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Abstract: Word Sense Disambiguation (WSD) aims to predict the correct sense of a word given its
context. This problem is of extreme importance in Arabic, as written words can be highly ambiguous;
43% of diacritized words have multiple interpretations and the percentage increases to 72% for
non-diacritized words. Nevertheless, most Arabic written text does not have diacritical marks.
Gloss-based WSD methods measure the semantic similarity or the overlap between the context of a
target word that needs to be disambiguated and the dictionary definition of that word (gloss of the
word). Arabic gloss WSD suffers from a lack of context-gloss datasets. In this paper, we present an
Arabic gloss-based WSD technique. We utilize the celebrated Bidirectional Encoder Representation
from Transformers (BERT) to build two models that can efficiently perform Arabic WSD. These
models can be trained with few training samples since they utilize BERT models that were pretrained
on a large Arabic corpus. Our experimental results show that our models outperform two of the
most recent gloss-based WSDs when we test them against the same test data used to evaluate our
model. Additionally, our model achieves an F1-score of 89% compared to the best-reported F1-
score of 85% for knowledge-based Arabic WSD. Another contribution of this paper is introducing a
context-gloss benchmark that may help to overcome the lack of a standardized benchmark for Arabic
gloss-based WSD.

Keywords: WSD; BERT; Arabic; context gloss

1. Introduction

Words in spoken and written languages can have multiple meanings for each word
and, thus, could be ambiguous. The intended meaning of a word (sense) depends strongly
on its context. Word Sense Disambiguation (WSD) is the task of predicting the correct
sense of a word that has multiple senses given its context [1]. Many Computational
Linguistics’ applications depend on the performance of WSD, such as Machine Translation,
Text Summarization, Information Retrieval, and Question Answering [2]. The Arabic
language is particularly challenging for WSD. It was shown in [3] that 43% of Arabic words
that have diacritic marks are ambiguous. Moreover, that percentage increases to 72% when
the diacritic marks are missing, which is the case for most written Arabic text [4]. This is
compared to 32% for the English language [5].

We note here three main challenges in Arabic WSD. First, most written text does not
have diacritic marks. As a result, the level of ambiguity for each word can increase. For
example, the word ”�Õ

�
Î

�
«“ (meaning flag) and the word ”�Õ

�
Î«

� “ (meaning science) are both

written as ”ÕÎ«“ . Secondly, even when diacritic marks are present, many words can have
several possible part-of-speech (POS) tags that lead to different meanings. For example, the
word ”

�	
��Q

�
«“ can have the POS tag verb (leading to the meaning of “showing something”).

It can also have the POS tag noun (leading to the meaning of “impermanent”). Third, a
word with both a POS tag and diacritic marks can still have several senses depending
on its context. For example, the word “

�	
��Q

�
ª

��
J

�
�@�“ with POS tag verb has the meaning of

“parade” in the context “ é�
	
®

	
K

	
�Qª

�
J�@“ while having the meaning of “inspect” in the context
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�
J�@“. In addition, Arabic is an agglutinative language that adds parts of speech

to the stems or roots of words to give new meanings [6]. For instance, the word “¨PA
�

�ËAK.“

(in the street) has a stem “¨PA
�

�“ (a street) and two prefixes, “H.�
“ (in) and “È@“ (the), which

is the definite article. This problem has been addressed in the preprocessing phase in our
work, which will be discussed shortly.

Bidirectional Encoder Representation from Transformers (BERT) [7] is a neural lan-
guage model based on transformer encoders [8]. Recent Arabic Computational Linguis-
tics’ studies show a large performance enhancement when pretrained BERT models are
fine-tuned to perform many Arabic Natural Language Processing (NLP) tasks, for exam-
ple, Question Answering (QA), Sentiment Analysis (SA), and Named Entity Recognition
(NER) [9,10]. This performance enhancement stems from the fact that BERT can generate
contextual word embeddings for each word in a context. These embeddings were shown
to encode syntactic, semantic, and long-distance dependencies of the sentences [11], thus
making them ideal for many NLP tasks.

