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Abstract: According to current trends in healthcare sensing technologies, we describe a textile-based
pressure sensing matrix that can be integrated in the mattress of a smart bed to characterize sleeping
posture/movement of a subject and to extract breathing activity. The pressure mapping layer is
developed as a matrix of 195 piezoresistive sensors, it is entirely made of textile materials, and it
is the basic component of a smart bed that can perform sleep analysis, can extract physiological
parameters, and can detect environmental data related to subject’s health. In this paper, we show the
principle of the pressure mapping layer and the architecture of the dedicated electronic system that
we developed for signal acquisition. In addition, we describe the algorithms for posture/movement
classification (dedicated artificial neural network) and for extraction of the breathing rate (frequency
domain analysis). We also perform validation of the system to quantify the accuracy/precision of the
posture classification and the statistical analysis to compare our breathing rate estimation with the
gold standard.

Keywords: smart textiles; sleeping posture classification; physiological signals; breathing signal
elaboration

1. Introduction

Health systems in both industrialized and developing countries are facing new chal-
lenges related to population aging, cost sustainability, and the management of critical events
such as a pandemic. The COVID-19 emergency highlighted that most health systems were
not prepared to overcome these new challenges. In this context, from a technological
point of view, there is an enormous effort to develop engineering solutions that respond
to the emerging needs of health systems. A common trend in healthcare is to develop
smart sensors to collect daily-life real-world data (RWD) linked to patients’ risk factors,
symptoms, performance, and psycho-physiological status. The integration of clinical data
and daily-life RWD could provide crucial information on the outcome of medical treat-
ments and for the development of innovative tools for patient management [1–3]. In this
context, it is essential to develop unobtrusive sensing technologies that enable transparent
monitoring of individuals’ and patients’ physiological, environmental, and behavioral data
related to specific health status and symptoms associated with potential health problems.

In this work, following the emerging approach of embedding sensors in daily-life
objects, we describe the development and preliminary results of a textile-based pressure
sensing matrix that can be integrated in the mattress of a smart-bed to detect parameters
related to subjects’ sleep quality and physiological parameters such as breathing activity.
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The smart bed described in our previous works and reported in [4,5] was developed in
the frame of the L.A.I.D project (Linking Automation to artificial Intelligence for revealing
sleep Dysfunctions [6]) and was designed for sleep analysis and extraction of physiological
signals.

In our previous work reported in [5], we demonstrated the capability of the smart
bed to fuse all sensor data (pressure matrix, accelerometers, and environmental sensors) to
perform automatic classification of sleep quality with performance comparable to standard
polysomnography. In addition, in [7], we showed the methods and results related to
extraction of the heart rate through ballistocardiography applied on the signals of the
set of accelerometers integrated in the smart bed. In this work, we focus on the pressure
mapping layer designed as a two-dimensional array of 195 textile pressure sensors capable
of detecting the distribution of pressure exerted by the subject sleeping on the mattress. The
signals from the pressure sensors are processed to classify the posture and movements of
the subjects and to extract respiratory activity. The classification of posture and movement
are the basis for sleep analysis described in [7] and could be also employed to give context
to the acquisition of physiological signals (e.g., compensation of artifacts and optimal
sensor selection). The respiratory signal in addition to the other sensors of the smart bed
such as accelerometers and microphones could be exploited as part of an unobtrusive
physiological acquisition system capable of detecting cardiopulmonary activity (including
sleep apnea) and relevant respiratory symptoms such as cough and wheezing.

