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Abstract: Very short-term load demand forecasters are essential for power systems’ decision makers 
in real-time dispatching. These tools allow traditional network operators to maintain power sys-
tems’ safety and stability and provide customers energy with high reliability. Although research 
has traditionally focused on developing point forecasters, these tools do not provide complete in-
formation because they do not estimate the deviation between actual and predicted values. There-
fore, the aim of this paper is to develop a very short-term probabilistic prediction interval forecaster 
to reduce decision makers’ uncertainty by computing the predicted value’s upper and lower 
bounds. The proposed forecaster combines an artificial intelligence-based point forecaster with a 
probabilistic prediction interval algorithm. First, the point forecaster predicts energy demand in the 
next 15 min and then the prediction interval algorithm calculates the upper and lower bounds with 
the user’s chosen confidence level. To examine the reliability of proposed forecaster model and re-
sulting interval sharpness, different error metrics, such as prediction interval coverage percentage 
and a skill score, are computed for 95, 90, and 85% confidence intervals. Results show that the pre-
diction interval coverage percentage is higher than the confidence level in each analysis, which 
means that the proposed model is valid for practical applications. 
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1. Introduction 
Since it was discovered in the late 1820s and early 1830s, electric power generation 

has become—and it will continue to be—a relevant energetic vector involved in most de-
veloped countries’ socio-economic activities [1,2]. In order to reduce the greenhouse gases 
associated with electricity production, some studies in the literature point out that it is 
necessary to decrease the energy intensity of today’s electrical-powered devices through 
new technological advances [3]. However, this efficiency improvement will not be enough 
to balance the expected growth in demand for energy in the short term [4,5]. This energy 
demand increase will be based on how quickly economies develop and societies’ desire 
for a better way of life [6] through new electrical household equipment or full or hybrid 
electric transport [4,7]. Moreover, both the increase in energy demand and renewable self-
supply installations will increase the volatility in energy demand, making activities car-
ried out by the current power systems’ controllers, such as real-time dispatching or sto-
chastic unit commitment, more uncertain [8]. 

If reversible hydropower electric plants are not taken into account, technical limita-
tions make the development of bulk energy storage systems impossible so, energy de-
mand and generation had to be balanced at every moment to guarantee electric power 
systems’ safety and reliable operation [9,10]. No matter the power system’s size, many 
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decisions, such as real-time dispatch, economic dispatch, or maintenance planning, are 
based on customer demand [11]. Therefore, to keep grids within the bounds of stability 
and to compute their operating schedules, power systems’ decision makers forecast their 
customers’ energy demand. In addition, these energy demand predictions need to be 
highly accurate in the short term, when there are a significant percentage of non-sched-
ulable renewable energy sources. 

A review of the literature [9,12,13] suggests that energy systems’ decision makers use 
scheduling algorithms that implement forecasters with different prediction horizons in 
order to analyze future power demand. Based on recently published studies, energy de-
mand forecasters are categorized as follows in terms of prediction horizon: 

Very Short-Term (VST): predictions computed by these forecasters are used for mak-
ing real-time decisions about activities such as real-time dispatching or power smoothing 
[14]. Therefore, predictions are made from few seconds up to one hour ahead [15]. 

Short-Term (ST): values calculated through these forecasters are applied by power 
systems’ decision makers’ to well-known unit commitment and economic dispatch sched-
ule activities [16]. Thus, predictions for such activities must be made from a few hours up 
to a day ahead [9]. 

Medium-Term (MT): the values produced by these forecasters are used to analyze 
weekly power demand fluctuations, as well as to schedule power systems’ infrastructures 
maintenance operations [17]. Hence, forecasters predict customers’ energy demand from 
days up to a few weeks ahead [12]. 

Long-Term (LT): these forecasters’ values are traditionally used to examine the need 
for new infrastructure in upcoming years in order to be able to meet customers’ power 
demand, as well as for power assessment [9]. Therefore, these forecasters compute a sys-
tem’s power demand requirements from months up to years ahead [13]. 

Given the expected increase not only in energy demand but also in that demand’s 
volatility, as well as the desire to continue guaranteeing power supply under a system’s 
safety conditions, accurate VST forecasters must be developed [18]. As a consequence, this 
study analyzes the different VST energy demand prediction models found in the literature 
to develop our model. 

Over the last decades, as computation techniques progressed, VST energy demand 
forecasters did as well, achieving more accurate predictions [19]. Depending on the type 
of model used to develop a forecaster, VST energy demand forecasters can be grouped 
into autoregressive (AR) or artificial intelligence (AI) models [15,16]. Autoregressive mod-
els are based on fixing relationships between selected parameters through the use of the 
chosen parameters’ time-series databases [20]. The main drawback of these models is their 
limited capacity to predict sudden changes in non-linear systems, as occurs in energy de-
mand or renewable power generation. Hence, AR models must be combined with AI 
models in order to be able to predict energy demand with sufficient accuracy [21,22]. Most 
AR models are of three types: persistence models, which are commonly used as a bench-
mark in evaluating the results of newly developed forecasters, autoregressive moving av-
erage (ARMA), and autoregressive integrated moving average (ARIMA) forecasters. 

AI models, which are also known as machine learning models, use bigger databases 
than AR models do. Additionally, unlike AR models, AI models are able to forecast sud-
den changes in non-linear systems. However, AI models require more time-series infor-
mation than AR models in order to properly establish relationships between the chosen 
parameters [22,23], so greater computational resources are needed. Because AI models are 
able to predict linear and non-linear systems’ parameters with high standard of accuracy, 
they have been used in fields, such as renewable generation and energy demand predic-
tion [8,15]. Although AI models are classified in several groups, most developed forecast-
ers rely on using as baseline artificial neural network or support vector machine models 
[22,24]. 
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In addition, some studies in the literature suggest that combining single approaches 
increases forecasting accuracy. This choice, which is known as hybridization or ensem-
bling, is commonly applied to ST forecasters or longer prediction horizons [9,24], as it 
must be keep in mind that the longer the horizon, the greater the models’ error [25,26]. 
While some studies suggest that ensemble models should be developed for VST forecast-
ers, other studies that have developed single approaches achieve similar results to those 
provided by ensemble models [27,28]. After reviewing and contrasting the results of these 
studies, we decided to develop a single approach AI forecaster as our model’s baseline. 