Contextual embedding methods (e.g., BERT [7], Embeddings from Language Models
(ELMO) [12], and Generative Pre-trained Transformer (GPT) [13]) learn sequence-level
semantics by considering the sequence of all the words in the input sentence. In particular,
BERT is trained to predict the masked word(s) of the input sentence; to do this, BERT
learns self-attention to weigh the relationship between each word in the input sentence and
the other words in the same sentence. Each word then has a vector that represents the
relationship with other words in the input sentence. Those vectors are used to generate
word embedding, so the generated embeddings for each word depends on the other words
in a given sentence. This is unlike Glove [14] and Word2Vec [15] that represent the word
using a fixed embedding, regardless of its context. These traditional models depend on the
cooccurrence of these words in the hole corpus. If two words usually have similar words
in different contexts, they will have a similar representation.

WSD is classified into three main categories: supervised WSD, unsupervised WSD,
and knowledge-based WSD. Knowledge-based WSD methods usually utilize language re-
sources such as knowledge-graphs and dictionaries to solve the WSD problem. Knowledge-
based WSD can be further subcategorized into graph-based approaches and gloss-based
approaches [16]. Graph-based approaches utilize language knowledge-graphs, such as
WordNet, to represent the sense by its surrounding tokens in that graph. Gloss-based ap-
proaches measure the semantic similarity or the overlap between the context of the target
word and the dictionary definition of that word (gloss of the word). Gloss-based methods
require context-gloss datasets. In this paper, we explore utilizing pretrained BERT models
to better represent gloss and context information in gloss-based Arabic WSDs. Fortunately,
there are pretrained BERT models available for Arabic [9,10]. We utilized these pretrained
models to build two gloss-based WSD models. The first model uses the pretrained BERT
models as a feature extractor without fine-tuning BERT layers to generate a contextual
word embedding of the target word in its context. We also used it to generate a sentence
vector representation of the gloss sentence. These representations’ vectors were then fed to
a trainable dense layer to perform supervised WSD. In the second model, we fine-tuned
BERT layers by training them with a sentence pair classification objective. Our experiments
showed that we outperform many of the state-of-the-art Arabic knowledge-based WSDs.
The evaluation of WSD models suffers from a lack of standard benchmark datasets [16].
Each author tests on a different and small (around 100 ambiguous words) dataset, which
makes it difficult to compare results. We attempt to fix this issue by creating a publicly
available benchmark dataset. We hope that such a dataset can help ease evaluating and
comparing different WSD techniques.

The rest of the paper is organized as follows. In Section 2, we discuss the related
work. Section 3 introduces the context-gloss benchmark. The background is presented in
Section 4. Section 5 describes the proposed models. In Sections 6–8, we present our
experimental setup, results, and discussion. Finally, we conclude our paper in Section 9.
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2. Related Work

As mentioned previously, knowledge-based WSD is categorized into graph-based
approaches and gloss-based approaches [16]. Graph-based approaches depend on language
knowledge graphs such as WordNet to represent the sense by its surrounding tokens in
that graph. For example, the authors in [17] introduced a retrofit algorithm that utilized
Arabic WordNet along with Glove [14] and Word2Vec [15] to generate context-dependent
word vectors that carry sense information. Finally, they used cosine similarity between
the generated word vector and vectors generated for WordNet synsets of that word and
selected the sense with the highest similarity score. In [18], the authors utilized Arabic
WordNet (AWN) to map words to concepts. A concept was defined as a specific word
sense. They further utilized the English WordNet to extend the Arabic one by employing
Machine Translation for the missing words in AWN. A concept was then selected for a
target word by comparing the context of the target word to neighbors of the concept in the
extended WordNet. Concepts with high match to the context were selected as the correct
sense. In [19], the authors used AWN to generate a list of words that can be potentially
ambiguous. For each ambiguous word, they found Wikipedia articles that correspond to
the different senses of those words. Those articles were then converted to real vectors by
tf-idf [20]. They also generated a context vector by tf-idf of the word in its context. Finally,
they used cosine similarity between the two vectors and selected the sense with the highest
similarity score.