In the literature, several sensing solutions have been exploited for the in-bed monitor-
ing of subjects’ physiological signals and sleeping posture/movements [8–18]. A review
by Schwarz-Pfeiffer et al. [19] described the recent results obtained in noninvasive sleep
monitoring technologies, focusing both on research and commercial products. The major-
ity of the solutions exploit pressure mapping sensors that extract the distribution of the
pressure of the subject sleeping on the mattress. Contact pressures are generally measured
by using distributed sensors with high spatial resolution. Different sensing technologies
were exploited: capacitive [11–13], piezoresistive [8], piezoelectric [16], or optical [14]. The
information from the pressure transducers are exploited to extract the subject’s presence,
sleeping posture/movements, or breathing activity. Yu-Wei Liu et al. [8] proposed the
WhizPAD pressure mapping system: a mattress (weight 6 kg) in which piezoresistive foam
placed between two conductive fabrics was used as the sensing element. The WhizPAD is
used in hospitals and detects user movements, breathing activity, and subject’s presence [9]
and can differentiate between sleep and awake phases [10]. XSENSOR [20] provides a
mattress cover with pressure mapping that incorporates a large number of capacitive
sensors. The system consists of two parts: the sensing mattress cover, which can be placed
under the hospital linen, and an LCD monitor mounted on the head of the bed that dis-
plays information on the contact pressures on the mattress. Holly Wong et al. [11] used
the XSENSOR cover to prevent the onset of ulcers in hospitalized patients. A comparable
capacitive technology was employed by Chang et al. [12,13] for movement and breathing
monitoring. Similarly to the XSENSOR, the SensorEdge [21] and the BodyTrak [22] are
commercial products made up of pressure-sensitive covers designed for preventing pres-
sure ulcers in hospital settings. Kortelainen et al. [16] integrated a piezoelectric material
into a multichannel pressure-sensing matrix that records the ballistocardiographic signal
and breathing activity during sleep. Kozue Sakai et al. [14] developed a mattress that
aimed to prevent ulcers and that incorporates a pressure detection system (the Kinotex). In
this case, the sensors are made with optical technology. The pressure is transduced into a
change in the optical properties of a polymeric foam material. The light coming from the
sensor is detected by a photodiode, and the external force is calculated by measuring the
intensity of illumination. The same technology was employed by Gilakjani et al. for sleep
assessment [15].

Compared to the literature solutions described above, our pressure mapping layer is
designed as a low-cost consumer product. We implemented a low-cost pressure mapping
layer (in the order of a hundred euros) with a relatively low number of sensors (hundreds
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vs. thousands) which, thanks to the algorithms we developed, is able to detect posture,
movement, and respiratory activity with satisfactory performance. We opted for the
piezoresistive textile solution to build the pressure mapping layer as it is the simplest
principle and less sensitive to external disturbances and with less complexity for the
electronic circuit, as confirmed by a comparison of the existing technologies reported in
Zhou et al. in [23]. Existing examples in the literature have a greater number of sensors
by at least a factor of 10. One of the advantages of our solution is being able to function
correctly with a reduced number of sensors, thus reducing the cost of both the sensitive
part and the electronic system. The pressure mapping layer was obtained starting from a
classic multilayer architecture to avoid rigid metal wires on the sensing areas. However,
we modified the classic multilayer solution by cutting the piezoresistive fabric into strips.
This expedient has several advantages compared to the previous solutions: (i) reducing the
sensor crosstalk due to parasitic resistances typical of piezoresistive multilayers, (ii) saving
piezoresistive material (in the order of 30% less), and (iii) still being compatible with textile
manufacturing.

In addition, with respect to the existing literature, we performed a robust validation
and statistical analysis of the results obtained in posture/movement classification and in
breathing rate extraction.

