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Featured Application: A new structural system of the pedestrian bridge with ribbons made of
flexural-stiff profiles is introduced and physically tested, proving its efficiency.

Abstract: Stress-ribbon systems develop the most flexible and slender bridges. A structural system
of such elegant bridges consists of cables or ribbons and deck slabs placed to these strips to distribute
the live load. Although this structural system is simple, the design of such structures is a challenging
issue. Design limitations of the bridge deck slope induce considerable forces in the ribbons, which
transfer the tension to massive foundations. The deformation increase under concentrated and
asymmetrical loads causes another problem of stress-ribbon bridges—the kinematic component,
the design object of such structures, exceeds the dead load-induced vertical displacement several
times. This paper introduces a new concept of such a structural system, comprising ribbons made
of flexural-stiff profiles. The proposed approach to reduce kinematic displacements is illustrated
experimentally by testing two pedestrian bridge prototypes with different flexural stiffness of the
steel ribbons. Numerical models calibrated using the test results are used for the parametric analysis
of the flexural stiffness effect on the deformation behaviour of the bridge system with steel and
fibre-reinforced polymer (FRP) ribbons. A practical approach to the choice of the efficient flexural
stiffness of the ribbon-profiles is also proposed.

Keywords: stress-ribbon bridge; kinematic displacement; flexural stiffness; physical tests; steel
ribbons; fibre-reinforced polymer; numerical modelling; analytical model

1. Introduction

The stress-ribbon layout is one of the oldest structural systems efficient for pedestrian
bridges [1]. The assemblage slenderness makes such elegant structures an intrinsic part
of the modern infrastructure [1–5]. A slightly sagged suspension band forms a catenary
shape that looks natural and aesthetically attractive. The structural system of such bridges
consists of cables and ribbons and the deck slabs placed on them. Typically, spiral strands
and flexible bands made of steel are used for that purpose, though the number of fibre-
reinforced polymers (FRP) application examples is continuously increasing [4,6]. The deck
slabs, distributing the load to the supporting bands, often do not affect the load-bearing
capacity of the bridge. Although this structural system is simple, its design is challenging.
The serviceability demands limit the bridge deck slope to 8–12% [7,8], reducing the sag-to-
span ratio (f /l) to the range of 0.020–0.033. Thus, large foundations are necessary to resist
tremendous tension forces acting on the ribbons.

Another problem is related to the deformability of the stress-ribbon systems under
concentrated and asymmetrical loads [1,5,9]—the kinematic displacement magnitude, the
structural design object, can several times exceed the dead load-induced displacement com-
ponent [10]. Enlarging the dead load, pre-stressing the concrete bridges, and increasing the
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flexural stiffness of the structural system can solve the above problem. The self-weight in-
crease is the simplest way to stabilise the structure [1]; however, the dead load increases the
thrust force acting on the ribbons. The pre-stress technologies require specialised anchorage
systems and can cause a sudden bridge failure [11,12]. Juozapaitis et al. [13] revealed that
the flexural-stiff suspension systems can efficiently reduce the kinematic displacements.

This paper introduces an innovative concept of the stress-ribbon structural system
with flexural-stiff ribbons. The application of hot-rolled and welded steel profiles simplifies
the construction process. Furthermore, this structural system ensures the formation of
lightweight decks, reducing axial forces in the ribbons. The proposed concept can be
extended to the pultruded FRP profiles. However, bending stresses in the ribbons increase
with increasing the flexural stiffness. Combining different materials in a composite cross-
section can solve this problem, but it requires developing the connection technologies and
design procedures [14–17]. Thus, the optimisation of the bridge geometry and material
properties becomes a crucial issue [18,19]. Besides, conventional techniques do not apply
to the design of the anisotropic material components [20].

Numerical methods could be a powerful tool for solving a broad spectrum of engi-
neering problems [21]. Romera et al. [4] and Xiao et al. [5] investigated dynamics problems
of the suspension bridges. Radnić et al. [12] and Votsis et al. [22] carried out numerical
simulations of stress-ribbon and suspension bridges to optimise the ribbons’ material pa-
rameters and geometry. However, a limited number of experimental works in the field do
not determine the optimum flexural stiffness of the ribbons. The contributions by Bleicher
et al. [23], Juozapaitis et al. [24], and Sandovic et al. [25] should be mentioned as rare
examples of such experimental studies.