Traditionally, researchers have focused on the development of prediction point fore-
casters (PPF), which only produce a single value for the chosen prediction horizon. Nev-
ertheless, recent publications in literature claim that PPFs will have little accuracy im-
provement in the short term and that their partial information will not be enough to accu-
rately predict volatility in future energy demand [29,30]. Therefore, some authors pro-
posed prediction interval forecasters (PIF) as a solution to improve the quality of the pro-
vided information, making it more reliable for a grid’s decision makers’ [31,32]. Even 
though PIFs have been proposed recently, their suitability has been analyzed for the en-
ergy demand [32] and renewable generation prediction [30,31] research fields. 

From the few studies available in literature, PIFs can be organized along two dimen-
sions. The first dimension classifies forecasters by examining whether a PPF is applied as 
a baseline to calculate the interval [25,33], whereas the second dimension relates to 
whether researchers assume that the behavior of the parameters involved in the forecast-
ers can be expressed through a probability density function (PDF) computed with the var-
iables’ historical databases [34]. 

The first dimension splits PIFs into direct or indirect PIFs, denoted as DPIFs and 
IPIFs, respectively. While IPIFs are based on the use of a predicted value calculated 
through a PPF as a baseline for the interval’s value prediction, DPIFs predict the interval 
directly without the use of a PPF value. A review of the literature suggests that even 
though researchers are developing both DPIFs [35,36] and IPIFs [33,34,37–39], more effort 
is going into IPIF, and thus there more published studies involving IPIFs. The second di-
mension splits PIFs into parametric and non-parametric forecasters. With parametric fore-
casters, researchers assume that the parameters involved can be described by PDFs such 
as Gaussian or Laplacian distributions [31,38,40], whereas with non-parametric forecast-
ers they do not make this assumption [34,35,41]. 

The aim of this paper is to develop an IPIF to predict energy demand 15 min ahead. 
The IPIF relies on the mathematical analysis of the effect of each PPF parameter in the 
final output and through function linearization compute the energy demand’s prediction 
interval. These study’s key findings are as follows: 

A novel VST parametric indirect prediction interval energy demand forecaster, with 
a prediction horizon of the next 15 min, is proposed in order to reduce power systems’ 
uncertainty level. The model developed is based on combining a PPF that predicts the 
energy demand’s point value with mathematical concepts and a t-Student PDF that pre-
dicts the interval. Because studies in the literature propose different PPFs, the most pop-
ular models were examined to choose the most suitable one for our energy demand pre-
diction. The root mean square error metric is calculated to compare the results provided 
by each programmed PPF. 

Prediction interval coverage percentage (PICP) and skill score error metrics are com-
puted for different confidence levels (95, 90, and 85%) in order to analyze the accuracy of 
our developed PIF, as well as the width of the predicted intervals. In addition, the final 
forecaster achieves higher PICP values than the stated confidence levels in all analyzed 
situations. Hence, as noted in the literature [33,34], when this condition is satisfied, the 
proposed model is acceptable for forecasting the desired parameter. 

The remaining sections of this paper are organized as follows. Section 2 explains the 
energy demand PPF developed and the PIF methodology proposed. Section 3 presents 
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the error metric results for the programmed PPFs and the developed PIF. The conclusions 
drawn from this research are summarized in Section 4. 

2. Developed Methodology 
As explained in the previous section, a few studies in the literature started to claim 

that PPFs will not be able to continue predicting energy demand with sufficient accuracy 
in the short term [29,30]. This statement is based on the fact that both energy demand and 
energy volatility will increase in the coming years [8]. Therefore, we propose the develop-
ment of an energy demand PIF to address and resolve power system decision makers’ 
challenges in real-time dispatching. 

Having conducted a literature review [33,34,37], we decided to develop a parametric 
IPIF. Our proposed methodology followed two main steps: we first examined different 
single PPFs and chose the most suitable model for VST energy demand forecasting pur-
poses, and we then used the value given by the PPFs as a baseline in a mathematical model 
to calculate intervals. Because there are two well-differenced steps, Section 2.1 discusses 
the PPF models examined, whereas Section 2.2 presents the model proposed for interval 
computation. Finally, Section 2.3 shows the error metrics computed in order to analyze 
the programmed forecasters’ accuracy. 

2.1. Analysed PPF Models 
In recent years, researchers have developed many AI models not only for energy de-

mand forecasting purposes but also for other fields, such as power prediction for renew-
ables. For instance, some of the most frequently studied AI models are artificial neural 
networks (feedforward [20,42], recurrent [43,44], or wavelet [15,45]); support vector ma-
chines [46] and its support vector regression [11] variation; regression trees [47] or genetic 
algorithms [22]. Neural networks rely on the human brain’s mathematical replication in 
order to establish relationships between a system’s parameters, no matter whether the 
system is governed by linear or non-linear equations. With regard to support vector mod-
els, they are based on computing a set of equations, which describe system’s behavior. 
Regression trees or genetic algorithms apply classical logic and generalize it in their algo-
rithms to fit a model’s parameters. Of the above algorithms, we decided to compute feed-
forward neural networks, recurrent neural networks and support vector machines, based 
on recently published results [11,15,20,22,43,46] and their ease of implementation. In ad-
dition, we decided to program a persistence model to use it as a benchmark and quantify 
the improvement in accuracy relative to other models’ predictions [42,45]. 

2.1.1. Persistence 
Persistence models are based on the idea that a strong correlation exists between pa-

rameters’ actual values and the selected prediction horizon’s values. This model is de-
scribed in Equation (1) as, 𝑉(𝑡 + 𝛿𝑡) = 𝑉(𝑡) (1)

where 𝑉 is the forecasted parameter, 𝑡 represent the moment where the prediction is 
made and 𝛿𝑡 refers to the selected prediction horizon. Thus, by relying on strong corre-
lation idea, the persistence model assumes that the current parameter’s value will not 
change between the actual moment (𝑡) and the chosen prediction horizon (𝑡 + Δ𝑡) [19]. 
Taking into account its easy programmability and low computation cost, the persistence 
model is commonly used to develop VST forecasters, as well as a benchmark to compare 
the predicted values obtained by new forecasters and quantify the accuracy improvement 
[9,23,29,47,48]. 
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2.1.2. Artificial Neural Networks (ANN) 
The main advantage of ANNs is their capacity to model any system through a com-

bination of non-linear functions, historical databases, and learning iterative algorithms 
[49]. In addition, ANNs’ generalization skill, i.e., their ability to produce accurate forecasts 
from previously unseen data, makes them suitable not only for activities such as percep-
tion, pattern recognition or regression [50,51], but also for use in many research fields such 
as renewable generation or energy demand forecasting [8,15,16,22,24]. A review of the 
literature on VST forecasters suggests that, among all possible ANNs, PPFs’ feedforward 
and recurrent neural networks provide accurate results [20,42–44] and are easy to imple-
ment. 