2. Materials and Methods
2.1. Pressure Mapping Layer

The pressure mapping layer (PML) was based on a piezoresistive fabric placed on the
foam layer below the top cover of the mattress. We designed the PML as a bidimensional
array of pressure sensors able to detect the pressure map of the subject sleeping on the
mattress. The pressure map describes the topology of pressure exerted by the subject in
multiple sensing areas on the mattress. The static information from the pressure map can
be used to derive sleep posture (i.e., supine, prone, and lateral on the right or left sides),
while the dynamic content of signals can be analyzed to extract the subject’s movement and
respiratory activity. Movement of the subject, defined as the transition between consecutive
sleeping postures, induces the change in outputs of most of the elements of the array.
At the same time, chest expansion during breathing causes a small periodic variation in
the output of the sensors that are distributed around the subject’s chest area. Note that
the chest position over the mattress can change according to the sleeping posture of the
subject. We built the PML as an array of 13 × 15 piezoresistive elements spread over an
area of 125 × 75 cm. We applied the PML on a single mattress of 190 × 90 cm. The PML
was centered on the mattress in such a way that the head and foot areas were excluded
from the measurement. As shown in Figure 1, the PML is made of three layers. The
central layer is a piezoresistive fabric: the CARBOTEX 03-82 fabric produced by SEFAR
AG (Heiden, Switzerland). The top and bottom layers are polyethylene terephthalate (PET)
fabrics (produced by SEFAR AG) with integrated metallic threads that are woven to obtain
conductive stripes (2 cm width). The stripes of the top layer (the row conductors) and
the bottom layer (column conductors) are perpendicular. Following our design, in the top
layer, the stripes are separated by 3 cm, while in the bottom layer, the separation is 8 cm.

The principle behind the PML is inspired by the work of Cheng et al. [24]: each
intersection between a row and a column is a sensing area (see the insert in Figure 1) where
the electrical resistance decreases when the applied pressure increases.

We performed a bench static characterization of the pressure sensor by applying
known weights to a single active area when the sensor was stable on a flat surface. This
basic characterization confirmed the nonlinear characteristic typical of textile-based piezore-
sistive sensors, in which the electrical resistance decreases nonlinearly depending on the
applied pressure [24–26]. We have not characterized the sensor hysteresis, but it is known
that the textile-based piezoresistive sensors are affected by this phenomenon; see, for refer-
ence, the works reported in [27–29]. Note that calibration of the sensors strictly depends
on the substrate on which they are applied and should therefore be done when the PML
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has been inserted into the mattress, and this is very difficult in our application context. For
this reason, we decided to apply the posture and movement recognition and respiratory
activity extraction algorithms directly on the raw data extracted from the PML.

Figure 1. The principle of the pressure mapping layer (PML) prototype: a three-layer structure
implementing a piezoresistive array of 13 × 15 elements. The sensing areas are represented by each
crossing between a row and column conductors, as shown in the figure insert.

We modified the principle described in [24] to reduce the effect of the parasitic electrical
resistances and to save the amount of piezoresistive material used. As described in [23],
the effect of parasitic resistances is in fact a cross-talk between the sensors that share the
same electrodes. To reduce the effect of parasitic electrical resistances in the transverse
directions due to the surface conductivity of the piezoresistive layer [23], we sliced the
piezoresistive layer in strips parallel to the row direction (width of the strips is about 3.5 cm)
and we sewed the strips onto the top layer aligned to the center of the row conductors.
The amount of piezoresistive material saved is about the 30%. This solution is not optimal
as we eliminated parasitic resistance only in the column direction. However, cutting the
piezoresistive fabric into strips parallel to the row direction can be considered a good
compromise between ease of construction and reduction of parasitic resistances. In fact,
the long piezoresistive strips can be cut and sewn with techniques compatible with current
textile production technology. Figure 2 shows the top and bottom layers of the PML.

Figure 2. PML prototype: bottom layer (on the left) and top layer (on the right). In the top layer, it is
possible to note the sliced piezoresistive layers aligned and centered with the row conductors.
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2.2. Electronic Unit

To obtain the raw signal associated with the pressures exerted by the subject’s body
and consequently be able to extract information relating to movement and respiratory
activity, it is necessary to acquire all the sensing areas of the PML. Each single sensing ele-
ment can be electrically represented as a variable resistance. To determine signal variation
over time, we designed a specific front-end unit. In particular, to acquire all the 195 sensing
areas of the PML, we developed a multi-channel electronic able to sequentially activate
each individual detection area through appropriate management of the rows and columns
of the pressure matrix.