This study is a continuation of the researches [24,25]. It experimentally investigates
the deformation behaviour of two pedestrian steel bridge prototypes: one has flexible
bands typical of such structural systems and an alternative structure with the innovative
flexural-stiff ribbons. Numerical models calibrated using the test results are used for the
parametric analysis of the flexural stiffness effect on the deformation behaviour of the
bridge system with steel and fibre-reinforced polymer (FRP) ribbons. A practical approach
to the choice of the stiffness of the ribbon-profiles is also proposed.

2. Design Procedure of the Bridge with Flexural-Stiff Ribbons

The ribbons are designed to resist substantial axial forces, transferring them to massive
foundations. The stress-ribbon bridge shape also has no strict limitations; in some cases,
the movement requirements of special vehicles can limit the maximal slope of the bridge
deck. However, the stress-ribbon bridges can undergo significant displacements, partic-
ularly from concentrated and asymmetrically distributed loads. Thus, the limitations of
vertical displacements become the governing design condition [1,7,19]. The displacement
increment induced by the live load (q), regarding the dead-load deformed shape, is the
design criterion.

Figure 1 shows the design scheme of the stress-ribbon bridge, having an initial sag
of the ribbons f 0. The dead load g increases the vertical displacement. A parabolic curve
approximately describes this deformed shape that is the onset of design calculations. In
other words, a live load (q) induces additional displacement uq(x) that is the limitation
object—various load distribution layouts determine the maximum vertical displacement

uq,max(x) ≤ uq,lim (1)

where uq,lim is the displacement limit.
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Figure 1. The design scheme of a stress-ribbon bridge.

The stress-ribbon systems are sensitive to the load q distributed over the bridge half
span that often induces the maximum kinematic displacement of the bridge. The loading
ratio γ(= q/g) and the flexural stiffness of the ribbons control the kinematic displacement
magnitude [1,13]. The following expression determines the functional relationship between
the bridge parameters and the vertical displacement [13]:

uq(x) = Φ(γ, x/l, (kl) − 1, Ω[kl, kx]) ≤ uq,lim (2)

where l is the bridge span; the coefficient k =
√

H/EIy defines slenderness of the ribbon
(H is the thrust force, EIy is the flexural stiffness of the ribbon); the operand Ω[kl, kx]
represents a combination of hyperbolic functions of the variables given in the brackets.
A mathematical expression of Equation (2) depends on the structural parameters and
boundary conditions of the ribbons. Juozapaitis and Norkus [26] formulated several
examples of such equations for the steel ribbon, having three hinges.

The proposed approach to the choice of the efficient geometry of the ribbon cross-
section, expressed in terms of the flexural stiffness, employs an iterative calculus accounting
for ULS (ultimate limit state) and SLS (serviceability limit state) limitations. The following
expression defines the required second moment of inertia of the ribbon subjected to an
unsymmetrical load distributed over the bridge half span, using the beam analogy and
satisfying condition (1):

Iy ≥ 1
156

·
q∗eq·l4

q

uq,lim·E
(3)

where uq,lim is the displacement limit; q∗eq is the load uniformly distributed over the span
length lq (in this case, lq = l/2), i.e., q∗eq = q/2; E is the elasticity modulus.

The ULS limits define the condition for determining the cross-section parameters:

H ≤ A· fd
β

(4)

where H is the thrust force; A is the cross-section area; fd is the design strength of the
material; the coefficient β is calculated, as follows:

β = 1 +
e

2·α2
c ·hc

(5)

where αc is the shape coefficient; hc is the cross-section height. The eccentricity e can be
approximated, using the beam analogy, as follows:

e ≈
48·uq,lim·EIy

5·l2
q ·H

(6)



Appl. Sci. 2021, 11, 2585 4 of 15

where EIy is the flexural stiffness of the ribbon.
The minimum required cross-section area can be obtained from condition (4), account-

ing for expressions (5) and (6), as follows:

A ≥ H
fd

(
1 +

24·uq,lim·E
5·α2

c ·hc·k2·lq

)
(7)

where k is the slenderness coefficient from Equation (2). The following equation determines
the required cross-section height:

hc =


(

12·uq,lim

5·l2
q ·k2·α2

c

)2

+
fd

k2·E·α2
c


1/2

−
12·uq,lim

5·l2
q ·k2·α2

c
(8)