The second type of knowledge base approaches is gloss-based approaches. These
methods measure the semantic similarity or the overlap between the context of the target
word and the dictionary definition of that word (gloss of the word). The authors in [21] used
the Lesk algorithm to measure the relatedness of the target word’s context to its definition.
They used AWN as a source for the word gloss. The authors of [22] combined unsupervised
and knowledge-based approaches. They used a string matching algorithm to match the
root of salient words that appear in many contexts of a particular sense with the gloss
definition. The authors of [23] employed word2vec [15] to generate a vector representation
for the target word’s context sentence and the gloss sentence. Then, cosine similarity was
used to match the gloss vector and the context vector. The authors in [24] used Rough Set
Theory and semantic short text similarity to measure the semantic relatedness between the
target word’s context and multiple possible concepts (gloss). Recently, The authors in [25]
used FLAIR [26], a character-level language model, to generate sentence representation
vectors for both context and gloss sentences. The sentence’s vector was calculated by taking
the mean of its word vectors, causing a loss of information, especially when the sequence is
long. Cosine similarity was then used to measure the similarity between the word context
sentence and the gloss sentence.

3. Benchmark

Arabic gloss WSD suffers from the lack of context-gloss pair datasets [16]. Arabic
Word Net (AWN), which is the only available gloss dataset, contains only word senses with
gloss definitions but lacks context examples for these senses [27]. Due to this limitation
in AWN, we created a new Arabic WSD benchmark. This dataset is extracted from the
“Modern Standard Arabic Dictionary” [28]. To the best of our knowledge, our benchmark
is the only available Arabic context-gloss pair dataset. It consists of 15,549 senses for 5347
unique words with an average of 3 senses for each word. Figure 1 shows the histogram
of sense counts per word. We can see that most of the words (4000+) have 2 to 4 senses,
that about 750 word are between 4–6 senses per word, and that the count decreases as the
number of senses increases. Each record in the dataset is a tuple of three elements: a word
sense, a context example, and a definition of that word sense. In Table 1, we present the
statistics of the dataset. This dataset is available online (https://github.com/MElrazzaz/
Arabic-word-sense-disambiguation-bench-mark.git, accessed on 10 March 2021). Table 2
shows examples of records in the benchmark’s dataset. We believe that the benchmark can
contribute to standardizing the evaluation of WSD models.

https://github.com/MElrazzaz/Arabic-word-sense-disambiguation-bench-mark.git
https://github.com/MElrazzaz/Arabic-word-sense-disambiguation-bench-mark.git
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Table 1. The benchmark statistics.

# Words # Senses Average Sense per
Word

Max Senses per
Word

5347 15,549 3 40

Table 2. Benchmark example.

Word Gloss Context-Example

	
�Q« (show)

éË ¨ñ
	

�ñÖÏ @
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Ê« éªÊ¢J
Ë ékQ£ð é¢��. (Show
the topic to him, simplify the

topic to show it)
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�
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.
�
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k
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Figure 1. Histogram of benchmark senses per word.

4. Background

In this section, we review the background needed to introduce our approach. We
begin by reviewing transformers [8], which are a substantial part of BERT [7]. We then
review BERT as it is one of the building blocks of our approach.
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4.1. Transformers

A transformer [8] is a celebrated Neural Network (NN) architecture that was intro-
duced to approach translation tasks. Figure 2 depicts the transformer’s main components.
It consists of two components: an encoder and a decoder. The encoder is used to encode a
source sentence into a sequence of real vectors. The decoder, on the other hand, has the
goal of decoding a set of vectors into a target sentence. Both the encoder and the decoder
consist of 6 blocks. Each of these blocks consists of two layers: the first layer is a multi-head
attention layer, while the second is a fully connected layer. The layers are equipped with a
residual connection that connects the input of a layer to the output of that layer. After each
block, a Layer Norm [29] is applied.