Feedforward Neural Networks (FFNN) 
With regard to FFNNs, processed information flows forward, from forecaster input 

to output layers. To develop this model, the following set of parameters must be analyzed: 
the model’s number of layers, each layer’s number of neurons, the neurons’ activation 
functions, and iterative training algorithm for each layer. In addition, neurons are the 
smallest unit of the model, and they are responsible for computing the model’s mathe-
matical operations. The K-neuron of any ANN will be governed by the following mathe-
matical equation, 

𝑦 = 𝜆 𝑤 𝑥 + 𝑏  (2)

where 𝑦  refers to the k-neuron’s computed value through the use of a certain 𝑥  set of 
parameters. 𝜆  represents each layer’s neurons’ activation user-selected functions, such 
as linear or sigmoid function [52], while 𝑤  and 𝑏  are each neuron’s synaptic connec-
tions and bias value (respectively), which are fitted through the iterative training algo-
rithm. Further information concerning the neurons’ modeling and their parameters can 
be found in [49]. 

Recurrent Neural Networks (RNN) 
RNNs have essentially the same set of parameters that FFNNs do, the only difference 

being the addition of the z-t time delay function. In contrast to FFNNs, RNNs’ information 
flows not only forwards but also backwards through the use of loops. Therefore, the hid-
den layers’ outputs are used again as inputs to the previous layers, and their z−t parameter 
needs to be defined. Although the application of loops increases the model’s learning 
skills, it has the disadvantage of increasing training time [45]. 

2.1.3. Support Vector Machines (SVM) 
Similar to ANNs, SVM forecasters are used to model any system no matter whether 

it is governed by linear or non-linear equations. In this study, the SVMs’ regression skill 
is used to fit vector coefficients through the use of historical databases. Just as ANNs’ use 
neurons to produce their predictions, SVMs use their vectors to forecast future values. 
Although SVMs and ANNs share similarities due to the fact that both optimize their pa-
rameters through regression algorithms, SVM models have the advantage of being able to 
change all of a model’s parameters if a better configuration is found during the training 
step. However, ANNs are not able to calculate these variations and they maintain their 
parameters throughout the whole training step [51]. 

To perform a regression activity, SVMs use different kinds of transformations, which 
are denoted as kernel functions. These kernel functions modify a model’s vectors’ coeffi-
cient values through an iterative process, until the point where the difference between the 
actual and forecasted value reduces to a residual error chosen by the user. In addition, the 
main advantage of kernel functions arises from the fact that no matter how complicated 
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the real system is, kernel functions will be able to converge on the optimal solution with-
out getting stuck in a local minima [53]. 

2.2. Proposed IPIF Model 
Let us suppose any electric power system’s energy demand (𝑦), no matter its size, 

can be expressed through the combination of an unknown function (𝑓) and a set of input 
parameters (𝑥), as in Equation (3), 𝑦 = 𝑓(𝑥). (3)

Because it is difficult to obtain the energy demand’s analytical expression (𝑓), the 
purpose is to use the most accurate PPF presented in the previous section, so an approxi-
mation of the real system can be analyzed. Therefore, the system’s energy demand ap-
proach is mathematically expressed as, 𝑦 = 𝑞(𝑥; 𝛽∗) + 𝛿. (4)

where (𝛿) refers to the deviation between the actual value and the IPIF’s predicted value 
and (𝛽∗) represent the PPF’s set of real system parameters, which will be optimized dur-
ing the training step (𝛽). Thus, the PPF model is described as, 𝑦 = 𝑞 𝑥; 𝛽 . (5)

By combining Equations (4) and (5), as well as Taylor’s first-order polynomial ap-
proximation, deviation (𝛿) can be expressed in terms of, 𝛿 = 𝑦 − 𝑞(𝑥; 𝛽∗) ≈ 𝑦 − 𝑦 − 𝛽∗ − 𝛽 𝐺 𝛽 . (6)

where 𝐺 𝛽  is the gradient of the PPF’s function 𝑞 and can be described as, 𝐺 𝛽 = 𝜕𝑞 𝑥; 𝛽𝜕𝛽 , … , 𝜕𝑞 𝑥; 𝛽𝜕𝛽  (7)

where L is the number of 𝛽∗ parameters. In addition, Equation (6) can we reordered as 
follows, 𝑦 − 𝑦 = 𝛿 − 𝛽 − 𝛽∗ 𝐺 𝛽 . (8)

As we developed a parametric IPIF, the following assumptions are made: in our sta-
tistical analysis, 𝑦 and 𝑦 behave as random variables and (𝛿) deviation also behaves as 
a random variable described through a Normal distribution 𝑁(0, 𝜎 ) and is independent 
from 𝛽∗ − 𝛽 . Therefore, Equation (8) can be expressed in root mean square error terms 
as, 𝐸 (𝑦 − 𝑦) = 𝐸 𝛿 + 𝐺 𝛽 𝐸 𝛽 − 𝛽∗ 𝛽 − 𝛽∗ 𝐺 𝛽 . (9)

where 𝐸 denotes the expectation, that can also be mathematically expressed as, 𝐸 𝛽 − 𝛽∗ 𝛽 − 𝛽∗ = σ J 𝛽 J 𝛽 , (10)J 𝛽  is the Jacobian matrix where 𝐹 > 𝐿 condition must be fulfilled. While 𝐿 is 
the number of 𝛽∗ parameters, 𝐹 is a set of the training database used to fit PPF model. 
Combining Equations (9) and (10) yields, 𝐸 (𝑦 − 𝑦) = 𝐸 𝛿 + 𝐺 𝛽 𝐸 𝛽 − 𝛽∗ 𝛽 − 𝛽∗ 𝐺 𝛽  =  σ 1 + 𝐺 𝛽 J 𝛽 J 𝛽 𝐺 𝛽 = s 1 + 𝐺 𝛽 J 𝛽 J 𝛽 𝐺 𝛽 . (11)

where 𝑠  is the unbiased estimator of σ  and its value is computed as, 

𝑠 = 1𝐹 − 𝐿 𝑦 − 𝑞 𝑥 ; 𝛽  (12)
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It must be kept in mind that the 𝑠  estimator only can be properly calculated if the 𝐹 > 𝐿 condition is satisfied. Finally, for a sufficient number of F samples taken from the 
training database, random parameter 𝑇 can be calculated as, 𝑇 = 𝑦 − 𝑦𝑠 1 + 𝐺 𝛽 J 𝛽 J 𝛽 𝐺 𝛽 . (13)