The front-end unit, as shown in Figure 3, provides a voltage divider scheme, where
Rsens is the variable resistance of the single sensitive element to be determined while R is a
pull-down resistor of known value. The resulting V0 voltage is a function of the electrical
resistance of the single sensing element. When a pressure is applied on the specific area, the
Rsens decreases while the V0 increases accordingly. Then, the V0 is low-pass filtered and
connected to the analog input port of the multi-channel electronics based on the Arduino
Mega 2560 platform (see Figure 4 ).

Figure 3. Schematic representation of the electronic front-end developed in which the variable
resistor, representing the single sensing elements, is connected to a voltage divider stage, a low-pass
filter, and finally the analog port of the Arduino platform.

The PML is in fact made up of a matrix of 15 columns, each of which is connected to a
digital channel and 13 lines each of which connected to one of the 14 analog channels avail-
able in the Arduino Mega. The reading of each single sensor is managed by activating the
digital channels sequentially (switching from GND to VDD) and simultaneously acquiring
all the 13 analog channels (see Figure 4). The acquired PML data that will be elaborated by
the algorithms described in Sections 2.4 and 2.5 are expressed as the logical levels of the
analog to digital converter of the Arduino board.



Appl. Sci. 2021, 11, 2552 6 of 14

Figure 4. The PML is composed of a 13 × 15 sensing elements structure in which the 15 columns are
connected to the digital port of the Arduino Board while the 13 rows are connected to the analog port
through the front-end unit.

2.3. Data Collection and Preprocessing

We tested our algorithm with the data recorded from 7 healthy volunteers. All
participants gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of the University of Pisa (0102206/2019).

We performed two experiments, the first dedicated to the extraction of sleep posture
and the second oriented to respiratory activity.

In the first experiment, we asked the seven subjects to change their body position over
the mattress in 4 predefined positions: supine position, lying on the left side, lying on the
right side, and prone position. The data related to different positions were manually labeled
during the data collection. For each participant, a minimum number of 15 repetitions for
each predefined position was collected. During the sample collection, participants were
asked to be silent and to maintain the position. In addition, also data about movements
(i.e., transitions between static postures) and the absence of the subject over the smart bed
were collected and labeled.

Overall, we gained 2076 samples during tests carried out on the different positions,
movements, and absence of subjects. The numbers of samples for each position and
condition were 118 “not on bed”, 179 “supine position”, 166 “lying on the left side”,
165 “lying on the right side”, 178 “prone position”, and 1270 “movement”.

In the second experiment, we collected data while the participants were over the
sensing mattress in the supine position. We collected simultaneously the PML signals and
a reference breathing rate signal obtained from a nasal cannula equipped with a thermistor.
Both signals were acquired with a sampling frequency of 8 Hz. The use of thermistor
and nasal cannula is a common method to extract breathing activity in polysomnography,
as reported in [30–32]. During data collection, participants were asked to be silent and
steady for at least 3 min. The participants were also requested to voluntarily modulate
their respiratory activity.

2.4. Sleeping Posture Classification

The pressure mapping system generates a image (800 × 600 pixels) in which each pixel
is associated to the pressure applied to the specific area of the mattress. Starting from the
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195 sensing areas of the PML, the pressure image is built by linear spatial interpolation of
the values obtained in each sensing area. Figure 5 shows the pressure image for typical
sleeping postures of 4 of the 7 available subjects.

Figure 5. The pressure images obtained by spatial linear interpolation of the data obtained from the
195 sensing areas in typical sleeping postures of four of the seven subjects: supine, prone, left side,
and right side. Each row of the figure represents a specific subject. The arms, trunk, limbs, and head
are clearly recognizable. The units are the logical levels of analog to digital converter.

To perform automatic classification of the sleeping postures, we extracted a set of
9 features obtained by reducing the sensing area density from 15× 13 to 3× 3 by topological
averaging. The reduced 9 topological area were obtained linearly by diving each axes of a
sensing area in 3 intervals. The 9 features associated with each reduced topological area
are the average values of the subtended PML signals.