Now, we elaborate more on the multi-head attention layer. The intuition behind
this layer is that the sense of a given word in a sentence is usually affected by different
words in the same sentence (self-attention) or the target sentence, with different degrees.
This intuitive idea is implemented in the attention layer by associating three vectors: a
key k, a query q, and a value v with each word. The degree of dependence between a
given word ws and a target word wt is quantified by the dot product between the query
of the word qws and the key of the target word kwt . Finally, the word is represented by a
weighted average of the values of target words, using 〈qws , kwt〉 as weights. The weights
are further normalized and a Softmax is applied to ensure that the weights sum to 1 before
the weighted average is taken. To obtain a compact formula, keys of target words are put
in rows of a matrix K, queries are arranged similarly into a matrix Q, while V denotes
the concatenation of values of target words. Then, the layer output is realized using
Equation (1)

Attention(Q, K, V) = softmax(
(QKT)√

dk
)V, (1)

where dk represents the dimensionality of the vector k.
As can be noticed in the above computation of the attention-based word representation,

the position of a word in the target sequence is lost as a result of the weighted average over
targeted words. This can be alleviated by adding a vector to each word representation that
encodes the position of the given word. Such a process is called Positional Encoding (PE).
The PE vector is achieved using Equation (2).

PE(pos,k) =

{
sin( pos

104k/dk
), if k is even,

cos( pos
104k/dk

), if k is odd,
(2)

where k is the index of the value calculated of for the positional vector and pos is the
position of the word.
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Figure 2. Transformer architecture, multi-head attention layer architecture, and scaled dot-product
attention unit.

4.2. Bidirectional Encoder Representation from Transformers

BERT [7] is a language model that is based on the architecture of the transformers
reviewed above. As can be seen in Figure 3, BERT’s architecture consists of a stacked set
of transformer encoders. A key aspect of BERT is that it is designed to be trained in an
unsupervised manner with no particular task at hand. To facilitate training, two objectives
were proposed to optimize BERT. (1) Given a sentence with a particular word, it is masked
(replaced with a placeholder) and then such a word is predicted. (2) Given two sentences,
say X and Y, the order of such sentences is predicted; that is, whether Y appears before
X or vice versa is predicted. The model that learned in this manner is shown in [11] to
encode phrase-level information in the lower layers, while in the middle layers, it encodes
surface, syntactic, and semantic features. Moreover, the top layers of the model encode
long-distance dependencies in the sentence.
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Figure 3. Bidirectional Encoder Representation from Transformers (BERT) training input and BERT
training tasks: the first task is to predict masked words, and the second task makes the next sentence
prediction.

4.3. Arabic Pretrained BERT Models

Recent studies on Arabic NLP showed that using BERT achieved state-of-the-art results
on many NLP tasks. For instance, Question Answering (QA), Named Entity Recognition
(NER), and Sentiment Analysis [9,10]. These studies trained two BERT models, namely
AraBERTv2 [9] and ARBERT [10]. These models were trained on large Arabic corpora. The
details of these corpora as well as the number parameters of each model are shown in
Table 3. Since these models already contributed to the state-of-the-art results in many tasks,
we use them as building blocks for our proposed models.

Table 3. Arabic pretrained models.

Training
Data Vocab Configs

Model Sentence Size No. of
Tokens Tokenization Size of Params

AraBERTv2 200 M 77 GB 8.6 B Sentence
piece 60 K of 135

ARBERT Several
(6 sources) 61 GB 6.5 B Word piece 100 K of 163

4.4. Transfer Learning with BERT

In this section, we discuss how to utilize BERT pretrained models to approach NLP
tasks. There are three common strategies, as shown in Figure 4. The first strategy is to tune
all layers, that is, to train the entire pretrained model with a new task while the pretrained
model parameters are used as initializations. Second, we fine-tuned only some layers while
keeping the weights of the rest of the network unchanged. Another strategy is to freeze
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the entire architecture while attaching a set of layers to the output of the pretrained model.
During training, only the parameters of the new layers are allowed to change.