In addition, the 𝑇 parameter can be approximated by a t-Student distribution with 𝐹 − 𝐿 of degrees of freedom [54]. The proposed IPIF will use the following equation to 
compute the intervals for a chosen confidence level of 100(1 − 𝛼)%, Interval =  𝑦 ± 𝑡 / 𝑠 1 + 𝐺 𝛽 J 𝛽 J 𝛽 𝐺 𝛽 . (14)

where 0 ≤ α ≤ 1 refers to the error rate chosen by the user, and 𝑡 /  represents the 
probability value obtained through the t-Student’s distribution for a chosen error rate and 𝐹 − 𝐿 degrees of freedom. As can be concluded from Equation (14), the more accurate the 
PPF is (𝑦), the more reliable the IPIF’s interval will be. 

2.3. Computed Error Metrics 
Because we suggest the development of an IPIF whose intervals are computed using 

as baseline a PPF’s predictions, both forecasters’ error metrics must be examined. While 
PPF’s error metrics are used to select the most suitable of above explained models, IPIF’s 
error metrics analyze not only forecasters’ reliability but also predicted intervals sharp-
ness. 

2.3.1. PPF Error Metrics 
A review of the literature [4,6,10,18,26,39,46] suggests that the root mean square error 

(RMSE) and R-squared (R2) error metrics are commonly calculated not only to analyze the 
PPFs’ prediction accuracy, but also to compare them against other studies’ results. There-
fore, in this study both error metrics are calculated through the following equations, 

RMSE =  1𝑁 (𝑦 − 𝑦 )  (15)

R =  1 − ∑ (𝑦 − 𝑦 )∑ (𝑦 − 𝑦)  (16)

where 𝑁 represent the number of predicted values during a time lapse, 𝑦  refers to the 
actual parameter’s value for 𝑖 sample, 𝑦  is the PPF’s predicted value for sample 𝑖, and 𝑦 is 𝑦  predictions’ averaged value. Due to the database resolution, 15 min, the number 
of predicted values during a day is, 𝑁 = 96. 
2.3.2. PIF Error Metrics 

From previous published studies [30,31,33,37,39], it is known that the PIF’s error met-
rics fall into two categories: reliability or sharpness indexes. Reliability error metrics, such 
as prediction interval coverage percentage (PICP), examines how many of the actual val-
ues fall into the predicted intervals, whereas the sharpness error metrics such as skill score 
(SS) analyze the predicted intervals’ width. In this study, we calculated four error metrics, 
a couple of each category. 

Before describing the computed error metrics, it is necessary to define the concept of 
prediction interval bound (PIB), which is composed of the upper (UB) and lower bounds 
(LB). Therefore, the PIB for a chosen error rate α and sample 𝑖 is mathematically defined 
as PIB = (LB ; UB ) pair. From Equation (14), LB , and UB  are expressed as below, 
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LB =  𝑦 −  𝑡 / 𝑠 1 + 𝐷 𝛽 J 𝛽 J 𝛽 𝐷 𝛽 , (17)

UB =  𝑦 +  𝑡 / 𝑠 1 + 𝐷 𝛽 J 𝛽 J 𝛽 𝐷 𝛽 . (18)

The most commonly computed and best-known PIF error metric is the PICP index. 
For a given set of samples with their respective PIBs, the PICP index analyzes and calcu-
lates as a percentage the number of samples that fall into their respective PIBs. This index 
is mathematically expressed as, PICP =  ∑ 𝛾      𝛾 =  1,  𝑦  ∈  PIB  0, 𝑦  ∉  PIB   (19)

In addition, as is supported by literature [55,56], a proposed model is considered ac-
ceptable when the obtained PICP  is equal to or greater than the confidence level (CL) 
chosen by the user CL = 1 − 𝛼. Therefore, the higher the PICP , the better the model’s 
reliability. Moreover, if this condition is not fulfilled, the proposed model must be reana-
lyzed until this condition is met. Once the required condition is met, other error metrics 
can be computed, such as the coverage error (CE), whose value is computed through CE𝛼 = PICP𝛼 − CL𝛼 (20)

Based on the fact that PICP ≥ C𝐿 , CE  must always be at least equal to or greater 
than zero. The higher the  CE , the better model’s reliability. Moreover, as noted in the 
literature, it is also necessary to examine the sharpness of the predicted intervals [33,56], 
i.e., the interval width. In order to understand the computed sharpness error metrics, it is 
necessary to define the mathematical concept prediction interval width (PIW), for a ran-
dom sample 𝑖 and chosen 𝛼 error rate: PIW =  UB − LB  (21)

With regard to the interval sharpness error metrics, a skill score (SS) was computed 
to quantify predicted interval width for a set of N samples. SS is mathematically expressed 
as, 

SS = 1𝑁 |𝛾 − (1 − 𝛼)| 𝑚𝑎𝑥(|LB − 𝑦 |, |𝑦 − UB |) (22)

SS  must always be positive, and the closer this value is to zero, the narrower the 
computed intervals are. Often SS  is normalized by parameter P in order to facilitate 
comparison with other studies. P’s order of magnitude is related to the forecasted varia-
ble. SSN = 1𝑃  𝑆𝑆  (23)

While the SS  index takes into account whether an actual value (𝑦 ) falls into PIB  
in its computation algorithm, the normalized prediction interval averaged width 
(NPIAW) just takes into account a set of intervals for a certain 𝛼 error rate, whose values 
are averaged and normalized as described below, 

NPIAW = 1𝑁𝑃 𝑃𝐼𝑊 . (24)

3. Results and Discussion 
A historical database of energy demand from a private company was used to exam-

ine the accuracy of the algorithms explained above. All models in the present study were 
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trained with the energy demand database for the whole of 2017 for 15 min resolution, 
whereas the whole database for 2018 with same resolution was used for the validation 
analysis. Thus, each database has a length of 35040 samples. In addition, the input vector 
used to develop the FFNN, RNN, and SVM models was made up of: season, the time of 
day the prediction was made, and energy demand values during the last 24 h with 15 min 
resolution. Both the proposed energy demand IPIF and all of the PPFs presented below 
were programmed in MATLAB®. 