The position feature vectors obtained (9 elements) are the input of the machine learning
classifiers with six predefined classes associated with six typical sleeping conditions: (i)
not on bed, (ii) supine position, (iii) lying on the left side, (iv) lying on the right side, (v)
prone position, and (vi) movement. We used 80% of the sample for training, 10% for thev
alidation set, and 10% for testing. We tested the following five classifiers:

• Artificial Neural Network (ANN): We employed a two-layer ANN; the size of the hid-
den layer was set to 10. For the training process, we applied a backward propagation
algorithm with the scaled conjugate gradient method.

• K-nearest neighbors (KNN): we set the number of neighbors (k) to 5 and the distance
metric as Euclidean.

• Support Vector Machines (SVM): a Gaussian kernel function was set for the SVM.
• Decision Tree: a decision tree algorithm with Adaptive Boosting (AdaBoost).
• Naive Bayes: a Kernel-based naive Bayes with Gaussian kernel.
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2.5. Breathing Rate Estimation

We proposed an algorithm for estimating respiratory rate from the analysis of PML
signals in the frequency domain. The underlying hypothesis is that breathing-related chest
movements induce small periodic changes in signals associated with specific detection
areas in relation to the subject’s position on the bed.

The PML signals were linear detrended and averaged to obtain a discrete time mean
signal X(t). The mean signal X(t) was splitted in n epochs (xi(t)) of 10 s time duration,
and the epochs were overlapped of 50%. The first and last epochs (x1(t) and xn(t)) were
zero-padded to obtain the same length as that of the other epochs. We estimated the power
spectral density (PSD) of each linear detrended i epoch multiplied by a Hamming window
by means of a Welch’s estimator with a length of 400 time points (the length of each epoch
multiplied for 10). The obtained PSD (sxi ( f )) had a frequency resolution of 0.01 Hz. Then,
the local maximum (mi) of each sxi ( f ) was detected in the frequency range between 0.1 Hz
to 1 Hz, as it corresponds to the frequency interval of breathing rate, which can be estimated
(i.e., 6–60 bpm). Figure 6 shows an example of a PSD estimated from an i epoch and the
associated local maximum in the frequency range 0.1–1 Hz.

Figure 6. Example of a Power Spectral Density (PSD) estimated from an i epoch. The local maximum
was highlighted by the red dot, and it was at a frequency of 0.16 Hz (corresponding to a breathing
rate of 9.6 bpm).

Finally, the frequency fi of local maximum mi was estimated, and the breathing rate
(BRi) associated with i epoch was evaluated as follows:

BRi = 60 × fi (1)

Finally, the estimated breathing rate sequences were filtered with a five-order one-
dimensional median filter to remove possible outliers.

2.6. Breathing Rate Validation Procedure

The breathing rates of each epoch estimated from the PML were compared with
the reference breathing rates from the sensorized nasal cannula. The comparison was
performed with the root mean squared error (RMSE), the correlation coefficients of Pearson
(R), and the p-valueues (p-value) of Pearson’s correlation. The BR estimation of each
epoch (BRi) was considered the statistical unit of statistical analysis estimated subject-by-
subject. To evaluate the inter-rater assessment, the Bland–Altman plot of BR estimations
pooled over all the subjects was evaluated. The following parameters describing the inter-
rater assessment were estimated: reproducibility coefficient (RPC), percent coefficient of
variation (CV), root mean squared error (RMSE), and squared Pearson r-value (r2).

The signal processing and all the analysis were performed by using Matlab (R2020a,
Mathworks, Natick, MA, USA).
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3. Results
3.1. Subject Position

Table 1 shows the results of the classification of the position using the tested classifiers
considering the validation dataset. The best tested classifiers reached an overall accuracy of
89.9% on the validation set, the ANN, and it was considered for the final implementation
for the following analysis.