Remarkably, the compressive stresses in ribbons increase with increasing the flexural
stiffness (EIy) because of the bending effect. That can cause stability problems of the
flexural-stiff ribbons. Besides, the magnitude of compressive stresses must be limited
in structural elements made from FRP [15,20,27]. For simplicity, this study assumes the
following stress limitation in the ribbons:

σ ≥ 0 (9)

The above condition limits the height of the cross-section, accounting for expressions
(4) and (5), as follows:

hc ≤
M

2·H·α2
c

(10)

where M is the bending moment in the ribbon.
Equations (5), (7), and (8) include the shape coefficient that is calculated, as follows:

αc =
(

Iy/Ah2
c

)1/2
(11)

The recurrent relationship between Equations (7), (8), and (11) forms the iteration
process. At the first iteration, an approximate value of the coefficient αc is assumed. For
this purpose, Equation (11) was applied to the profiles listed in the European Norm for
Structural Sections in Steel (EN 10365). Table 1 summarises the estimated values of the
coefficient αc for the first iteration. The iterative process is repeated, beginning Equations (8)
and (7) and using the coefficient αc calculated by the Equation (11) at the previous iteration,
as long as the difference between the assumed (beginning the iteration) and newly obtained
αc value remains significant.

Table 1. Approximated values of the shape coefficient αc.

Cross-Section Type (EN 10365) Height, mm Estimated Coefficient

IPE-beam 160–600 0.410–0.405
HE-beam 200–900 0.430–0.405

Square hollow section 80–400 0.381–0.393
Round hollow section 88.9–1219 0.337–0.348

3. Experimental Program

Two pedestrian steel bridge prototypes of a 5 m span were built up and tested in
the Laboratory of Building Structures and Geotechnics at Vilnius Gediminas Technical
University (Vilnius Tech). The prototype ribbons had a pinned connection to rigid supports
fixed to the strong floor. The axial stiffness of the steel ribbons was the same in both
prototypes (EA = 96 MN, where A is the cross-section area; E ≈ 208 GPa is the elasticity
modulus), but the flexural stiffness was significantly different. In the first model, the ribbons
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were designed as flexible bands with a small second moment of inertia (Iy = 0.14 cm4) and
the initial sag f 0 = 135 mm. The innovative ribbon-profiles of the second model were
designed by using the methodology described in Section 2 without limitation of the stress
in the ribbons, i.e., disregarding conditions (9) and (10), obtaining the inertia moment
Iy = 63.7 cm4 and initial sag f 0 = 75 mm. In this manuscript, the notations Model-1 and
Model-2 define the prototypes with flexible bands and flexural-stiff ribbon-profiles. Figure 2
shows the corresponding bridge schemes.
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Figure 2. Geometry characteristics of the prototypes with different flexural stiffness of stress-ribbons: (a) the bridge with
flexible bands; (b) the bridge with flexural-stiff ribbon-profiles.

3.1. Loading Procedure

Three loading layouts are considered: one symmetrical and two asymmetrical (with
different ratio between the live load, q, and the dead load, g)—Model-1 and Model-2 were
subjected to the same loading schemes. The prototypes were loaded incrementally using
iron weights. Figures 3 and 4 show the loading schemes and typical arrangements of the
weights corresponding to symmetrical and asymmetrical loading scenarios. The load held
constant for two minutes after each loading step to stabilise the vertical displacement of the
bridge systems. The increments of the symmetrical load are the following. A timber bridge
deck was constructed over the steel ribbons inducing the 0.077 kN/m load at the first step.
At the further increments, the iron weights (≈24 kg each) were distributed uniformly over
the timber deck resulting in approximately 0.31 kN/m load. The final (seventh) increment
induced a 2.22 kN/m load.
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Figure 3. The bridge prototypes’ loading schemes: (a) symmetrical load; (b) asymmetrical load (q/g = 0.49); (c) asymmetrical
load (q/g = 1.17).
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The asymmetrical loads were applied with the ratio q/g equal to 0.49 and 1.17. In all
scenarios, the dead load, g, was distributed over the bridge span in the same manner as
in the symmetrical loading case (Figure 3). For the ratio q/g = 0.49, the first five loading
increments induced the dead load g = 1.49 kN/m. The additional live load (q) applied
in two steps has induced 0.73 kN/m distributed over the bridge half span. Analogously,
the ratio q/g = 1.17 generated in three loading steps to achieve the target load g and three
successive increments to reach the necessary magnitude of the load q. The corresponding
load components are the following: g = 0.93 kN/m and q = 1.09 kN/m.