Figure 4. Transfer learning strategies.

5. Materials and Methods

In this section, we present our proposed approach to gloss WSD. As stated above,
we utilized a pretrained BERT to design our models. Our first model uses BERT as a
feature extractor, that is, the parameters of BERT layers are not retrained. On the other
hand, the second model fine-tunes BERT layers by training it with a sentence pair clas-
sification objective. We experimented with both AraBERTv2 [9] and ARBERT [9] as our
pretrained BERT. In the rest of this section, we present the details of our proposed mod-
els. The code and the data needed to replicate our proposed method are available on
GitHub (https://github.com/MElrazzaz/Arabic-word-sense-disambiguation-bench-mark.
git, accessed on 10 March 2021).

5.1. Model I

Model I uses the pretrained BERT model as a feature extractor. The intuition here is
that, since we only have a few samples, fine-tuning the model can be affected by the noise
in those samples. Therefore, training only our added layers will reduce the complexity of
the model and make efficient use of the training sample size.

Figure 5 shows the Model I architecture. The architecture consists of the concatenation
of two BERT outputs. These two outputs are the features extracted from a pretrained BERT.
We then applied a fully connected layer on top of those concatenated outputs. Finally, a
softmax layer was attached on top of the fully connected layer to provide means of training
that layer. The two feature vectors were extracted in a specific manner to represent the
sense of the word as defined in the gloss and its sense as defined by its context in a given
example. To that end, we fed the word gloss to our pretrained BERT model. We then
used the embedding of the ’[CLS]’ token as the feature vector representing the sense of
the word from the gloss perspective. The second feature vector, on the other hand, was
generated by feeding the pretrained BERT with an example sentence of this word sense.
The extracted features, in this case, were, however, the embedding of that word averaged
over the last N BERT layer(s). We then concatenated those feature vectors and applied a
fully connected layer.

The model was trained with the objective of classifying whether the sense in the
example context of the target word matches the sense defined by the gloss of the target
word. To train such an objective, we created a dataset with pairs of gloss and examples. A
record with a positive class has both the gloss and the example matching, while a negative

https://github.com/MElrazzaz/Arabic-word-sense-disambiguation-bench-mark.git
https://github.com/MElrazzaz/Arabic-word-sense-disambiguation-bench-mark.git
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record has the example and gloss not matching. For an example of those records, see
Table 4. Our novel dataset consists of 31 K records, 15,549 positive examples, and 15,549
negative examples.

Table 4. The training data for Model I.

Word Gloss Context-Example Label
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éË ¨ñ
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Ê« éªÊ¢J
Ë ékQ£ð é¢��.

(Show the topic to
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¯
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0

Figure 5. Model I architecture.

5.2. Model II

Unlike Model I, in Model II, we fine-tuned all BERT layers. Again, the training
objective was to perform a sentence pair classification task. In this model, however, only
one BERT architecture was used. The input to the BERT model, in this case, was two
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sentences separated by a separator token ’[SEP]’. The first sentence was a context example,
while the other sentence was the gloss of the target word. A sequence classification layer
with a Gaussian Error Linear Units (GELU) activation function was added on top of the
BERT layers to classify whether the context sentence and the gloss definition were related.
Examples of training set record are show in Table 5. For each context-gloss pair, a ’[SEP]’
was added between the two sentences and a ’[CLS]’ token was added at the beginning of
the two sentences. The classification token ’[CLS]’ was used to present an encoding on
the total sequence, and therefore, the classification layer was attached on top of the ’[CLS]’
embedding. Figure 6 shows Model II architecture.

Table 5. Model II training data.

Context-Definition Pairs of
the Target Word Label Word

[CLS] ’gloss sentence’ [SEP]
’example sentence’ 1 the word

[CLS] ’gloss sentence’ [SEP]
’wrong example sentence’ 0 the word

Figure 6. Model II architecture.