3.1. PPF Model’s Results 
This section shows the error metric results obtained through the PPFs described in 

Section 2.1. The most accurate model is the one that was chosen in order to use its predic-
tions as the baseline in developing our IPIF. In addition, the PPF error metrics were com-
pared against the error metrics given in other studies in the literature. 

3.1.1. Persistence Model 
Based on the deviation between actual and predicted energy demand values, Table 1 

shows the RMSE and R2 indexes for the training and validation steps. 

Table 1. Computed RMSE and R2 indexes’ values for the persistence model. 

RMSE Train. (MW) RMSE Val. (MW) R2 Train. (-) R2 Val. (-) 
0.1254 0.1259 0.9897 0.9889 

Moreover, these indexes’ values were used as the baseline benchmark for quantifying 
the accuracy improvement obtained by other programmed PPF models’ by using Equa-
tion (25), Improvement (%) =   ∗ 100. (25)

where 𝐼𝑛𝑑𝑒𝑥  is always an error metric computed through the persistence model and 𝐼𝑛𝑑𝑒𝑥  is the error metric computed through the model whose improvement needs 
to be quantified. 

3.1.2. FFNN Model 
As explained in Section 2.1.2, when a FFNN forecaster is developed, the following 

set of parameters must be fit: the model’s number of layers, each layer’s number of neu-
rons, each layer’s neurons’ activation functions and iterative training algorithm (see Fig-
ure 1). With regard to the training step’s algorithms, a review of literature [15,45,53] 
agreed on the Levenberg–Marquardt (LM) algorithm being the most suitable choice for 
developing their forecasters, so the LM training algorithm was used in this study based 
on those previous studies’ accurate results. Moreover, Panchal et al. [57] concluded 
through the development of several ANN structures that two hidden layers structures do 
not necessarily improve forecasters’ accuracy and increases the possibility of getting stuck 
in a local minima, so a single hidden layer PPF structure was developed in our study. 
Although there are different activation functions that can be chosen for the neurons in 
each layer of the forecaster [52], in this forecaster, we chose the configuration usually sug-
gested in the literature: a logarithmic sigmoid transfer function in the hidden layer and a 
linear transfer function in the output layer [42–45]. Therefore, the last parameter that 
needed to be select was the hidden layer’s number of neurons. 
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Figure 1. FFNN forecaster’s layout. 

Related literature shows that the only available methodology for fixing the number 
of neurons in each layer relies on a sensitivity analysis [42–45]. In addition, the use of 
MATLAB® and its random initialization in the training step increases the risk of non-con-
vergence. Therefore, to reduce this risk, each analyzed structure was repeated five times 
and the results from the training and validation steps were averaged. To fix the FFNN’s 
hidden layer’s number of neurons, the RMSE index was computed; then, the R2 index was 
calculated for the best structure. Table 2 shows the averaged results for the FFNN struc-
tures analyzed. 

Table 2. FFNNs structures’ averaged results for fixing hidden layer’s number of neurons. 

Structure Hidden Layer 
Neurons 

Training 
RMSE (MW) 

Validation 
RMSE (MW) 

1 5 0.0878 0.0790 
2 10 0.0845 0.0776 
3 15 0.0853 0.0766 
4 20 0.0861 0.0774 
5 25 0.0862 0.0773 

The results in Table 2 suggest that there is little variation between analyzed struc-
tures’ results when the hidden layer’s neurons were modified. Based on the fact that fore-
casters with lower RMSEs are more accurate, the 10-neuron structure was the most accu-
rate structure for the training database, whereas the 15-neuron structure was the best with 
the validation database. Taking into account that our goal was to maximize the fore-
caster’s generalization capacity, i.e., obtain the most accurate predictions through previ-
ously unseen values, we chose to compare the 15-neuron structure against the results from 
the other PPFs. Table 3 summarizes 15-neuron configuration’s error metrics and their im-
provement in percentage against the benchmark model. 
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Table 3. Computed RMSE and R2 index values for 15-neuron FFNN model. 

 
RMSE Train. 

(MW) 
RMSE Val. 

(MW) R2 Train. (-) R2 Val. (-) 

Value 0.0853 0.0766 0.9955 0.0.9959 
Improve (%) 31.98% 39.15% 0.59% 0.71% 

3.1.3. RNN Model 
Regarding the RNN model, the FFNN’s set of parameters, as well as its delay param-

eter, must be fit. Therefore, the training algorithm, number of hidden layers and each 
layer’s neurons activation functions remained the same as in the FFNN’s model. As oc-
curred for the FFNN forecaster, the literature does not provide an analytical method for 
choosing the hidden layer’s number of neurons or the RNN’s characteristic delay param-
eter, so both parameters had to be chosen through sensitivity analyses (see Figure 2). 

 
Figure 2. RNN forecaster’s layout. 

Because we had to select two parameters, we first modified the delay while holding 
the number of neurons constant, and then having chosen the delay, we modified the num-
ber of neurons. In this study, the procedure explained in [45] was used, where the delay 
was varied from 1:2 to 1:6 while the number of neurons was held at 10. After the best delay 
was obtained, it was held constant while the number of neurons was modified from 5 to 
15, in steps of 5 neurons. The same procedure applied in the FFNN sensitivity analyses 
for avoiding non-convergence risk was used for the RNN forecaster. Thus, each configu-
ration’s five tests were run and their training and validation results were averaged (see 
Table 4). 

Table 4. RNNs analyzed structures’ averaged results for fixing hidden layer’s number of neurons. 