Deformations of the stress-ribbons were measured using the 20 mm strain gauges.
Vertical displacements of the ribbons and horizontal movements of the supports were
monitored using linear variable displacement transducers (LVDT) with a 0.01 mm accuracy.
Figure 5 shows the monitoring scheme. In Model-1 (Figure 5a), vertical displacements were
recorded at the mid-span (LVDT I3, I4, I9, and I10) and quarters of the span (LVDT I2, I8, I5,
and I11), whereas the LVDT I12h, I16h, I17h, and I19h monitored the horizontal movements
of the supports. Deformations of the top and bottom surfaces of the steel bands were
estimated at the location of the LVDT devices using the strain gauges T7, T8, T13, and T14
(located at the mid-span) and two sets of the indicators (T3, T4, T5, T6 and T9, T10, T15,
T16) placed at quarters of the span. Model-2 had a similar monitoring devices’ distribution
scheme (Figure 5b): the LVDT I3 and I8 were put at the mid-span; two sets of LVDT (I2, I7
and I4, I9) were located at the span quarters. Four LVDT (I11h, I12h; I16h, and I17h) monitored
the supports’ horizontal movements. Deformations of the top and bottom surfaces of the
ribbons were measured at the mid-span (using the gauges T17, T18, T10, and T12) and the
span quarters (strain gauges T3, T4, T7, T9 and T19, T20, T13, T14).
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3.2. Test Results

Figures 6 and 7 show the loading results of Model-1 and Model-2, respectively. The
schemes include vertical and horizontal displacements of the ribbons and the estimated
stresses at the ribbons’ surface. These results are not suitable to compare the deformation
behaviour of the prototypes because of the difference in the initial ribbon sag (f 0) of these
bridges. The physical tests aimed to gather experimental data for verifying numerical
models described in the next section of this manuscript.
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Figure 7. Monitoring results of the bridge Model-2.

However, the deformation analysis of the bridge systems reveals a beneficial feature
of the model with flexural-stiff ribbon-profiles. The deformation response of the proto-
type with flexible bands (Figure 6) is vulnerable for asymmetrical load distribution: the
maximum vertical displacement (31.1 mm) situated in the loaded quarter; a camber tends
to form in the unloaded part. Model-2 (Figure 7) does not demonstrate this unfavourable
tendency. The octuple difference exists between the vertical displacements measured in
Model-1 span quarters under asymmetrical loading with γ = 1.17. On the contrary, this
loading case induces only a 1.2 times difference between the displacements of Model-2
span quarters.

The maximum stresses observed in the ribbons of Model-2 exceeded the values esti-
mated in Model-1 (Figures 6 and 7) due to the bending effect. The strain-gauge readings
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define the stresses under the assumption of the steel ribbons’ elastic deformation behaviour
(the experimentally determined elasticity modulus of the steel Es = 208 GPa).

4. Numerical Modelling

Numerical models were developed to analyse the flexural stiffness effect of the ribbons
on the deformation behaviour of the suspension bridges. The analysis employs a finite
element (FE) software ATENA. The deformation problem is solved in the 3D formulation
using the Newton–Raphson iteration procedure [28].

The loading conditions include the dead load (g) distributed over the bridge span (l)
and the live load (q) positioned either over the entire or half of the span. At the first stage,
the permanent action is simulated. After that, the model is subjected to the live load. Both
load components are applied incrementally (in five steps). Two analyses are carried out,
investigating the deformation behaviour of the ribbons.

At the first analysis stage, the numerical models’ adequacy is verified using the test
results presented in Section 3. Two FE models are considered. One model corresponds
to the bridge with flexible bands (Model-1); another represents the bridge with flexural-
stiff ribbon-profiles (Model-2). As shown in Figures 6 and 7, a horizontal movement is
characteristic of the supports. Springs are introduced in the numerical models to represent
the support movements.

An inverse analysis was used to determine the spring stiffness corresponding to
the measured horizontal displacements of the supports and the estimated thrust forces.
The readings of the strain gauges Ti (Figure 5) determined the thrust forces under the
assumption of elastic behaviour of the steel ribbons (Es = 208 GPa). The horizontal spring
stiffness was selected to predict the support movement similar to the observed during the
symmetrical loading test (g = 2.22 kN/m). The resultant stiffness is equal to 22 kN/mm.
Both models assume the same stiffness of the springs.

