), the blue lines by TD3 with HER, and the green lines by the proposed method
path. As seen in Figure 12, the proposed SAC-based method generates the smoothest and
shortest path.

To analyze quantitatively, 100 simulations with the arbitrary initial point and goal
point are carried out using PRM, TD3 with HER, and the proposed method simultaneously.
Then, the lengths of all 100 generated paths are given in Figure 13. As seen in Figure 13,
the proposed SAC-based path planning generates the shortest path. Since, inevitably, PRM
and TD3 with HER deal with the moving obstacle in a conservative manner, the result is
quite natural actually. In Table 3, the optimal path by the proposed method is shorter by
14.86% than the path by PRM. If the path by the SAC with HER is compared with the path
from TD3 with HER, the path by the proposed method is 17.40% better than that by TD3.

Table 3. Comparison of the proposed result with existing methods.

Method Average Path Cost Cost Percentage

PRM 4.1070 100%
SAC 3.4866 85.14%
TD3 4.2330 100.03%

Figure 12. Path generation by SAC with HER for Scenario 1.

Appl. Sci. 2021, 11, 2587 16 of 19

Figure 13. Comparison of paths by PRM, TD3 with HER, and the proposed method.

4.2. Experiment

In order to see if the proposed SAC-based path planning is implementable in real ma-
nipulators, it is tested using two open manipulators. Figure 14 shows the real experimental
setup. In real implementation, a camera is used to detect the location of the moving obstacle
and installed on the top of the workspace. The location of the moving obstacle is sampled
every 0.35 s using the camera. The simulation and experimental results are displayed on the
webpage https://sites.google.com/site/cdslweb/publication/dynamicsacpath (accessed
on 14 March 2021). In view of the experimental results, it is confirmed that the proposed
SAC-based path planning works in real multi-arm manipulators effectively.

Figure 14. The experiment using Two Open-manipulators.

5. Conclusions

This paper presents a deep reinforcement learning-based path planning algorithm
for multi-arm manipulators with both static and periodically moving obstacles. To this
end, the recently developed soft actor–critic (SAC) is employed for the deep reinforcement
learning since the SAC can compute the optimal solution for the high-dimensional prob-

https://sites.google.com/site/cdslweb/publication/dynamicsacpath

Appl. Sci. 2021, 11, 2587 17 of 19

lem and the path planning problem for the multi-arm manipulators is essentially high
dimensional. To be specific, the Markov decision process is properly defined for the path
planning problem, and the input and output structure of the neural networks in the SAC
is designed such that the information of the moving obstacles plays an important role in
the training of the neural networks. In both the simulation and experimental results, it is
confirmed that the proposed SAC-based path planning generates shorter and smoother
paths compared with existing results when there is a periodically moving obstacle.

The role of the neural networks in the SAC is to estimate the future location of the
moving obstacles. If the obstacle moves periodically, it might be possible to estimate the
future location better using other deep learning algorithms tailored to estimation of the
periodic signals like Recurrent Neural Networks (RNN). Hence, possible future research
includes how to improve the estimation of the moving obstacle using deep learning
algorithms for better path planning.

Author Contributions: E.P. surveyed the backgrounds of this research, designed the deep learning
network, and performed the simulations and experiments to show the benefits of the proposed
method. J.-H.P., J.-H.B. and J.-S.K. supervised and supported this study. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Technology Innovation Program (or Industrial Strategic
Technology Development Program) (20005024, Development of intelligent robot technology for
object recognition and dexterous manipulation in the real environment) funded by the Ministry
of Trade, Industry & Energy (MOTIE, Korea), and by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2019R1A6A1A03032119).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MAMMDP Multi-Arm Manipulator Markov Decision Process
SAC Soft Actor–Critic
HER Hindsight Experience Replay
AI Artificial Intelligence
FMMs Fast Marching Methods
PRM Probabilistic Road Map
RRT Rapid exploring Random Trees
DNN Deep Neural Network
TD3 Twin Delayed Deep Deterministic Policy Gradient
MDP Markov Decision Process
DOF Degree of Freedom
OBB Oriented Bounding Boxes
DQN Deep Q-Network
DPG Deterministic Policy Gradient
DDPG Deep Deterministic Policy Gradient
A3C Asynchronous Advantage actor–critic
TRPO Trust Region Policy Optimization
MPO Maximum a Posteriori Policy Optimisation
D4PG Distributed Distributional Deep Deterministic Policy Gradient
KL Kullback–Leibler

References
1. Berman, S.; Schechtman, E.; Edan, Y. Evaluation of automatic guided vehicle systems. Robot. Comput. Integr. Manuf. 2009, 25, 522–528.