Structure Delay (z−t) Hidden Layer 
Neurons 

Training 
RMSE (MW) 

Validation 
RMSE (MW) 

1 1:2 10 0.0883 0.0766 
2 1:3 10 0.0946 0.0813 
3 1:4 10 0.0906 0.0779 
4 1:5 10 0.0900 0.0778 
5 1:6 10 0.0962 0.0852 
6 1:2 5 0.0939 0.1067 
7 1:2 15 0.0904 0.0783 
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The results in Table 4 indicate that the first structure analyzed, where the delay was 
1:2 and 10 neurons were in the hidden layer, produced more accurate predictions for both 
databases. Therefore, this structure was chosen in order to compare it against the other 
PPFs results, and Table 5 summarizes this configuration’s error metrics, as well as their 
improvement as a percentage against the benchmark model. 

Table 5. Computed RMSE and R2 index values for optimal RNN model. 

 
RMSE Train. 

(MW) 
RMSE Val. 

(MW) R2 Train. (-) R2 Val. (-) 

Value 0.0883 0.0766 0.9949 0.9959 
Improve (%) 29.58% 39.15% 0.53% 0.71% 

3.1.4. SVM Model 
With regard to SVM models, a couple of parameters, denoted as solvers and kernel 

functions, must be selected. Because there are different types of solvers and kernel func-
tions, different combinations were analyzed in order to select the optimal configuration. 
These solvers serve the same function in SVM models as LM algorithms do in FFNN and 
RNN structures, so to avoid the no-convergence issue, five tests of each configuration 
were run and their results were averaged. Table 6 show the computed averaged RMSE 
index values. 

Table 6. Analyzed SVM structures’ averaged results for fixing solver and kernel function parame-
ters. 

Solver Kernel Function Training 
RMSE (MW) 

Validation 
RMSE (MW) 

Sequential Minimal 
Optimization (SMO) 

Linear 0.1062 0.0951 
Gaussian 0.1187 0.1682 

Radial basis 0.1182 0.1619 
Polynomial 0.1037 0.0984 

Iterative Single Data 
Algorithm (ISDA) 

Linear 0.1117 0.1008 
Gaussian 0.1183 0.1650 

Radial basis 0.0939 0.1711 
Polynomial 0.1061 0.1016 

The results presented in Table 6 demonstrate that there is not a single structure which 
minimizes both databases’ RMSE index results. Based on the fact that the PPF model needs 
to have higher accuracy with previously unseen data, the ‘SMO’ solver and the ‘linear’ 
kernel function were chosen to compare this model against the other computed models. 
Table 7 show the best configuration’s error metrics as well as its improvement in percent-
age against the benchmark model. 

Table 7. Computed RMSE and R2 index values for optimal SVM model. 

 RMSE Train. 
(MW) 

RMSE Val. 
(MW) 

R2 Train. (-) R2 Val. (-) 

Value 0.1037 0.0951 0.9926 0.9937 
Improve (%) 17.30% 24.46% 0.29% 0.49% 

3.1.5. Discussion of PPF Model 
To more easily compare the results obtained by each computed PPF model, Table 8 

summarizes each model’s obtained error metrics and the improvement in percentage 
when the results are compared against the persistence model (benchmark). For each 
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model shown in Table 8, the value outside the brackets is the result obtained for each error 
metric, whereas the value inside the brackets, expressed in percentage, refers to the im-
provement when the values are compared against persistence benchmark. For this reason, 
the persistence model does not have any value inside the brackets. 

Table 8. Computed RMSE and R2 index values for each model’s optimal architecture. 

Model RMSE  
Train. (MW) 

RMSE  
Val. (MW) 

R2  
Train. (-) 

R2  
Val. (-) 

Persistence 0.1254  
(-) 

0.1259  
(-) 

0.9897  
(-) 

0.9889  
(-) 

FFNN 0.0853  
(31.98%) 

0.0766  
(39.15%) 

0.9955 (0.59%) 0.9959  
(0.71%) 

RNN 0.0883 
(29.58%) 

0.0766 
(39.15%) 

0.9949 
(0.53%) 

0.9959 
(0.71%) 

SVM 0.1037 
(17.30%) 

0.0951 
(24.46%) 

0.9926 
(0.29%) 

0.9937 
(0.49) 

Based on the results shown in Table 8, and taking into account its easier implemen-
tation and lower computational cost not only for the training step but also in producing 
forecasting values, the 15-neuron FFNN structure was selected. The predictions produced 
by this forecaster were then used as the baseline in the proposed IPIF. If FFNN results are 
compared against other PIF studies in the literature, a slight improvement is obtained by 
the developed energy demand forecaster. For instance, Zhang et al. [58] developed a VST 
energy demand IPIF whose FFNN forecaster’s parameters were completely different to 
the parameters chosen in this study. In terms of R2 index, Zhang obtained a regression 
value of 0.91, whereas the value obtained through this study was 0.99, demonstrating that 
the point forecaster slightly improves Zhang’s PPF. 

3.2. IPIF Model’s Results 
Based on the results in Section 3.1.5, the 15-neuron FFNN model was used as a base-

line to develop our proposed IPIF described in Section 2.2. The total number of  𝛽∗ pa-
rameters (𝐿) in the chosen FFNN was computed as 𝐿 = 𝑀𝑥(𝐼 + 2) + 1 = 1501, where 𝑀 
is the number of neurons in the hidden layer and 𝐼 refers to the system’s number of in-
puts, i.e., 15 neurons and 98 inputs, respectively. Therefore, 𝐹, which represents a set of 
the training database used to fit the PPF model, is the last parameter to be defined in the 
proposed IPIF model. Thus, 𝐹 parameter must satisfy the following condition 35040 >𝐹 > 1501, where 35040 is the length of the database used to fit the PPF model and 1501 is 
the total number of  𝛽∗ parameters. In addition, it must be reminded that for each 𝐹 set, 
parameters present in Equations (12)–(14) must be recomputed. To be able to select the 𝐹 
parameter that maximizes the IPIF’s accuracy, a sensitivity analysis was performed, in 
which several 𝐹 sets were examined for different 𝛼 error rates. Table 9 shows the PICP  
results for each computed scenario (𝐹, 𝛼) on randomly chosen days. Remember that the 
condition PICP >  (1 − 𝛼) must be fulfilled in order for the proposed IPIF model to be 
considered valid and 𝑁 = 96 represents the number of predicted values during each day. 
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Table 9. 𝐏𝐈𝐂𝐏𝛂 results for computed scenarios (𝐅, 𝛂). 