At the second simulation stage, a parametric analysis is performed to identify the
efficient combination of the ribbons’ cross-section parameters. A balance between stresses
in flexural-stiff ribbon-profiles and vertical displacement gradient was the optimisation
criterion—three numerical models with different flexural stiffness of the stress-ribbons are
built up.

4.1. The Numerical Models’ Verification

Two FE models of the bridge prototypes described in Section 3 are built up; the FE
models and the prototypes have the same notation. Figure 8 shows the FE models and
boundary conditions. Non-linear isoparametric shell-brick elements with nine integration
points in the shell plane are used. The 3D brick elements have 20 nodes and a layered
structure [29]; six internal layers are distributed in the FE shell plane. Figure 9 shows the
layered FE structure. The linear-elastic isotropic material model of the steel is used for
the FE analysis, assuming the elasticity modulus E = 208 GPa (experimental value) and
Poisson’s ratio ν = 0.30.
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A uniaxial deformation state is characteristic of Model-1. Therefore, the 20 × 20 mm
FE mesh size is applied. The total number of finite elements in the model is 2000. However,
the reference [29] recommends at least four finite elements in the bending plane to simulate
the bending effects. Thus, the 18 × 18 mm FE mesh size is used for Model-2. Six elements
compose the vertical wall of the section (Figure 9). The same element size is used in the
flanges. Steel braces connect the flexural-stiff ribbons, preventing out-of-plane displace-
ments of the structure. The same system was used in the corresponding bridge prototype
(Section 3). The total number of finite elements in Model-2 is 14,702.

Table 2 compares the numerical predictions and test results. The readings of the strain
gauges Ti (Figure 5) determine the thrust forces under the assumption of elastic behaviour
of the steel ribbons (Es = 208 GPa). A high confidence level of the deformation predictions
is evident: the prediction error does not exceed 7%. The disagreement can result from a
relatively coarse FE model discretisation and the geometry inaccuracies of the physical
prototypes. The actual difference between the initial sag (f 0) of two ribbons of Model-2 was
equal to 8.7 mm, whereas the FE model assumes the average sag value. The acceptable
adequacy of the numerical predictions enables applying the FE methodology to analyse
the ribbon geometry effect on resisting the kinematic displacements.

Table 2. Test and numerical results: maximum vertical displacements (umax) and thrust forces (H).

Source

Model-1 Model-2

Symmetrical Load Asymmetrical Load
(q/g = 0.49) Symmetrical Load Asymmetrical Load

(q/g = 0.49)

umax, mm H, kN umax, mm H, kN umax, mm H, kN umax, mm H, kN

Test 29.2 36.0 29.3 29.5 49.9 41.3 44.8 30.2
Finite element simulations 30.5 37.9 29.5 31.7 48.8 43.2 42.0 30.6

Difference –4.5% –5.0% –0.7% –6.9% 2.2% –4.4% 6.2% –1.3%

Figure 10 shows the modelling example of the idealised bridge prototypes. The ideali-
sation assumes the identical initial sag (f 0 = 135 mm) and loading conditions
(g = 2 kN/m + q = 2 kN/m) for both Model-1 and Model-2. The horizontal movements of the
supports are neglected to eliminate the boundary condition influence. The experimental
values (Section 3) determine the remaining parameters of the numerical models. The
modelling results (Figure 10) reveal two aspects.
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Figure 10. The bridge models’ vertical displacements.

On the one hand, the total areas (S) under the live load-induced displacement curve,
determining the system’s deformation energy, are almost identical for both prototype
models. That is a consequence of the loading conditions similarity. On the other hand,
Figure 10 demonstrates nearly double increases in the design displacement (uq,max) of the
bridge with flexible ribbons (Model-1) regarding Model-2. The kinematic displacements also
induced the substantial camber of the unloaded part of Model-1.

In real projects, the camber effect requires particular attention as it can cause cracking
of the concrete deck and damage the joints between the deck segments. The literature
review (Section 1) has suggested increasing the magnitude of the dead load (g) as a possible
solution to this problem. The proposed alternative way offers the application of flexural-
stiff ribbons for reducing the kinematic displacements. The next section analyses the
efficiency of these two alternatives.