Figure 7 shows the results of the classification of the position using the ANN classifier.
The overall accuracy is about 95.5% for the training set, about 89.9% for the validation set,
about 86.1% for the test set, and about 94.0% for all datasets.

Figure 7. Confusion matrix of the performances of the position classification (Artificial Neural Network (ANN) algorithm),
considering the training dataset, the validation dataset, the test dataset, and all datasets. The recognized classes are (i) not
on bed, (ii) supine position, (iii) lying on the left side, (iv) lying on the right side, (v) prone position, and (vi) movement.
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Table 1. Comparison table of accuracy for five tested classifiers: Artificial Neural Network (ANN),
K-Nearest-Neighbors (KNN), Support Vector Machines (SVM), decision tree, and naive Bayes. The
accuracy is evaluated on the validation set.

Classifiers Accuracy

ANN 89.9%
KNN 86.7%
SVM 82.2%
Decision Tree 80.2%
Naive Bayes 71.1%

Breathing

Figure 8 shows the comparison between the breathing rate extracted with the method
described in Section 2.5 and the reference signal extracted with the nasal cannula. We com-
pare, for each subject, the breathing rate signals in the time domain, and we show the scatter
plots of estimated BR from the smart bed and reference signal with the corresponding
identity lines and Pearson’s coefficient of correlation (R).

Table 2 reports, for each subject, the average breathing rate obtained by the smart bed
(BRm Smart-Bed) and reference signal (BRm Real), the variances of breathing rate estimated
with smart bed (BRv Smart-Bed) and reference cannula signal (BRv Real), the root mean
squared error (RMSE), the Pearson’s correlation coefficients (R), and the correspondent
p-valueues (p-value).

Table 2. For each subject were reported the means of breathing rate estimated with the smart bed (BRm Smart-Bed) and
reference cannula signal (BRm Real), the variances of the breathing rate estimated with smart bed (BRv Smart-Bed) and
reference cannula signal (BRv Real), the root mean squared error (RMSE), the Pearson’s correlation coefficients (R), and the
correspondent p-valueues (p-value).

Name BRm Real BRv Real BRm Smart-Bed BRv Smart-Bed RMSE R p-Value

subject 1 33.17 157.44 27.89 179.24 9.2 0.83 <0.001
subject 2 22.02 53.16 21.46 68.79 5 0.8 <0.001
subject 3 26.06 118.57 22.82 136.65 8.6 0.75 <0.001
subject 4 37.82 280.16 24.03 132.78 20 0.47 <0.01
subject 5 39.53 229.30 32.41 153.66 13 0.72 <0.001
subject 6 27.73 190.72 18.37 83.92 17 0.34 <0.05
subject 7 28.51 263.34 25.44 183.30 13 0.64 <0.001

Figure 9 shows the linear regression and the Bland–Altman plots of all the analyzed
samples of comparison between the smart bed and reference breathing signals. In each plot,
we also report the squared Pearson r-value (r2), root mean squared error (RMSE), number
of analyzed breathing rates (n), reproducibility coefficient (RPC), coefficient of variation
expressed as a percentage (CV), and 95% limits of agreement.
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Figure 8. For each subject, the following information are reported: on the left, the waveform (waveform, black line) and
estimated breathing rate (BR real, red line) of the reference breathing signal obtained from the sensorized nasal cannula with
the estimated breathing rate (BR smart bed, blue line) obtained from smart bed are shown. On the right, the corresponded
scatter plots of estimated BR from the smart bed and reference signal are shown together with the diagonal identity lines
and Pearson’s coefficient of correlation (R). The units of waveforms are the logical levels of the analog-to-digital converter
of an acquisition board used to acquire the reference breathing signal.
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Figure 9. Linear regression plot and Bland–Altman plot of all the analyzed breathing rates of each epochs for the smart bed
(BR smart bed) and reference (BR real) signal. The breathing rates are pooled over all the epochs and recordings. In the
plots are reported the linear regression equation, squared Pearson r-value (r2), root mean squared error (RMSE), number of
analyzed breathing rates (n), reproducibility coefficient (RPC), and the coefficient of variation expressed as a percentage
(CV). The lines of mean of difference between BR smart bed and BR real, and the 95% limits of agreement are shown.