  𝑭 
Error Metric Date 1560 1552 1546 1540 1538 1536 

100 × PICP0.05 

(N = 96) 

08/02/2017 98.96 100.00 100.00 100.00 100.00 100.00 
04/05/2017 95.83 95.83 96.87 97.91 97.91 97.91 
25/07/2017 98.96 100.00 100.00 100.00 100.00 100.00 
16/08/2017 95.83 97.91 97.91 97.91 100.00 100.00 

100 × PICP0.10 

(N = 96) 

08/02/2017 94.79 97.91 98.95 100.00 100.00 100.00 
04/05/2017 92.71 92.71 95.83 95.83 97.91 97.91 
25/07/2017 94.79 97.91 100.00 98.5 100.00 100.00 
16/08/2017 90.63 92.71 95.83 96.88 100.00 100.00 

100 × PICP0.15 

(N = 96) 

08/02/2017 93.75 97.91 97.91 97.91 100.00 100.00 
04/05/2017 88.54 90.63 94.79 93.75 97.91 97.91 
25/07/2017 92.71 93.75 95.83 97.92 98.95 100.00 
16/08/2017 85.41 87.50 92.71 92.71 97.91 100.00 

From the results shown in Table 9, it can be concluded, for bigger 𝐹 values, that 
when the 𝛼 error rate increases the IPIF’s PICP  accuracy value decreases (see Table 9 
columns 𝐹 = 1560 or 𝐹 = 1552). However, this relationship has a weaker effect or com-
pletely disappears when lower 𝐹  values are chosen (see Table 9 columns 𝐹 = 1538 
or 𝐹 = 1536). In addition, all the analyzed scenarios presented in Table 9 satisfy the PICP >  (1 − 𝛼) requirement, so all 𝐹 sets can continue being examined. 

The next step was based on analyzing each scenario’s sharpness error metrics; for 
this purpose, the NPIAW  parameter was calculated for the scenarios from the previous 
table (see Table 10). To compute the  NPIAW  error metric, parameter 𝑃 takes the train-
ing database’s average value, 3546 kW. 

Table 10. NPIAW  results for computed scenarios (𝐹, 𝛼). 

  𝑭 
Error Metric Date 1560 1552 1546 1540 1538 1536 

100 × NPIAW0.05 

(N = 96) 

08/02/2017 11.51 12.14 14.11 14.63 17.52 23.32 
04/05/2017 9.59 10.76 12.47 12.92 15.02 19.39 
25/07/2017 12.03 13.06 14.92 16.02 18.14 23.80 
16/08/2017 8.67 9.81 11.08 11.98 14.04 16.65 

100×NPIAW0.10 

(N = 96) 

08/02/2017 9.61 10.13 11.62 12.19 14.59 19.40 
04/05/2017 8.01 8.97 10.08 10.76 12.51 16.13 
25/07/2017 10.05 10.90 12.49 13.35 15.11 19.80 
16/08/2017 7.24 8.19 8.94 9.98 11.69 13.86 

100 × NPIAW0.15 

(N = 96) 

08/02/2017 8.53 8.99 10.31 10.81 12.94 17.20 
04/05/2017 7.11 7.96 8.94 9.55 11.09 14.30 
25/07/2017 8.92 9.67 11.09 11.83 13.40 17.56 
16/08/2017 6.43 7.27 7.93 8.85 10.36 12.28 

Based on the results presented in Table 10, it can be concluded that, considering the 
same α error rate, the lower F value is the bigger the NPIAW  error metric is. This means 
that the interval width increases as the F value decreases. However, if the F value holds 
constant and the α error rate changes, then the bigger the α error rate is, the narrower the 
predicted interval is. Moreover, if the results in Tables 9 and 10 are examined, the wider 
the interval, the better the accuracy. Nevertheless, this IPIF is meant to decrease the un-
certainty of the energy demand in order to help power systems’ decision makers, so the 
user’s knowledge must be used to balance the proposed forecaster’s interval width and 
the model’s accuracy. 



Appl. Sci. 2021, 11, 2538 15 of 21 
 

Even though the IPIF for 𝐹 = 1560 satisfies the condition PICP >  (1 − 𝛼) for all 
analyzed 𝛼 error rates, we realized that the PICP  values are far from the 95% accuracy 
level for those error metrics which are not 𝛼 = 0.05 (see Table 9). Therefore, through bal-
ancing accuracy and interval width, the most suitable (𝐹, 𝛼) combinations were selected. 
Table 11 shows the selected 𝐹 parameter for each 𝛼 error rate as well as the correspond-
ing error metrics not only for the sample days shown in Tables 5 and 10 but also for a few 
others, which were randomly chosen. 

Table 11. Computed error metrics for the examined scenarios (F, α). 
Scenario Date 

Error Metric 
100 × 𝐏𝐈𝐂𝐏𝜶 

(N = 98) 
100 ×  𝐂𝐄𝜶 

(N = 98) 
100 ×  𝐍𝐏𝐈𝐀𝐖𝜶 

(N = 98) 
100 × 𝐒𝐒𝜶 

(N = 98) 

𝜶 = 𝟎. 𝟎𝟓  𝑭 = 𝟏𝟓𝟔𝟎  
(N = 96) 

08/02/2018 98.96 3.96 11.51 0.36 
04/05/2018 95.83 0.83 9.59 0.47 
25/07/2018 98.96 3.96 12.03 0.38 
16/08/2018 95.83 0.83 8.67 0.31 
28/09/2018 97.92 2.92 13.18 0.44 
10/11/2018 95.83 0.83 6.39 0.24 
19/12/2018 96.88 1.88 11.15 0.36 

𝛼 = 0.10  𝐹 = 1546 (N = 96) 

08/02/2018 98.95 8.95 11.62 0.72 
04/05/2018 95.83 5.83 10.08 0.77 
25/07/2018 100.00 10.00 12.49 0.79 
16/08/2018 95.83 5.83 8.94 0.60 
28/09/2018 98.96 8.96 14.15 0.88 
10/11/2018 94.79 4.79 6.34 0.44 
19/12/2018 97.92 7.92 11.32 0.72 