4.2. Parametric Analysis

The effects of flexural stiffness are investigated using three FE models with different
flexural stiffness of the stress-ribbons. The horizontal movements of the supports are
neglected to eliminate the influence of the boundary conditions. Figure 11 shows the
considered cross-sections. The cross-section area, the material parameters, and FE type
remain the same as in the previous section.
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The bridge sag extent, altering the magnitude of the thrust force (H), affects the
choice of the cross-section parameters by the iterative procedure described in Section 2. In
this section, the initial sag of Model-2 was increased to 135 mm for illustrating the above
statement by changing the compressive stresses in the ribbons. The same sag f 0 is used in
all FE models considered in this section for comparison purposes.

An additional Model-3 is investigated as a hypothetical case, representing a maximal
flexural stiffness of the ribbon, though the cross-section area A does not change (Figure 11).
In reality, this cross-section layout is impossible due to the low lateral-torsional buckling
resistance of such a slender element. The modelling of the band half with symmetry
condition along the longitudinal surface (Figure 12) ensures the buckling stability of
Model-3.
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Since the stress-ribbon bridges are susceptible to asymmetric loading conditions, the
numerical analysis focuses on the deformation behaviour of the bridge models under the
asymmetrical loading conditions. In the same manner as Section 4.1, the FE analyses employ
the linear-elastic material model of steel, assuming the elasticity modulus E = 208 GPa and
Poisson’s ratio ν = 0.30.

The design displacement (uq,max) induced by the live load is used for the analysis,
as shown in Figure 10. The load situation of two alternative models (Model-1 and Model-
3) are optimised regarding the deformation response of Model-2. The similarity of the
displacements uq,max of the models is the optimisation condition. This process assumes
the constant design load q and alters the dead load component to satisfy the optimisation
criterion (i.e., uq,max = const).

The reference Model-2 is subjected to the dead load g = 2 kN/m combined with various
live load components (q = 2 kN/m, 3 kN/m, and 4 kN/m) applied to the bridge half
span, as shown in Figures 3 and 10. The vertical displacement due to the live load (uq) is
estimated by subtracting the dead load-induced displacement component (ug) from the
total displacement predicted by the model (utot). The magnitude of the dead load applied
to Model-1 and Model-3 is tailored iteratively to ensure the same displacement uq,max as the
reference Model-2. Table 3 presents the calculation results in terms of the maximum vertical
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displacement (utot) and the corresponding design component uq. This table also includes
the thrust force (H) in the ribbon and the extremum stresses in the cross-section (σmin/σmax)
estimated in the section where the maximum vertical displacement appeared. In Model-1,
that section was close to the quarter of the span. On the contrary, the maximum vertical
displacement was localised near the mid-span of Model-2 and Model-3.

Bold numbers in Table 3 indicate the design values of the vertical displacement.
Model-1 with flexible bands requires a considerable amount of the dead load to stabilise
the displacement induced by the asymmetrically distributed load q. The triple dead
load doubles the thrust force regarding Model-2. In both models (Model-1 and Model-2),
the maximum stresses in the ribbons are similar; however, the minimum stresses are
much lower in the reference case because of the bending effect in the flexural-stiff ribbon.
The increase of the ribbons’ flexural stiffness of the ideal Model-3 further increases the
compressive stresses in the ribbons. The dead load reduction from 20% to 60% of Model-3
is achieved (Table 3) and the thrust force decreases by 2.5 times regarding Model-2. The
maximum stresses in the ribbon of all models are similar.

The simulation results (Table 3) demonstrate that the thrust forces decrease with
increasing the ribbon flexural stiffness. That also increases the compressive stresses in the
cross-section because of the bending effect. As mentioned in Section 2, the limitations of
compressive stresses can be necessary in some cases (e.g., applying FRP profiles).

Figure 13 shows functional relationships between the flexural stiffness of the ribbon-
bands and the extremum stresses in the cross-section having the maximum displacement
utot. Second-order polynomials approximate the calculated points. This figure demonstrates
the application example of condition (9) in the engineering design of the flexural-stiff
steel ribbons. The figure shows that Model-2 fulfils the stress-limitation requirement—the
compressive stresses in the ribbon do not exceed 20 MPa.
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A bridge Model-4 is introduced to investigate the applicability of the proposed method-
ology for designing stress-ribbons made of glass fibre-reinforced polymer (GFRP). The
loading conditions of Model-2 and Model-4 are the same. The choice of cross-section geome-
try is based on Equation (3). The GFRP profile elasticity modulus E = 28 GPa and strength
fd = 190 MPa are assumed by following the producer recommendations [30]. Equations
(3), (8) and (7), define the moment of inertia, the profile height, and the cross-section area.
The inertia moment Iy is increased, compensating for the effect of a relatively low elasticity
modulus of GFRP, for maintaining the same flexural stiffness of the ribbon, as Model-2
(Figure 14a). Figure 14b shows the resultant dimensions of the cross-section. Table 4 gives
the physical characteristics of alternative cross-sections.
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Table 3. Design results of alternative bridge models: vertical displacement components, extremum stresses, and thrust force.