[CrossRef]
2. Spong, M.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Institute of Electrical and Electronics Engineers Inc.:

New York, NY, USA, 2006; Volume 26.
3. Latombe, J.C. Robot Motion Planning; Kluwer Academic Publishers: New York, NY, USA, 1991.

http://doi.org/10.1016/j.rcim.2008.02.009

Appl. Sci. 2021, 11, 2587 18 of 19

4. Pendleton, S.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.; Rus, D.; Ang, M. Perception, Planning, Control, and Coordi-
nation for Autonomous Vehicles. Machines 2017, 5, 6. [CrossRef]

5. Kim, M.; Han, D.K.; Park, J.H.; Kim, J.S. Motion Planning of Robot Manipulators for a Smoother Path Using a Twin Delayed
Deep Deterministic Policy Gradient with Hindsight Experience Replay. Appl. Sci. 2020, 10, 575. [CrossRef]

6. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
7. Janson, L.; Schmerling, E.; Clark, A.; Pavone, M. Fast marching tree: A fast marching sampling-based method for optimal motion

planning in many dimensions. Int. J. Robot. Res. 2015, 34, 883–921. [CrossRef] [PubMed]
8. Gharbi, M.; Cortés, J.; Simeon, T. A sampling-based path planner for dual-arm manipulation. In Proceedings of the 2008

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi’an China, 2–5 July 2008; pp. 383–388.
9. LaValle, S.M.; Kuffner, J.J. Rapidly-exploring random trees: Progress and prospects. Algorithmic Comput. Robot. New Dir.

2001, 5, 293–308.
10. Preda, N.; Manurung, A.; Lambercy, O.; Gassert, R.; Bonfè, M. Motion planning for a multi-arm surgical robot using both

sampling-based algorithms and motion primitives. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1422–1427.

11. Kurosu, J.; Yorozu, A.; Takahashi, M. Simultaneous Dual-Arm Motion Planning for Minimizing Operation Time. Appl. Sci.
2017, 7, 1210. [CrossRef]

12. Kavraki, L.E.; Latombe, J.C.; Motwani, R.; Raghavan, P. Randomized Query Processing in Robot Path Planning. In Proceedings
of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, Las Vegas NV, USA, 29 May 1995; Association for
Computing Machinery: New York, NY, USA, 1995; pp. 353–362.

13. Hsu, D.; Latombe, J.C.; Kurniawati, H. On the Probabilistic Foundations of Probabilistic Roadmap Planning. Int. J. Robot. Res.
2006, 25, 627–643. [CrossRef]

14. De Santis, A.; Albu-Schaffer, A.; Ott, C.; Siciliano, B.; Hirzinger, G. The skeleton algorithm for self-collision avoidance of a
humanoid manipulator. In Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Zurich, Switzerland, 4–7 September 2007; pp. 1–6.

15. Dietrich, A.; Wimböck, T.; Täubig, H.; Albu-Schäffer, A.; Hirzinger, G. Extensions to reactive self-collision avoidance for torque
and position controlled humanoids. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011; pp. 3455–3462.

16. Sugiura, H.; Gienger, M.; Janssen, H.; Goerick, C. Real-Time Self Collision Avoidance for Humanoids by means of Nullspace
Criteria and Task Intervals. In Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova,
Italy, 4–6 December 2006; pp. 575–580.

17. Martínez, C.; Jiménez, F. Implementation of a Potential Field-Based Decision-Making Algorithm on Autonomous Vehicles for
Driving in Complex Environments. Sensors 2019, 19, 3318. [CrossRef] [PubMed]

18. Sangiovanni, B.; Rendiniello, A.; Incremona, G.P.; Ferrara, A.; Piastra, M. Deep Reinforcement Learning for Collision Avoidance
of Robotic Manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassoln, Cyprus, 12–15 June 2018;
pp. 2063–2068.

19. Naderi, K.; Rajamäki, J.; Hämäläinen, P. RT-RRT*: A Real-Time Path Planning Algorithm Based on RRT*. In Proceedings of
the 8th ACM SIGGRAPH Conference on Motion in Games, Paris, France, 16–18 November 2015; Association for Computing
Machinery: New York, NY, USA, 2015; pp. 113–118.

20. Prianto, E.; Kim, M.; Park, J.H.; Bae, J.H.; Kim, J.S. Path Planning for Multi-Arm Manipulators Using Deep Reinforcement
Learning: Soft Actor—Critic with Hindsight Experience Replay. Sensors 2020, 20, 5911. [CrossRef] [PubMed]

21. Choset, H.M.; Hutchinson, S.; Lynch, K.M.; Kantor, G.; Burgard, W.; Kavraki, L.E.; Thrun, S.; Arkin, R.C. Principles of Robot Motion:
Theory, Algorithms, and Implementation; MIT Press: Cambridge, MA, USA, 2005.