𝛼 = 0.15  𝐹 = 1540 (N = 96) 

08/02/2018 97.91 12.92 10.81 1.01 
04/05/2018 93.75 8.75 9.55 0.99 
25/07/2018 97.92 12.92 11.83 1.12 
16/08/2018 92.71 7.71 8.85 0.88 
28/09/2018 96.87 11.87 13.09 1.20 
10/11/2018 91.67 6.67 6.30 0.63 
19/12/2018 96.87 11.86 11.10 1.07 

The results presented in Table 11 demonstrate that, with our forecaster and a sensi-
tivity analysis for the 𝐹 parameter, it is possible to obtain IPIFs whose accuracy is close 
to the stated goal of 95% in terms of the analyzed 𝛼  error rates maintaining interval 
width. If we focus on the SS  column, it can be seen that the bigger the 𝛼 error rate is, 
the bigger the  SS  value is. This fact does not rely on the predicted interval width; if 
Equation (22) is examined, it can be seen how 𝛼 is taken into account in computing  SS  
values, so the higher 𝛼, the higher  SS . Figures 3–5 show the predicted intervals ob-
tained for 8 February 2018 for each examined scenario in Table 11. 
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Figure 3. Predicted intervals and actual energy demand evolution for 8 February 2018 
scenario (𝛼 = 0.05, 𝐹 = 1560). 

 
Figure 4. Predicted intervals and actual energy demand evolution for 8 February 2018 
scenario (𝛼 = 0.10, 𝐹 = 1546). 
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Figure 5. Predicted intervals and actual energy demand evolution for 8 February 2018 
scenario (𝛼 = 0.15, 𝐹 = 1540). 

Figures 2–4 demonstrated that even though the error rate increases, our forecaster, 
with the 𝐹  parameter’s proper sensitivity analysis, is able to maintain high accuracy, 
which is close to the stated goal of 95%. 

In contrast to other studies in the literature, such as Ni et al. [56] or Xu et al. [59], 
where error rate 𝛼 is fixed during the training step and PIF only predicts intervals for the 
chosen 𝛼 error rate, our model does not have this limitation. However, there are other 
authors in literature, such as Zhang et al. [58], who have proposed an IPIF whose 𝛼 error 
rate can be modified for similar energy demand and prediction horizon boundary condi-
tions. Zhang et al. only provide reliability error metrics such as PICP  and  CE  in their 
study; Table 12 summarizes Zhang et al.’s results and our results (averaged from Table 9 (𝐹 = 1560)) for those reliability indexes. 

Table 12. Comparison of computed error metrics’ comparison for our proposed IPIF and Zhang et 
al.’s IPIF. 𝜶 

Proposed IPIF Zhang et al.’s IPIF 
100 × 𝐏𝐈𝐂𝐏𝜶 100 ×  𝐂𝐄𝜶 100 × 𝐏𝐈𝐂𝐏𝜶 100 ×  𝐂𝐄𝜶 

0.05 97.40 2.40 94.69 −031 
0.10 93.23 3.23 90.06 0.06 
0.15 90.10 5.10 85.62 0.62 

From the results in Table 12, we can conclude that for similar prediction horizon con-
ditions (Zhang et al. forecaster’s makes predictions 10 min ahead, whereas in this study 
the forecaster makes predictions 15 min ahead), similar relative energy demand evolution 
along days (Zhang et al. energy demand varies in a range from 1500 to 3000 kW, whereas 
in this study it varies from 2500 to 6000 kW) and similar input parameters (Zhang et al. 
forecaster’s uses Month, Day, Hour, Minute, Day Type, Outdoor air temperature, Outdoor 
air relative humidity and previous load values as input parameters, in this study the fore-
caster uses season, time of day and previous load values) our forecaster is a slightly im-
provement over the IPIF proposed by Zhang et al. [58]. The main difference between both 
forecasters relies on the input parameters selection; Zhang et al. introduced meteorologi-
cal parameters as input parameters, whereas in this study they are discarded based on the 
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results obtained in a previous study [60]. The results of [60] demonstrated that the intro-
duction of meteorological parameters reduces the accuracy of final forecaster for chosen 
prediction horizon. 

4. Conclusions 
The goal of this study was to develop an energy demand parametric IPIF. Our pro-

posed forecaster predicts energy demand intervals for a 15-min-ahead time horizon and 
using an α error rate chosen by the user. The model and its error metrics were computed 
through a private company’s energy demand historical database. The main findings from 
this study are: 
(1) A novel VST parametric IPIF was proposed in order to predict energy demand inter-

vals 15 min ahead. Our forecaster relies on the combination of a PPF to predict energy 
demand point values, and mathematical concepts as well as t-Student PDF to predict 
the interval. Concerning the analyzed PPFs, the FFNN model arose as the most suit-
able one, due to the fact that it has the lowest training and validation RMSE indexes, 
0.0853 MW and 0.0766 MW, respectively. 

(2) The developed IPIF’s accuracy was examined for different 𝛼  error rates, namely 
0.05, 0.10, and 0.15. After performing several analyses, it was concluded that higher 
error rates generate a decrease in the model’s accuracy. However, in our model, this 
disadvantage can be limited if a sensitivity analysis is done for the 𝐹 parameter. In 
addition, there is a strong relationship between the forecaster’s accuracy and predic-
tion interval width, so the knowledge that power systems’ decision makers have will 
allow them to choose if they prefer more accurate or narrower intervals. 

(3) All of this study’s numerical results have been calculated from a private company’s 
energy demand historical database. While the training database contains information 
about the company’s energy demand for 2017, the validation database contains in-
formation about the company’s 2018 energy demand. A comparison of similar stud-
ies in the literature shows that there is a slight improvement when the computed 
error metrics are examined. The main disadvantage of our proposed model is the fact 
that at least an entire year’s energy demand database was needed to develop the PPF 
which provides the prediction value. With regard to the proposed interval prediction 
mathematical model, the main advantage is that even though the model has been 
fitted for a chosen 𝛼 error rate, the user is allowed to compute intervals not only for 
that 𝛼 error rate but also for others. In addition, this study’s IPIF model is com-
pletely developed through mathematical concepts and t-Student PDF, so our sug-
gested methodology can be applied in other fields where there is desire to predict 
intervals. 
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