Bridge
Model

q = 2 kN/m q = 3 kN/m q = 4 kN/m

g,
kN/m

utot,
mm

uq,
mm

σmin,
MPa

σmax,
MPa

H,
kN

g,
kN/m

utot,
mm

uq,
mm

σmin,
MPa

σmax,
MPa

H,
kN

g,
kN/m

utot,
mm

uq,
mm

σmin,
MPa

σmax,
MPa

H,
kN

Model-1 8.9 62.0 8.4 318 351 155.3 8.6 63.6 12.2 323 357 157.9 8.6 66.4 15.6 333 372 164.5
Model-2 2.0 22.6 8.4 7 221 54.2 2.0 26.3 12.2 –3 265 62.3 2.0 29.4 15.6 –14 308 70.3
Model-3 0.4 11.3 8.4 –50 154 12.6 0.4 15.1 12.2 –73 212 16.8 0.6 19.5 15.6 –92 276 22.2
Model-4 2.0 39.6 12.3 –4 64 44.2 2.0 45.0 18.2 –7 73 46.3 2.0 50.2 23.6 –10 84 52
Model-5 2.0 18.6 7.3 5 137 57 2.0 22.1 10.9 –6 165 65.3 2.0 24.8 13.8 –9 194 74.1

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15 
 

 

 

 

(a) (b) (c) 

Figure 14. Alternative cross-sections: (a) steel; (b) GFRP; (c) CFRP. GFRP: glass fibre-reinforced 
polymer; CFRP: carbon fibre-reinforced polymer. 

Table 4. Physical properties of alternative stress-ribbons. 

Parameter Steel (Model-2) GFRP (Model-4) CFRP (Model-5) 
Iy, cm4 63.7 458 86.5 
A, cm2 4.8 15.1 8.0 
E, GPa 208 28 148 
ν 0.30 0.23 0.28 

EIy, kNm2 127.3 128.2 128.0 
EA, MN 96.0 42.3 118.1 
m, kg/m 3.77 2.72 1.52 

The application of carbon fibre-reinforced polymers (CFRP) presents an acceptable 
solution to the above problem [4,15]. The elasticity modulus of such profiles can vary from 
88 GPa to 245 GPa depending on the carbon filament content; the tensile strength can 
reach 2.5 GPa [31]. Thus, an alternative Model-5 has ribbons made of CFRP profiles. In this 
example, the CFRP elasticity modulus and strength are equal to 148 GPa and 1.1 GPa. 
Figure 14c shows that the cross-section composed following the design procedure de-
scribed in Section 2. The cross-section shape was changed because of the CFRP composite 
manufacturing peculiarities—the chosen closed-shape conforms to the manufacturer 
datasheets [31]. Table 3 presents the FE calculation results (in the grey-filled row). 

The FE simulations assume the elastic behaviour of both GFRP and CFRP materials. 
The modelling also neglects the anisotropy of FRP composites. The predominance of ten-
sile stresses, which are relatively low regarding the FRP strength [25], makes the assumed 
simplifications acceptable for the deformation analysis. 

Table 4 shows that the reference steel ribbon and CFRP profile have almost identical 
stiffness (both axial and flexural); the predicted displacements of Model-2 and Model-5 are 
similar, as well (the bold numbers indicate the characteristic values in Table 3). However, 
Model-5 has the lowest unit weight (m) among the ribbons listed in Table 4. 

The above results reveal the following issues: 
• The existing assortment of GFRP profiles, based on the similarity of cross-section di-

mensions of the polymer and steel profiles, does not ensure achieving adequate effi-
ciency as steel counterparts in situations when equivalent axial and flexural stiffness 
are required in conjunction. 

• CFRP profiles are applicable as flexural-stiff stress-ribbons. The development of such 
structural systems is the object of further research. 

  

90

35

3
132

60

6

6

48

91

3

3

Figure 14. Alternative cross-sections: (a) steel; (b) GFRP; (c) CFRP. GFRP: glass fibre-reinforced
polymer; CFRP: carbon fibre-reinforced polymer.