4. Discussion

In the current study, the experimental tests showed that the proposed in-bed solution
allows us to obtain a robust estimation of both subject position and breathing rate that
are estimated by using the signals of the PML combined with tailored algorithms. It is
important to note that our approach is completely nonobtrusive and transparent for the
subject. In addition, the proposed PML and electronic platform is a low-cost system and is
suitable for large distribution and massive use in general population.

Regarding subject position/motion classification, this study found that the best auto-
matic classifiers was a ANN with an overall accuracy of 86.1% for the test set and 94.0%
considering all the datasets. The most critical condition to recognize is the prone position
(with a sensitivity of 76.5% and precision of 54.2%); for the other conditions, the sensitivity
and precision are greater than 83% and 76%, respectively. Contrary to expectations, the
movements of the subject are well recognized, with a sensitivity of 83.1% and precision of
93.6%. This finding was unexpected because the movements are the sequence of several
different positions, and we have supposed that this could cause critical issues for the
ANN classifier.

With regards to the breathing rate, the PML combined with the proposed algorithm
show qualitative and quantitative results with respect to the reference estimation obtained
with a nasal cannula. In Figure 8, in which the estimated breathing rate waveforms obtained
from the reference and mattress are shown, it is possible to note that the baseline breathing
rate are always the same for the reference and mattress for all the subjects involved in the
tests. In the case of variation in the breathing rate, the PML combined with the proposed
algorithm is able to evaluate the variation even with a slightly different trend with respect to
the reference. A possible explanation for this might be that the proposed algorithm needs a
pseudo-stationary window of the signal, in which the PML signal does not have significant
variations. In any case, the linear regressions between the reference and PML breathing
rate estimations are significant (p-value < 0.05) for all the subject and the coefficients of
regression are lower than 60% for only two out of seven. Considering the pooling dataset
of breathing rate estimations, the squared Pearson r-value is 0.44 and almost all estimation
differences between PML and reference are within the 95% limits of agreement.

The present study raises the possibility to robustly estimate the position and breathing
rate of a subject lying over a bed by using a nonobtrusive and low-cost system based on a
textile pressure mapping layer placed over a mattress. The position and breathing rate are
key information to evaluate the quality of sleep of a subject. Hence, the proposed method
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associate to PML and other sensors of the smart bed will be an important element in future
home-automated environments for the evaluation of sleep quality, health, and more in
general the quality of life of the entire population. Furthermore, the proposed system
could be very useful also in a clinical context to allow for a continuous and nonobtrusive
monitoring of vital parameters for each patient. The main limitations of our study are the
restricted number of healthy subjects tested and the absence of long-time duration test (i.e.,
full night recordings). We plan to significantly increase the test population targeting both
healthy subjects and patients with specific clinical conditions (e.g., vegetative or minimally
conscious states) and with chronic multi-morbid diseases such as chronic obstructive
pulmonary disease.

5. Conclusions

We have shown the development and testing of a textile-based pressure sensing
matrix (the PML) that can be integrated in a mattress to perform posture/movement
classification and breathing rate extraction through the dedicated algorithms. Our system
is low cost and unobtrusive and has shown promising performance in posture movement
classification and breathing rate estimation in comparison to a standard method. The
proposed prototype and associated methods can be considered the core component of a
smart bed that has the potential to be used for unobtrusive healthcare assessment (sleep
quality analysis, respiratory symptoms, and cardiac issues) in the general population. The
results are encouraging even if preliminary, mainly due to the low number of subjects
involved in the tests. Additional studies will focus on exploiting the posture/movement
classification to optimize and improve performance in physiological sign detection and on
a massive testing phase of our system both in the real-life condition and clinical context
with a large number of subjects.
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