22. Lozano-Perez. Spatial Planning: A Configuration Space Approach. IEEE Trans. Comput. 1983, C-32, 108–120. [CrossRef]
23. Laumond, J.P.P. Robot Motion Planning and Control; Springer: Berlin/Heidelberg, Germany, 1998.
24. Bergen, G.V.D.; Bergen, G.J. Collision Detection, 1st ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2003.
25. Ericson, C. Real-Time Collision Detection; CRC Press, Inc.: Boca Raton, FL, USA, 2004.
26. Fares, C.; Hamam, Y. Collision Detection for Rigid Bodies: A State of the Art Review. GraphiCon 2005. Available online:

https://https://www.graphicon.org/html/2005/proceedings/papers/Fares.pdf (accessed on 19 August 2019)
27. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 1994.
28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; A Bradford Book: Cambridge, MA, USA, 2018.
29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
30. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function

Approximation. In Proceedings of the 12th International Conference on Neural Information Processing Systems (NIPS’99),
Denver, CO, USA, 29 November–4 December 1999; MIT Press: Cambridge, MA, USA, 1999; pp. 1057–1063.

31. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings
of the 31st International Conference on International Conference on Machine Learning, Beijing, China, 21–26 June 2014; Volume 32,
pp. I–387–I–395.

http://dx.doi.org/10.3390/machines5010006
http://dx.doi.org/10.3390/app10020575
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1177/0278364915577958
http://www.ncbi.nlm.nih.gov/pubmed/27003958
http://dx.doi.org/10.3390/app7121210
http://dx.doi.org/10.1177/0278364906067174
http://dx.doi.org/10.3390/s19153318
http://www.ncbi.nlm.nih.gov/pubmed/31357718
http://dx.doi.org/10.3390/s20205911
http://www.ncbi.nlm.nih.gov/pubmed/33086774
http://dx.doi.org/10.1109/TC.1983.1676196
https://https://www.graphicon.org/html/2005/proceedings/papers/Fares.pdf
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Appl. Sci. 2021, 11, 2587 19 of 19

32. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep
Reinforcement Learning. arXiv 2016, arXiv:1509.02971.

33. Abdolmaleki, A.; Springenberg, J.T.; Tassa, Y.; Munos, R.; Heess, N.; Riedmiller, M. Maximum a Posteriori Policy Optimisation.
arXiv 2018, arXiv:1806.06920.

34. Barth-Maron, G.; Hoffman, M.W.; Budden, D.; Dabney, W.; Horgan, D.; Dhruva, T.; Muldal, A.; Heess, N.; Lillicrap, T. Distributed
Distributional Deterministic Policy Gradients. arXiv 2018, arXiv:1804.08617.

35. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.; Zaremba, W.
Hindsight Experience Replay. In Advances in Neural Information Processing Systems 30; Curran Associates, Inc.: Red Hook, NY,
USA, 2017; pp. 5048–5058.

36. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor–critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

37. Fujimoto, S.; Hoof, H.; Meger, D. Addressing Function Approximation Error in actor–critic Methods. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1582–1591.

38. Haarnoja, T.; Tang, H.; Abbeel, P.; Levine, S. Reinforcement Learning with Deep Energy-Based Policies. In Proceedings of the
34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1352–1361.

39. Hasselt, H.V. Double Q-learning. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY,
USA, 2010; pp. 2613–2621.

40. Degris, T.; White, M.; Sutton, R. Off-Policy actor–critic. In Proceedings of the 29th International Conference on Machine Learning,
Edinburgh, UK, 26 June–1 July 2012; Volume 1.

	Introduction
	Background and Motivation
	Related Work
	Proposed Method

	Background Concept and Problem Modeling
	Path Planning for Robot Manipulator and Configuration Space
	Collision Detection in Workspace Using the Oriented Bounding Box (OBB)
	Reinforcement Learning

	Soft Actor–Critic Based Path Planning for Periodically Moving Obstacles
	Path Planning for the Multi-Arm Manipulator and Augmented Configuration Space
	Multi-Arm Manipulator Markov Decision Process Considering Periodically Moving Obstacle
	Soft Actor–Critic (SAC) Based Path Planning Considering Periodically Moving Obstacles

	Case Study: Two 3DOF Manipulators with a Periodically Moving Obstacle on a Line
	Simulation
	Experiment

	Conclusions
	References