Table 4. Physical properties of alternative stress-ribbons.

Parameter Steel (Model-2) GFRP (Model-4) CFRP (Model-5)

Iy, cm4 63.7 458 86.5
A, cm2 4.8 15.1 8.0
E, GPa 208 28 148

ν 0.30 0.23 0.28
EIy, kNm2 127.3 128.2 128.0
EA, MN 96.0 42.3 118.1
m, kg/m 3.77 2.72 1.52

Table 3 presents the FE simulation results of Model-4 in the grey-filled row. As expected,
the minimal compressive stresses among the analysed bridge systems were induced in
the GFRP ribbons. Although the flexural stiffness (EIy) of both bridges (i.e., Model-2
and Model-4) is the same, more significant vertical displacements are characteristic of the
bridge model with GFRP ribbons. It is a consequence of the high deformability of Model-
4, calling for an excessive increase to the axial stiffness of GFRP ribbons because of the
absence of standard profiles [30], satisfying both the axial stiffness and flexural stiffness
limitations. A non-standard rectangular 127 × 27 mm (depth × width) cross-section can
be an example satisfying both the axial stiffness and the flexural stiffness conditions. The
unit weight, m, of this profile is equal to 6.18 kg/m. Further reduction of the weight is
impossible since it reduces the stiffness EA. That makes the GFRP profiles inefficient for
this structural application.

The application of carbon fibre-reinforced polymers (CFRP) presents an acceptable
solution to the above problem [4,15]. The elasticity modulus of such profiles can vary
from 88 GPa to 245 GPa depending on the carbon filament content; the tensile strength
can reach 2.5 GPa [31]. Thus, an alternative Model-5 has ribbons made of CFRP profiles. In
this example, the CFRP elasticity modulus and strength are equal to 148 GPa and 1.1 GPa.
Figure 14c shows that the cross-section composed following the design procedure described
in Section 2. The cross-section shape was changed because of the CFRP composite manufac-
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turing peculiarities—the chosen closed-shape conforms to the manufacturer datasheets [31].
Table 3 presents the FE calculation results (in the grey-filled row).

The FE simulations assume the elastic behaviour of both GFRP and CFRP materials.
The modelling also neglects the anisotropy of FRP composites. The predominance of tensile
stresses, which are relatively low regarding the FRP strength [25], makes the assumed
simplifications acceptable for the deformation analysis.

Table 4 shows that the reference steel ribbon and CFRP profile have almost identical
stiffness (both axial and flexural); the predicted displacements of Model-2 and Model-5 are
similar, as well (the bold numbers indicate the characteristic values in Table 3). However,
Model-5 has the lowest unit weight (m) among the ribbons listed in Table 4.

The above results reveal the following issues:

• The existing assortment of GFRP profiles, based on the similarity of cross-section
dimensions of the polymer and steel profiles, does not ensure achieving adequate
efficiency as steel counterparts in situations when equivalent axial and flexural stiffness
are required in conjunction.

• CFRP profiles are applicable as flexural-stiff stress-ribbons. The development of such
structural systems is the object of further research.

5. Conclusions

This study develops a new concept of the stress-ribbon bridge system that comprises
ribbons made of flexural-stiff profiles. The proposed approach efficiency in reducing
kinematic displacements was illustrated by physical tests of two steel bridge prototypes.
The finite element model, verified using the test results, was used for the parametric
analysis. The following conclusions are formulated:

• A more sustainable deformation behaviour is characteristic of the bridge prototype
with the innovative flexural-stiff ribbons regarding the model with flexible bands of the
same axial stiffness. Even under asymmetrical load distribution (unfavourable for the
typical bridge systems), the proposed ribbon-profiles did not experience undesirable
camber of the unloaded part of the span. At the same time, the proposed design
procedure can limit unacceptable compressive stresses in the ribbons.

• An engineering methodology and design equations are proposed to choose the cross-
section geometry of the flexural-stiff ribbon-profiles. It allows composing the ribbons
of any materials, increasing the versatility of the stress-ribbon structural systems.

• The existing dimensioning system of GFRP profiles, based on the cross-section similar-
ity to the steel profiles, is inefficient in situations that require the satisfaction of both the
axial stiffness and the flexural stiffness limitations. The application of CFRP profiles is
a promising alternative to steel in flexural-stiff stress-ribbon structural systems.
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