6. Experiments

In this section, we present the experimental setup for building and evaluating our
proposed Arabic WSD models.

6.1. Evaluation Dataset

To evaluate the performance of the proposed models, the benchmark dataset was
divided into 60%, 20%, and 20% for training, validation, and testing, respectively. The
details of the test data are shown in Table 6.
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Table 6. Test data statistics.

No. Words No. Senses No. Positive
Examples

No. Negative
Examples

3601 6246 1800 1801

We preprocessed both the word sense definition and the context examples to match
the input expected by the BERT models. Diacritic marks were removed from the input
sentences. Moreover, we applied tokenization to the input sentences. We used the Farasa
tokenizer [30].

6.2. Evaluation Metrics

The goal of the model was to find the correct word sense from a given example. We
report three evaluation metrics, namely, precision, recall, and F1-score. These metrics are
defined as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1-Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
,

where TP denotes the true positive count, that is, the number of correctly classified sentence
pairs when the context example matches the word sense definition, while FP is the false
positive count, that is, the number of falsely classified sentence pairs. TN is the number
of correctly classified sentence pairs when the word sense definition does not match its
context, while FN reflects the times when the classification is incorrect.

6.3. Training Configuration

We now present the details of our training procedures. For Model I, we trained the
model with 20 epochs. The features extracted from BERT were the average of the last 4
layers. We used the Adam [31] optimization method with a batch size of 8 and a learning
rate of 0.00002. The learning objective was to minimize the binary cross-entropy loss.
These learning parameters are summarized in Table 7. Model II was trained with the same
parameters. However, we optimized also the BERT layers. Moreover, we appended the
targeted words to the sequence of input to drive the model to learn to disambiguate this
specific word from the full sequence.

Table 7. The hyperparameter configurations for Model I and Model II.

Model Optimizer Learning Rate Epochs
Layers to
Represent

Target Word

Model I Adam 0.00002 20 last 4

Model II Adam 0.00002 2 -

7. Results

In this section, we present our experimental results. Table 8 summarizes the results of
Model I and Model II on the test set as measured by precision, recall, and the F1-score. For
Model I and Model II, we experimented with three different configurations as follows:
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• AraBERTv2 as a pretrained BERT model without tokenizing the input sentences.
• AraBERTv2 as a pretrained BERT model with tokenizing the input sentences.
• ArBERT as a pretrained BERT model without tokenizing the input sentences.

As can be seen in Table 8, both configurations that use AraBERTv2 seem to outperform
ArBERT as the pretained BERT model. This holds for both Model I and Model II. For
the tokenization configuration, Model II enhances the precision from 92% to 96% while
decreasing the recall from 87% to 67%, which affects the F1-score and hence decreases from
89% to 79%. On the other hand, Model I is adversely affected by tokenization, leading to a
decrease in precision from 69% to 67% and in F1-score from 74% to 72%. We can also see
that Model II always outperforms Model I.

Table 9 compares our proposed models against other embedding based models that
depend on representing gloss and the context sentences in the vector space such as in our
model. We compare our proposed models with two models, Laatar [25] and Laatar [23]
which are the most recent Arabic WSD works. The test data of the two models are not
available; thus, in order to make a fair comparison, we redeveloped their models and tested
them on our benchmark. Laatar [25] used FLAIR [26] to generate word embedding. FLAIR
is a pretrained character level language model. Laatar [25] represents each sentence by
the mean of its words vectors. The authors in [23] used Word2Vec [15] language model
to represent the words of the sentence in the vector space and then they represented the
sentence by adding its words vector representation. After calculating the sentences’ vectors,
both models measure the cosine similarity between the context sentence vector and the
gloss sentences vector and choose the gloss with the highest similarity score. Table 9 shows
that our models outperform other embedding-based models in terms of precision, recall
and F1 score. Table 9 also shows the original paper results of other models according
to their test set. We performed McNemar’s significance test [32] between Model II and
Laatar [25] and between Model II and Laatar [23]; we find that Model II is significantly
better than Laatar [25] and Laatar [23] and that the p-value is less than 0.01.

Table 8. Model I versus Model II.

Model BERT Model Tokenization Precision Recall F1

Model I AraBERTv2 No 69% 78% 74%

Model I AraBERTv2 Yes 67% 78% 72%

Model I ARBERT No 50% 90% 64%

Model II AraBERTv2 No 92% 87% 89%

Model II AraBERTv2 Yes 96% 67% 79%

Model II ARBERT No 89% 73% 83%

In Table 10, we present the performance in comparison to other Arabic Knowledge
based WSDs.

As shown in Table 10, Model II with non-tokenized inputs outperforms all other
Arabic knowledge-based WSD as measured by F1-score.
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Table 9. Embedding-based models vs. our models.

Model Embedding
Model

Result
Source Precision Recall F1

Model I AraBERTv2 Our
benchmark 69% 78% 74%

Model I AraBERTv2 Our
Benchmark 67% 78% 72%

Model I ArBERT Our
benchmark 50% 90% 64%

Model II AraBERTv2 our
benchmark 92% 87% 89%

Model II AraBERTv2 Our
benchmark 96% 67% 79%

Model II ARBERT Our
benchmark 89% 73% 83%

Laatar [25] FLAIR Our
benchmark 63% 63% 63%

Laatar [25] FLAIR
Orginal

paper result
(100 words)

67% 67% 67%

Laatar [23] word2vec Our
benchmaek 45% 45% 45%

Laatar [23] word2vec
Original

paper test
(100 words)

78% - -

Table 10. Model II versus other knowledge-based models.

Model Testset Precision Recall F1

Model
II-AraBERTv2

3601 ambiguous
words 92% 87% 89%

Model
II-AraBERTv2-

tokenized

3601 ambiguous
words 96% 67% 79%

Model
II-ArBERT

3601 ambiguous
words 89% 73% 80%

Hadnie [18] AWN 73% - -

Zouaghi [21] 50 ambiguous
words 59% - -

Menai [33] - 79% 63% 70%

Bekkali [24] 1217 text - - 85%

Bouhriz [34] manually
collected text 74% - -

8. Discussion

The results above show that our approach outperforms two of the recent gloss-based
models and that the reported results are super-passed previously reported results of
knowledge-based WSD. We believe that the reason behind this improvement lies in the use
of a pretrained BERT. Indeed, BERT models are trained on a very large dataset to perform
masked language modeling and, next, sentence prediction tasks. In order to perform well
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on these tasks, it has been shown in [11] that BERT models learned both syntactic and
semantic features at the middle layers while, at the top layers, BERT learned long-distance
dependency information. Therefore, using these pretrained models resulted in transferring
this knowledge to Arabic WSD and hence improved the performance and decreased the
amount of data needed for these models to learn. Moreover, we exploited BERT’s ability
to perform well in sentence pair classification tasks by posing the WSD as a sentence
pair classification problem. Finally, we used our new benchmark to perform supervised
fine-tuning; we believe that this is one of the main drivers to reach these results.

9. Conclusions

In this paper, we introduced the first Arabic context-gloss pairs benchmark. We believe
that it can help standardize the evaluation of models in Arabic WSD. We then introduced
two Arabic WSD models that benefited from pretrained BERT models. The first model
used BERT as a feature extractor without fine-tuning BERT layers to generate two feature
vectors. The first vector is a word-contextualized word embedding, while the second vector
is a sense representation vector. These two vectors served as inputs to a fully connected
layer with a sigmoid activation function to predict whether the word in the context matches
the sense in the definition. In the second model, we posed the WSD task as a sentence
pair classification task and fine-tuned pretrained BERT using the sequence classification
objective. We experimentally showed that our models outperform recent gloss-based WSD
systems and that the reported results passed other reported knowledge-based WSD results.
Furthermore, we discovered that fine-tuning the model was crucial for achieving good
performance.
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